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Exercise 31 (First steps in phase plane analysis).

Consider the two-dimensional differential equation

ẋ = −x ,
ẏ = −2y + 2x3 .

(i) Show that (0, 0) is the only equilibrium.

(ii) Show that this equilibrium is attractive using linearisation.

(iii) Draw the nullclines in the plane (these are the curves where ẋ = 0 and ẏ = 0), and identify the
following regions bounded by the nullclines and named using London postcode logic:
NE (where ẋ > 0, ẏ > 0), NW (where ẋ < 0, ẏ > 0), SW (where ẋ < 0, ẏ < 0), SE (where
ẋ > 0, ẏ < 0).

(iv) Clarify for each of these four regions whether they are invariant, positively invariant or negatively
invariant. Can this system have a periodic orbit? Try to answer the last question on an intuitive
level rather than rigorously.

(v) Prove that the equilibrium (0, 0) is globally attractive, i.e. all points converge to it forward in
time: limt→∞ ϕ(t, x, y) = (0, 0) for all (x, y) ∈ R2.

Hint. Analyse in (v), using also information obtained in (iv), how the flow can move between the
different regions. For making your arguments rigorous, use Exercise 16 (ii).

Remark. Some of you may notice that there is a faster way to get to (v), but the objective of this
exercise is to explore how to analyse two-dimensional nonlinear differential equations using tools from
phase plane analysis by means of a relatively simple example first.

Exercise 32 (Stability under linear transformations).

Consider an autonomous differential equation

ẋ = f(x) ,

where f : Rd → Rd is locally Lipschitz continuous, and assume that x∗ is a stable equilibrium. Let
T ∈ Rd×d be an invertible matrix. Show that then y∗ := T−1x∗ is a stable equilibrium of the differential
equation

ẏ = g(y) ,

where g(y) := T−1f(Ty).

Hint. Show first that λ : I → Rd is a solution of ẋ = f(x) if and only if µ : I → Rd, given by
µ(t) := T−1λ(t), is a solution of ẏ = g(y).

Exercise 33 (Openness of the domain of attraction).

Consider an autonomous differential equation

ẋ = f(x) ,

where f : D → Rd is locally Lipschitz continuous and D ⊂ Rd is an open set. Show that the domain
of attraction

W s(x∗) :=
{
x ∈ D : lim

t→∞
ϕ(t, x) = x∗

}



of an attractive equilibrium x∗ ∈ D is an open subset of D.

Hint. You can use without proof that the flow is a continuous function.

Exercise 34 (Boundary of an invariant set).

Consider an autonomous differential equation

ẋ = f(x) ,

where f : D → Rd is locally Lipschitz continuous on an open set D ⊂ Rd, and assume that M is an
invariant set. Show that then the boundary ∂M is also invariant.

Remark. We consider here the metric space D, as a subset of Rd, inheriting the metric from Rd. Here,
the boundary ∂M of M needs to be taken in the topology of the open set D, meaning that we have
∂M = ∂RdM ∩D, where ∂RdM is the boundary of M in Rd.

Exercise 35 (Optional challenging question).

Consider D := J × Rd with an open interval J ⊂ R, and let the right hand side f : D → Rd of the
differential equation ẋ = f(t, x) be continuous and locally Lipschitz continuous. Furthermore, assume
that f is linearly bounded, i.e. there exist continuous functions ρ, σ : J → R+

0 such that

‖f(t, x)‖ ≤ ρ(t)‖x‖+ σ(t) for all (t, x) ∈ D .

Show that then the maximal solution to each initial value problem

ẋ = f(t, x) , x(t0) = x0 ,

with (t0, x0) ∈ D, exists globally, i.e. Imax(t0, x0) = J .

Hint. Use Proposition 2.1 and the Gronwall lemma (Lemma 4.9).

Comments on importance and difficulty of the exercises. Exercise 31 makes you familiar with
techniques to analyse two-dimensional differential equations. The idea is to first understand where
the flow is directed to and to study situations where this can be used to get a precise understanding
of the asymptotic behaviour; earlier material developed in the exercises is important for this analysis,
as pointed out. Analysing two-dimensional phase portraits is fun, and you will find lots of questions
of this type in the past exams (and on the next problem sheet). This is not so easy when you do it
the first time, but I have selected more elementary examples first. Exercise 32 shows that stability
properties are preserved under linear transformations. We know this already when we transform a
linear system in Jordan normal form, i.e. when the function f is linear. This exercise trains you
deal with the ε and δ’s of the stability definition. Exercises 33 and 34 are challenging, even though
the solutions are not lengthy. The challenging Exercise 35 gives another application of the Gronwall
lemma. This lemma was used before to prove the theorem on linearised stability (Theorem 4.10).
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