
Probability for Statistics
Problem Sheet 2

The first two questions are for you to practise working with the key definitions of probability functions,
sigma algebras, and random variables, and should be accessible using material from week 2. Questions
3-5 are to give plenty of practice working with probability mass and density functions, cumulative dis-
tribution functions and transformations of random variables. Question 6 is an opportunity to think about
the properties of a probability distribution. The final questions, for discussion, explore properties of
waiting time distributions. For questions from 3 onwards, it will be useful to have watched the week 3
videos, although some ideas will be familiar from last year.

1. Suppose P and Q are two probability functions defined on the same sample space Ω and sigma
algebra F .

(a) Show that if P (A) = Q(A) for all A ∈ F such that P (A) ≤ 1
2 , then in fact P = Q on all of

F .

(b) Show by means of an explicit example that if instead we only have P (A) = Q(A) for all
A ∈ F such that P (A) < 1

2 , then P and Q need not agree on all of F .

Objective: to practise working with probability functions in general, using only the proper-
ties specified by the axioms

(a) Suppose A ∈ F . If P (A) ≤ 1
2 then certainly P (A) = Q(A) by hypothesis. If not, then

P (Ac) = 1 − P (A) < 1
2 so P (Ac) = Q(Ac), so 1 − P (A) = 1 − Q(A), giving P (A) =

Q(A).

(b) Take Ω = {0, 1} and F = {∅, {0}, {1},Ω}. Define

P ({0}) = P ({1}) =
1

2

and

Q({0}) =
1

3
Q({1}) =

2

3
,

with
P (∅) = Q(∅) = 0, P (Ω) = Q(Ω) = 1.

Reflect: perhaps surprisingly, there need not be any non-empty events with probability
smaller than 1

2 .

2. Let (Ω,F ,Pr) be a probability space and let X and Y be random variables with respect to F . If
A ∈ F , define Z : Ω→ R by

Z(ω) =

{
X(ω) ω ∈ A
Y (ω) ω /∈ A.

(a) Show that Z is a random variable with respect to F .

(b) Show that if instead A ⊆ Ω is not an event, i.e. A /∈ F , Z need not be a random variable.

Objective: to understand how to manufacture new random variables from old, working only
with the definitions
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(a) Let B ∈ B, then

Z−1(B) = {ω ∈ Ω : Z(ω) ∈ B} = {ω ∈ A : X(ω) ∈ B} ∪ {ω ∈ Ac : Y (ω) ∈ B}
=
(
X−1(B) ∩A

)
∪
(
Y −1(B) ∩Ac

)
.

Since A,Ac ∈ F and X−1(B), Y −1(B) ∈ F , we see that Z−1(B) ∈ F .

(b) Consider Ω = {0, 1} and the trivial sigma algebra F = {∅,Ω}. Let X,Y : Ω → R be
the constant random variables X(ω) = 0 and Y (ω) = 1. Certainly, these functions are
random variables with respect to F . But if A = {0} /∈ F , we see that Z(0) = X(0) = 0
and Z(1) = Y (1) = 1. But then Z is not a random variable with respect to F , since
Z−1({0}) = {0} /∈ F .

3. Suppose that X is an absolutely continuous random variable with density function given by

fX(x) = 4x3, for 0 < x < 1,

and zero otherwise. Find the density functions of the following random variables:

(a) Y = X4, (b) W = eX , (c) Z = logX, (d) U = (X − 0.5)2.

The cdf of X , FX is given by

FX(x) =

∫ x

−∞
fX(t) dt =

∫ x

0
4t3 dt = x4, 0 < x < 1.

(a) Y = X4, so Y = (0, 1), and from first principles, for y ∈ Y,

FY (y) = Pr(Y ≤ y) = Pr(X4 ≤ y) = Pr(X ≤ y1/4) = FX(y1/4) = y.

Thus, fY (y) = 1, for 0 < y < 1.

(b) W = eX , so W = (1, e), and from first principles, for w ∈ W,

FW (w) = Pr(W ≤ w) = Pr(eX ≤ w) = Pr(X ≤ logw) = FX(logw) = (logw)4

=⇒ fW (w) =
4(logw)3

w
, 1 < w < e.

(c) Z = logX , so Z = (−∞, 0), and from first principles, for z ∈ Z,

FZ(z) = Pr(Z ≤ z) = Pr(logX ≤ z) = Pr(X ≤ ez) = FX(ez) = e4z.

Thus, fZ(z) = 4e4z, for −∞ < z < 0.

(d) U = (X − 0.5)2, so U = (0, 0.25), and from first principles, for u ∈ U,

FU (u) = Pr(U ≤ u) = Pr[ (X − 0.5)2 ≤ u ] = Pr(−
√
u+ 0.5 ≤ X ≤

√
u+ 0.5)

= FX(
√
u+ 0.5)− FX(−

√
u+ 0.5) = (0.5 +

√
u)4 − (0.5−

√
u)4

=⇒ fU (u) =
2√
u

[
(0.5 +

√
u)3 + (0.5−

√
u)3
]

=
1 + 12u

2
√
u

, 0 < u < 0.25.
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4. The measured radius of a circle, R, is an absolutely continuous random variable with density
function given by

fR(r) = 6r(1− r), for 0 < r < 1,

and zero otherwise. Find the density functions of (a) the circumference and (b) the area of the
circle.

We have fR(r) = 6r(1− r), for 0 < r < 1, and hence

FR(r) = r2(3− 2r), 0 < r < 1.

(a) Circumference: Y = 2πR, so Y = (0, 2π), and from first principles, for y ∈ Y,

FY (y) = Pr(Y ≤ y) = Pr(2πR ≤ y) = Pr(R ≤ y/2π) = FR(y/2π) =
3y2

4π2
− 2y3

8π3

=⇒ fY (y) =
6y

8π3
(2π − y), 0 < y < 2π.

(b) Area: Z = πR2, so Z = (0, π), and from first principles, for z ∈ Z, recalling that fR is
only positive when 0 < z < π,

FZ(z) = Pr(Z ≤ z) = Pr(πR2 ≤ z) = Pr(R ≤
√
z/π) = FR(

√
z/π) =

3z

π
− 2

{ z
π

}3/2

=⇒ fZ(z) = 3π−3/2(
√
π −
√
z), 0 < z < π.

5. Suppose that X is an absolutely continuous random variable with density function given by

fX(x) =
α

β

(
1 +

x

β

)−(α+1)

, for x > 0,

and zero elsewhere, with α and β non-negative parameters.

(a) Find the density function and cdf of the random variable defined by Y = logX .

(b) Find the density function of the random variable defined by Z = ξ + θY .

By integration

FX(x) =

∫ x

−∞
fX(t) dt =

∫ x

0

α

β

(
β

β + t

)α+1

dt = −
(

β

β + t

)α ∣∣∣∣∣
x

0

= 1−
(

1 +
x

β

)−α
, x > 0.

(a) If Y = logX , then Y = R, and

FY (y) = Pr(Y ≤ y) = Pr(logX ≤ y) = Pr(X ≤ ey) = FX(ey) = 1−
(

1 +
ey

β

)−α

=⇒ fY (y) =
α

β
ey
(

β

β + ey

)α+1

, y ∈ R.

(b) If Z = ξ + θY , then Y = (Z − ξ)/θ, so the density of Z can be found easily using
transformation techniques

fZ(z) =
α

β
e(z−ξ)/θ

(
β

β + e(z−ξ)/θ

)α+1 1

|θ|
, for z ∈ R.
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6. On the probability space (Ω,F ,Pr), letZ be a random variable such that Pr(Z > 0) > 0. Explain
carefully why there exists δ > 0 such that Pr(Z ≥ δ) > 0.

For n ≥ 1, define An = {Z ≥ 1
n}. Then A1 ⊆ A2 ⊆ . . . is an increasing sequence of events, and

{Z > 0} =
∞⋃
n=1

An.

Applying the continuity property of Pr, this then gives ,

Pr ({Z > 0}) = Pr

( ∞⋃
n=1

An

)
= lim

n→∞
Pr(An).

If it were the case that Pr(An) = 0 for all n ≥ 1, then the right hand limit would be 0, which is a
contradiction. Hence there exists n ≥ 1 such that Pr(An) > 0, so taking δ = 1

n suffices.

For discussion

7. In this question, we look what happens to the geometric distribution when we pass from discrete
to continuous time. Let T have the waiting time geometric distribution with parameter p, so that

Pr(T ≥ j) = (1− p)j , j = 0, 1, 2, . . .

We think of T , which takes non-negative integer values, as the number of units of time we need to
wait for an event to occcur. When p is very small, T typically takes very large values, so we seek
to rescale time, so that the waiting times are given in more reasonable units. Let M be a large
number, such that a = pM and t = j

M are both small relative to M . What is the distribution of
U = T

M , in terms of the parameter a? What important property has been preserved in this limit?

Pr(U ≥ u) = Pr

(
T

M
≥ u

)
= Pr(T ≥ uM) = (1− p)uM =

(
1− a

M

)uM
≈ e−au.

So U has the exponential distribution with rate a. This limiting distribution inherits the memory-
less property.

8. (Harder) Let X1, X2, X3 be independent random variables, each with the mass function

Pr(Xi = x) = (1− pi)px−1i , x = 1, 2, 3, . . .

Show that

Pr(X1 < X2 < X3) =
(1− p1)(1− p2)p2p23

(1− p2p3)(1− p1p2p3)
.

One can do this directly by evaluating the sum
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Pr(X1 < X2 < X3) =
∑

1≤i<j<k<∞
(1− p1)(1− p2)(1− p3)pi−11 pj−12 pk−13

= (1− p1)(1− p2)
∑

1≤i<j<∞
pi−11 pj−12 pj3.

= (1− p1)(1− p2)p3
∑

1≤i<∞

pi−11 (p2p3)
i

1− p2p3

=
(1− p1)(1− p2)p2p23

(1− p2p3)(1− p1p2p3)
.

An alternative approach uses the properties of the minimum of two geometric random variables.

First we compute Pr(X < Y ) where X and Y are independent geometric random variables with
success probabilities 1− p and 1− q, respectively.

Pr(X < Y ) =

∞∑
k=1

Pr(X < Y |Y = k) Pr(Y = k) =

∞∑
k=2

(
1− pk−1

)
(1− q)qk−1

= (1− q)
∞∑
k=2

qk−1 − (1− q)
∞∑
k=2

(pq)k−1 = q − (1− q)pq
1− pq

=
q(1− p)
1− pq

.

Now, note that min(X,Y ) is a geometric variable with failure probability pq, since

Pr(min(X,Y ) > k) = Pr(X > k ∩ Y > k) = Pr(X > k) Pr(Y > k) = pkqk.

Giving
Pr(min(X,Y ) ≤ k) = 1− (pq)k,

which is the CDF of a geometric random variable.

So then now

Pr(X1 < X2 < X3) = Pr(X1 < X2 ∩X2 < X3) = Pr(X1 < X2|X2 < X3) Pr(X2 < X3).

From the above calculation, we see that

Pr(X2 < X3) =
p3(1− p2)
1− p2p3

Now, conditional on X2 < X3, X2 is the minimum of two geometric random variables, so by the
result above,

Pr(X1 < X2|X2 < X3) =
p2p3(1− p1)
1− p1p2p3

,

giving the same result.

5


