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Exercise 26 (Inhomogeneous linear systems).

Consider the linear inhomogeneous differential equation

ẋ =

(
−1 4
−1 3

)
x−

(
2
2

)
.

(i) Show that this differential equation has a constant solution.

(ii) Compute the flow of this differential equation.

Exercise 27 (Stability for one-dimensional differential equations).

Consider the one-dimensional differential equation

ẋ = f(x) ,

where f : D ⊂ R→ R is locally Lipschitz continuous, defined on an open set D ⊂ R. We assume that
x∗ ∈ D is an equilibrium.

(i) Show that if x∗ is attractive, then x∗ is stable.

(ii) Assume now that f is n-times differentiable. Analyse the stability of this equilibrium, in depen-
dence on n ∈ N and the sign of f (n)(x∗), when

f (k)(x∗) = 0 for all k ∈ {1, . . . , n− 1} , and f (n)(x∗) 6= 0 .

Exercise 28 (Global attractivity).

Show that the trivial equilibrium of the two-dimensional differential equation

ẋ = −x+ y − x3 ,
ẏ = −x− y − y3

is globally attractive, i.e. if ϕ(t, x, y) denotes the flow of this differential equation, then we have

lim
t→∞

ϕ(t, x, y) =

(
0
0

)
for all (x, y) ∈ R2 .

Hint. Use polar coordinates (see Quiz 1 ) to analyse the time evolution t 7→ ‖ϕ(t, x, y)‖ of the radial
component of the solution.

Remark. Note that the theorem on linearised stability (Theorem 4.10) can be applied here, but it will
only give information on the local stability behaviour. Proving global stability results is in general
much harder, but there are useful tools, and in the next weeks, you will learn much more about it.



Exercise 29 (Exponential stability of linear systems).

Consider the autonomous linear system
ẋ = Ax ,

where A ∈ Rd×d. Show that then the trivial equilibrium x∗ = 0 of this system is exponentially stable
if and only if Re ρ < 0 for all eigenvalues ρ of A.

Hint. This is the second part of Theorem 4.5. It is possible to prove this similarly to the first part.

Exercise 30 (Optional challenging question).

Let g : R→ R2 be continuous and bounded, and consider a matrix A ∈ R2×2 with eigenvalues a± ib,
where a < 0 and b ∈ R.

(i) Show that the linear inhomogeneous differential equation

ẋ = Ax+ g(t)

has a bounded solution µ : R→ R2.

Hint. Analyse t 7→
∫ t
−∞ e

A(t−s)g(s) ds.

(ii) Show that the solution µ from (i) is the only bounded solution of the linear inhomogeneous
differential equation.

(iii) Show that the solution µ from (i) is attractive in the sense that

lim
t→∞
‖λ(t, t0, x0)− µ(t)‖ = 0 for all (t0, x0) ∈ R2 ,

where λ : R×R×R→ R is the general solution of the linear inhomogeneous differential equation.

Comments on importance and difficulty of the exercises. Exercise 26 is an elementary com-
putational exercise to find the flow of an inhomogeneous linear differential equation. Exercise 27 is
very elementary, but requires confident use of typical one-dimensional arguments; these were trained
in particular on Problem Sheet 4. Part (i) shows that in the special case of one-dimensional sys-
tems, attractivity implies stability. (ii) gives a simply criterion for stability in the one-dimensional
case; additional explanations can be found in Example 4.8 (covered in Lecture 21). Exercise 28 is
an elementary analysis of a two-dimensional system using polar coordinates. Exercise 29 is similar
to the first part of the proof of Theorem 4.5. Exercise 30 uses an integration technique that is quite
important in the theory of differential equation: the Lyapunov–Perron integral given in the hint of (i).
This does not play a role in the remainder of the course, but certain proofs of the stable and unstable
manifold theorem (discussed in Subsection 1.5 of Chapter 4) make use of this integral.
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