
Probability for Statistics
Problem Sheet 1

The first three questions should be accessible once you have watched up to lecture 3. Questions 4 and 5
should be accessible once you have watched up to lecture 6. Question 6 is a skills question, extending
ideas that should be familiar from last year. Question 7 is an optional discussion question, for interest.

1. Let Ω be a set.

(a) Show that the collection F = {∅,Ω} is a sigma algebra.

(b) Show that for any subset E ⊆ Ω, FE = {∅, E,Ec,Ω} is a sigma algebra.

(c) Let F be the collection of all subsets of Ω. Show that F is a sigma algebra.

(d) Show that the intersection of two sigma algebras on Ω is a sigma algebra.

(e) Give an example to show that the union of two sigma algebras on Ω need not be a sigma
algebra.

Objective: to recall definitions of sigma algebras and related concepts. To fill in some claims
left as exercises from lectures.

To show that F is a sigma algebra we must verify (i) ∅ ∈ F; (ii) if A ∈ F then Ac ∈ F; and (iii)
if A1, A2, . . . ∈ F then ∪∞k=1Ak ∈ F .

(a) (i) ∅ ∈ {∅,Ω}, (ii) ∅c = Ω ∈ {∅,Ω} and Ωc = ∅ ∈ {∅,Ω}, and (iii) ∅ ∪ Ω = Ω ∈ {∅,Ω}.
(b) (i) Certainly ∅ ∈ FE , (ii) Clearly Ac ∈ FE for each A ∈ FE , (iii) The only non-trivial

union to check is E ∪ Ec = Ω.

(c) (i) ∅ is a subset of any set, so ∅ ⊆ Ω and thus ∅ ∈ F; (ii) if A ∈ F , then A ⊆ Ω. But A ⊆ Ω
means that Ac ⊆ Ω, which in turn implies Ac ∈ F; (iii) If A1, A2, . . . ∈ F , then each
Ak ⊆ Ω and ∪∞k=1Ak ⊆ Ω. But this means that ∪∞k=1Ak ∈ F . Reflect: trivial, since the
sigma algebra axioms are closure properties for collections of subsets of Ω. The power
set clearly contains all subsets of Ω, so instantly satisfies the axioms.

(d) (Simpler version of the argument given in lectures.) Let F1 and F2 be the two sigma alge-
bras. (i) ∅ ∈ F1 and ∅ ∈ F2, since F1 and F2 are both sigma algebras. Thus ∅ ∈ F1 ∩ F2;
(ii) If A ∈ F1 ∩ F2 then A ∈ F1. Because F1 is a sigma algebra, this means Ac ∈ F1.
By the same reasoning, Ac ∈ F2, thus Ac ∈ F1 ∩ F2; (iii) if A1, A2, . . . ∈ F1 ∩ F2, then
A1, A2, . . . ∈ F1. Because F1 is a sigma algebra, this means ∪∞k=1Ak ∈ F1. By the same
reasoning, ∪∞k=1Ak ∈ F2, thus ∪∞k=1Ak ∈ F1 ∩ F2.
Reflect: as we saw in lectures, this argument extends to arbitrary intersections of sigma
algebras. Indeed, this result forms the basis for our construction of the Borel sigma al-
gebra on R.

(e) Define Ω = {0, 1, 2}, and consider the sigma algebras F0 = {∅, {0}, {1, 2}, {0, 1, 2}} and
F1 = {∅, {1}, {0, 2}, {0, 1, 2}}. Then

F0 ∪ F1 = {∅, {0}, {1}, {0, 2}, {1, 2}, {0, 1, 2}},

which is clearly not a sigma algebra because e.g. {0} ∪ {1} /∈ F0 ∪ F1.

2. Suppose a fair coin is flipped repeatedly, and that flips are independent. Use the continuity prop-
erty of the probability function Pr to show that, with probability 1, the coin will eventually land
heads up.
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Objective: Understand the continuity property by means of a concrete example.

LetAn be the event that the coin lands tails on the nth flip. Then by the continuity property applied
to the decreasing sequence BN =

⋂N
n=1An, we have

Pr(no heads) = Pr

( ∞⋂
n=1

An

)
= lim

N→∞
= Pr

(
N⋂
n=1

An

)
= lim

N→∞
2−N = 0.

Hence the complementary event that there is at least one head has probability 1.

3. Let Ω = [0, 1], the unit interval. Define F to be the collection of all countable or co-countable
subsets of Ω, where a co-countable set is one whose complement is countable.

(a) Show that F is a sigma algebra. [Hint: Is a countable union of countable sets countable?]

(b) Define the function P : F → [0, 1] by

P (A) =

{
0 if A is countable
1 if A is co-countable

.

Determine whether or not P is countably additive.

Objective: gain practice working with the defining axioms of a sigma algebra, and the defi-
nition of countable additivity for a probability function.

(a) (i) Clearly ∅ ∈ F .
(ii) If A ∈ F then either A is countable or its complement is. In either case, it follows that

Ac ∈ F .
(iii) Suppose A1, A2, . . . is a sequence of sets in F . There are two cases - if all of the sets

are countable then, as a countable union of countable sets is countable, their union is
also in F . If one of the sets, say Aj is co-countable, then the union is co-countable,
since if x ∈ (∪∞i=1Ai)

c, then it follows that x 6∈ Aj so x ∈ Acj . So the complement of
the union is a subset of a countable set, and hence is countable.

(b) Suppose {Ak, k = 1, 2, . . .} is a countable sequence of pairwise disjoint sets in F . Note
that at most one of {Ak, k = 1, 2, . . .} is cocountable, by the following argument. Suppose
Ak ⊂ F for k = 1, 2, . . ., Ak ∩Aj = ∅ for k 6= j, and that for some k0, Ak0 is cocountable.
For k 6= k0, Ak ∩ Ak0 = ∅ so Ak ⊆ Ack0 . Because Ack0 is countable, Ak is also countable.
Thus there is at most one cocountable set among {A1, A2, . . .}. So there are two cases to
consider

IF ALL ARE COUNTABLE: A countable union of countable sets is countable, so
P (∪∞k=1Ak) = 0. At the same time, P (Ak) = 0 for all k, so

∑∞
k=1 P (Ak) = 0 =

P (∪∞k=1Ak).
IF EXACTLY ONE IS COCOUNTABLE: Let k0 be the index of the cocountable set. By the

argument in part (a), ∪∞k=1Ak is cocountable and P (∪∞k=1Ak) = 1. At the same
time,

∑∞
k=1 P (Ak) = 1 because P (Ak0) = 1 while P (Ak) = 0 for k 6= k0. Thus,

P (∪∞k=1Ak) = 1 =
∑∞

k=1 P (Ak).

In both cases, P is countably additive.
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4. Consider a probability space (Ω,F ,Pr) in which

Ω = {1, 2, 3, 4, 5, 6}, F = {∅, {1, 3, 5}, {2, 4, 6},Ω}.

Determine whether each of the two functionsX1, X2 : Ω→ R defined below is a random variable
with respect to F .

X1(s) = s, X2(s) =

{
0 s even
1 s odd

.

Objective: gain familiarity with the definition of a random variable.

X1 is not a random variable with respect to F . To see this, consider the Borel set {1} ∈ B.
X−11 ({1}) = {1} /∈ F .

The image of X2 is the set {0, 1}, so for any Borel set B ∈ B, X−12 (B) = X−12 (B ∩ {0, 1}).

So then

X−12 (B) =


∅ 0 6∈ B, 1 6∈ B
{2, 4, 6} 0 ∈ B, 1 6∈ B
{1, 3, 5} 0 6∈ B, 1 ∈ B
Ω 0 ∈ B, 1 ∈ B.

Hence the pre-image of every Borel set is in F , so X2 is a random variable.

5. (a) Let X : Ω→ R be a random variable, and let B be the Borel sigma algebra on R. Show that
FX = {X−1(B) : B ∈ B} is a sigma algebra on Ω.

(b) Consider an experiment in which a fair coin is flipped twice, so that the sample space is
Ω = {HH,HT, TH, TT}. Let X : Ω → R take the value 1 if precisely one flip comes up
heads, and 0 otherwise. Determine the sigma algebra FX .

(c) For Ω as in the previous part, give an example of a function Y : Ω → R and a function g
(with suitable domain) such that X = g(Y ) and FX ⊂ FY .

Objective: Introduce the sigma algebra generated by a random variable. Gain familiarity
with the sigma algebra as encoding the information available from an experiment.

(a) There are three properties to check.

i. First, since X−1(∅) = ∅, clearly ∅ ∈ FX .
ii. Now suppose A ∈ FX , say A = X−1(B), for B ∈ B. Since B is a sigma algebra,

R\B ∈ B, and X−1(R\B) = Ac, so that Ac ∈ FX .
iii. Suppose now that A1, A2, . . . ∈ FX , sayAi = X−1(Bi), forBi ∈ B. Then

⋃∞
i=1Bi ∈

B, since B is a sigma algebra, so then
⋃∞
i=1Ai = X−1(

⋃∞
i=1Bi) ∈ FX .

(b) The two possible values of the function X are 0 and 1, so the pre-image of a Borel set B
depends on which of these elements it contains.
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X−1(B) =


∅ 0 6∈ B, 1 6∈ B
{HH,TT} 0 ∈ B, 1 6∈ B
{HT, TH} 0 6∈ B, 1 ∈ B
Ω 0 ∈ B, 1 ∈ B.

So then FX = {∅, {HH,TT}, {HT, TH},Ω}.
(c) Let Y count the number of heads in two flips of the coin. Define X = g(Y ) = Y mod 2.

Then by considering Y −1(B) for the Borel setsB = {0}, {1}, {2}, we see that FY is the set

{∅, {HH}, {TT}, {HT, TH}, {HH,TT}, {HH,HT, TH}, {HT, TH, TT},Ω}.

Reflect: FX is the sigma algebra generated by X . It is the smallest sigma algebra with
respect to which X is a random variable. We think of a sigma algebra F as encoding the
information we can obtain from an experiment. Even though we might not know which ω ∈
Ω occurs, we do know, for each E ∈ F , whether or not ω ∈ E. FX is the least information
we need to be able to extract from the experiment if we are to be able to determine the value
of X for any ω ∈ Ω.

6. (Review and extension of elementary probability.) In this question, you will derive the mean and
variance of the hypergeometric distribution.

Objective: Develop familiarity with the idea of representing a random variable as a sum of
indicators. Refresh understanding of properties of expectation, and understanding of bino-
mial coefficients. Reflect on the differences between sampling with and without replacement.

(a) (Warm up) IfX ∼ BINOMIAL(n, p), we can writeX =
∑n

i=1 Zi, whereZi ∼ BERNOULLI(p)
are independent. Use this representation to show that E(X) = np and Var(X) = np(1−p).
E(Zi) = p, so the result for E(X) follows immediately by linearity of expectation.

Reflect: How else could you do this calculation? Generating functions, or evaluating a
combinatorial identity, would work just as well.
E(Z2

i ) = p, so Var(Zi) = p− p2 = p(1− p). The result for Var(X) then follows from the
independence of the Zi.
Reflect: As we see from the next part, independence really is a necessary assumption
here.
Suppose now that X is hypergeometric, representing the distribution of the number of red
balls in a sample of size n drawn without replacement from an urn containing r red and w
white balls, N = r + w. In this case,

Pr(X = x) =

(
r
x

)(
N−r
n−x

)(
N
n

) .

As in the binomial case, we can represent X as a sum of Bernoulli variables: X =
∑n

i=1 Zi,
where Zi takes the value 1 if the ith ball is red and 0 otherwise.
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(b) What is the distribution of the Zi ? Are they independent?
Each of theN !/(N−n)! ordered configurations of removed balls is equally likely, and there
is a one-to-one correspondence between ordered configurations with a red ball in position i
and those with a red ball in position j: explicitly, there are r(N − 1)!/(N − 1− (n− 1))! =
r(N − 1)!/(N − n)! of each of these.
Hence Pr(Zi = 1) = r

N = Pr(Zj = 1). So Zi ∼ BERNOULLI( rN ).

The variables Zi and Zj for i 6= j are clearly not independent since

Pr(Zi = 1, Zj = 1) =
r

N

(r − 1)

N − 1
6= Pr(Zi = 1) Pr(Zj = 1)

for i 6= j.

(c) Show that E(X) = n r
N .

This follows immediately from the previous answer, using linearity of expectation.

E(X) =

n∑
i=1

E(Zi) = n
r

N
.

(d) (Harder) Show that Var(X) = n r
N
w
N
N−n
N−1 .

Var(X) = Var

(
n∑
i=1

Zi

)
=

n∑
i=1

Var(Zi) + 2
∑
i<j

Cov(Zi, Zj)

= n
r

N

w

N
+ n(n− 1)

(
r

N

(r − 1)

N − 1
− r2

N2

)
= n

r

N

[
w

N
+ (n− 1)

(
r − 1

N − 1
− r

N

)]
= n

r

N

[
w

N
+ (n− 1)

r −N
N(N − 1)

]
= n

r

N

w

N

[
1− n− 1

N − 1

]
= n

r

N

w

N

N − n
N − 1

.

Reflect: Look carefully at the form of this expression. Why is it zero when N = n?
Why is it equal to the expression for the binomial variance when n = 1?

Optional question for group discussion

7. For real numbers s > 1, define the Riemann zeta function as

ζ(s) =
∞∑
n=1

1

ns
.

Let s > 1 be fixed, and let the random variable X have probability mass function

fX(x) = Pr(X = x) =
1

xs
1

ζ(s)
, x ≥ 1.

Let Dk by the event that X is divisible by k, for k ≥ 2.
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(a) What is Pr(Dk)?
If X is divisible by k then X = km, for some positive integer m, so sum over all such
numbers.

Pr(Dk) =
1

ζ(s)

∞∑
m=1

(
1

mk

)s
=

1

ks
1

ζ(s)

∞∑
m=1

1

ms
=

1

ks
.

(b) Show that the events {Dp : p is prime} are independent.
Let p1, . . . pr be distinct primes. Then the event Dp1 ∩ . . .∩Dpr occurs if and only if X can
be written as a product p1 . . . prm for some positive integer m. As in the previous part, this
then gives

Pr(∩rk=1Dk) =
1

ζ(s)

∞∑
m=1

(
1

p1 . . . prm

)s
=

r∏
k=1

1

psk
.

Note that the right hand side is the product of the probabilities of the intersected events and
we are done.

(c) Prove Euler’s formula for the zeta function in terms of the prime numbers:

ζ(s) =
∏
p prime

(
1− 1

ps

)−1
.

Hint: You may assume that whenever a collection {Ai : i ∈ I} of events is independent, so is the
collection {Aci : i ∈ I}. Recall also that for a countable collection of independent events,

Pr

( ∞⋂
i=1

Ai

)
=
∞∏
i=1

Pr(Ai).

The events {Dp : p is prime} are independent, and so, by the hint, are the events {Dc
p : p is prime}.

Note that Dc
p is the event that X is not divisible by p, which has probability 1 − 1

ps . Again using
the hint, we have that

Pr

 ⋂
p prime

Dc
p

 =
∏
p prime

(
1− 1

ps

)
.

Now X can only fail to be divisible by all primes when X takes the value 1, and Pr(X = 1) =
1
ζ(s) . Equating the two probabilities and taking reciprocals gives Euler’s formula.
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