
Probability for Statistics
Problem Sheet 3

The objective here is to practise working with joint distributions of random variables, and the quantities
that can be derived from them. All questions should be accessible by the time you have watched all
week 4 videos.

1. Let X be an absolutely continuous random variable with range X = R+, pdf fX and cdf FX .

(a) Show that

E(X) =

∫ ∞
0

[1− FX(x)] dx.

(b) Show also that for integer r ≥ 1,

E(Xr) =

∫ ∞
0
rxr−1 [1− FX(x)] dx.

(c) Find a similar expression for random variables for which X = R.

Objective: to derive an alternative (perhaps surprising) expression for expectation. Along
the way, we’ll make a connection with multiple integration.

(a)

E(X) =

∫ ∞
0
xfX(x) dx =

∫ ∞
0

{∫ x

0
dy

}
fX(x) dx =

∫ ∞
0

{∫ ∞
y
fX(x) dx

}
dy

=

∫ ∞
0

(1− FX(y)) dy ≡
∫ ∞
0

(1− FX(x)) dx.

Reflect: Notice that the change in the range of integration in the third equality follows
from the change in the order or integration. The exchange of order of integration is
valid if we know that the expectation integral is finite. The result also holds in the dis-
crete case with integrals replaced by summations. The important thing is to remember
the trick of introducing a second integral involving dummy variable y. The rest of the
result follows after careful manipulation of the double integral.

Many people get quite excited about this result, and there are some nice articles giving
geometric interpretations etc. See e.g. Demystifying the Integrated Tail Probability
Expectation Formula by Ambrose Lo (Shibboleth login probably needed).

(b)

E(Xr) =

∫ ∞
0
xrfX(x) dx =

∫ ∞
0

{∫ x

0
ryr−1 dy

}
fX(x) dx =

∫ ∞
0

{∫ ∞
y
fX(x) dx

}
ryr−1 dy

=

∫ ∞
0

(1− FX(y))ryr−1 dy ≡
∫ ∞
0
rxr−1(1− FX(x)) dx.
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(c) For a random variable that takes values on R, we split the integral into two at the origin and
proceed as above, as follows:

E(Xr) =

∫ ∞
−∞

xrfX(x) dx =

∫ 0

−∞
xrfX(x) dx+

∫ ∞
0
xrfX(x) dx

=

∫ 0

−∞

{∫ x

0
ryr−1 dy

}
fX(x) dx+

∫ ∞
0
rxr−1(1− FX(x)) dx

=

∫ 0

−∞

{
−
∫ 0

x
ryr−1 dy

}
fX(x) dx+

∫ ∞
0

(1− FX(y))ryr−1 dy

= −
∫ 0

−∞
ryr−1

{∫ y

−∞
fX(x) dx

}
dy +

∫ ∞
0

(1− FX(y))ryr−1 dy

= −
∫ 0

−∞
ryr−1FX(y) dy +

∫ ∞
0

(1− FX(y))ryr−1 dy.

2. Consider two absolutely continuous random variables X and Y such that

Pr(X ≤ x and Y ≤ y) =
(
1− e−x

)(1

2
+

1

π
tan−1 y

)
, for x > 0 and −∞ < y <∞,

with
Pr(X ≤ x and Y ≤ y) = 0, for x ≤ 0.

Find the joint pdf, fX,Y . Are X and Y independent ? Justify your answer.

Objective: practise working with joint distributions, and develop intuition for when random
variables are independent .

Let FX,Y (x, y) = Pr(X ≤ x and ]Y ≤ y). By the fundamental theorem of calculus, the function

fX,Y (x, y) =
∂2

∂t1∂t2
FX,Y (t1, t2)

∣∣∣
t1=x,t2=y

=
e−x

π(1 + y2)

is a pdf of (X,Y ). That is to say, probabilities of measurable regions, Pr((X,Y ) ∈ R), can be
computed by integrating fXY overR. Finally, because (i) fX,Y (x, y) = fX(x)fY (y), and (ii) the
support of (X,Y ) is R+ ×R, X and Y are independent.

3. Suppose that the joint pdf of X and Y is given by

fX,Y (x, y) = 24xy, for x > 0, y > 0, and x+ y < 1,

and zero otherwise. Find

(a) the marginal pdf of X , fX ,

(b) the marginal pdf of Y , fY ,

(c) the conditional pdf of X given Y = y, fX|Y ,

(d) the conditional pdf of Y given X = x, fY |X ,

(e) the expected value of X ,

(f) the expected value of Y ,
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(g) the conditional expected value of X given Y = y, and

(h) the conditional expected value of Y given X = x.

[Hint: Sketch the region on which the joint density is non-zero; remember that the integrand is
only non-zero for some part of the integral range.]

Objective: gain familiarity with the quantities (e.g. marginal/conditional distributions) that
can be computed from a joint distribution.

(a) The joint pdf of X and Y is given by

fX,Y (x, y) = 24xy, for x > 0, y > 0, x+ y < 1,

and zero otherwise, the marginal pdf fX is given by

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ 1−x

0
24xy dy = 24x

[
y2

2

] ∣∣∣∣∣
1−x

0

= 12x(1− x)2, for 0 < x < 1,

as the integrand is only non-zero when 0 < x+ y < 1 =⇒ 0 < y < 1− x for fixed x.

(b) Because fX,Y (x, y) and its support are symmetric in x and y, the marginal densities are the
same,

fY (y) = 12y(1− y)2, for 0 < y < 1.

(c) The conditional density is proportional to the joint density,

fX|Y (x|y) ∝ fX,Y (x, y) = 24xy = cxy for 0 < x < 1− y.

To find c, ∫ 1−y

0
xy dx =

x2y

2

∣∣∣∣∣
1−y

0

=
(1− y)2y

2
.

So c = 2/y(1− y)2 and

fX|Y (x|y) =
2x

(1− y)2
for 0 < x < 1− y.

(d) Because fX,Y (x, y) and its support are symmetric in x and y, the conditional densities are
also symmetric,

fY |X(y|x) =
2y

(1− x)2
for 0 < y < 1− x.

(e) & (f) Because X and Y have the same marginal distribution, they have the same expectation,

E(Y ) = E(X) =
∫ 1
0 x
[
12x− 24x2 + 12x3

]
dx =

∫ 1
0

[
12x2 − 24x3 + 12x4

]
dx

=

[
4x3 − 6x4 + 12

5 x
5

]∣∣∣∣∣
1

0

= 0.4.

(g) & (h) Because X | Y = y and Y | X = x have the same conditional distribution, they have the
same conditional expectation,

E(X | Y ) =

∫ 1−y

0
xfX|Y (x | y)dx =

∫ 1−y

0

2x2

(1− y)2
dx =

2x3

3(1− y)2

∣∣∣1−y
0

=
2

3
(1− y)

and E(Y | X) = 2
3(1− x).
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4. (Harder) Suppose that X and Y have joint pdf that is constant on the range X(2) ≡ (0, 1) ×
(0, 1), and zero otherwise. Find the marginal pdf of the random variables U = X/Y and V =
− log(XY ), stating clearly the range of the transformed random variable in each case.

[Hint: For U , you might consider first the joint pdf of (U,X), then obtain the marginal pdf of U .
For V , consider the joint pdf of (V,− logX), then obtain the marginal pdf of V . These choices
result in much simpler calculations than those required to derive the joint transformation from
(X,Y ) to (U, V ).]

Objective: Gain practise computing marginal distributions in a somewhat trickier case.

Figure 1: Sketches of the joint support of the transformed random variables in Problem 6.

First, put U = X/Y and Z = X; the inverse transformations are therefore X = Z and Y =
Z/U . The first step is to sketch the support of the two new variables, see Figure 1(a) which shows
how the new variables are constrained by 0 < Z < min {U, 1} (because Y < 1). In terms of the
multivariate transformation theorem, we have transformation functions defined by

g1(t1, t2) = t1/t2, g−11 (t1, t2) = t2,

g2(t1, t2) = t1, g−12 (t1, t2) = t2/t1,

and the Jacobian of the transformation is given by

J(u, z) =

∣∣∣∣∣∣
0 1

−z/u2 1/u

∣∣∣∣∣∣ =
z

u2

and hence

fU,Z(u, z) = fX,Y (z, z/u) z/u2 = z/u2, (u, z) ∈ U(2) ≡ {(u, z) : 0 < z < min {u, 1} , u > 0} ,
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and zero otherwise, and so

fU (u) =

∫ ∞
−∞

fU,Z(u, z) dz =

∫ min{u,1}

0
z/u2 dz =

(min {u, 1})2

2u2
, u > 0.

Now, for V , put V = − log(XY ) and Z = − logX; the inverse transformations are therefore
X = e−Z and Y = e−(V−Z). Note =that 0 < Z < V , see Figure 1(b). In terms of the theorem,
we have transformation functions defined by

g1(t1, t2) = − log(t1t2), g−11 (t1, t2) = e−t2 ,

g2(t1, t2) = − log t1, g−12 (t1, t2) = e−(t1−t2),

and the Jacobian of the transformation is given by

J(v, z) =

∣∣∣∣∣∣
0 −e−z

−e−(v−z) e−(v−z)

∣∣∣∣∣∣ = e−v,

and hence

fV,Z(v, z) = fX,Y (e−z, e−(v−z)) e−v = e−v, (v, z) ∈ V(2) ≡ {(v, z) : 0 < z < v <∞} ,

and zero otherwise, and so

fV (v) =

∫ ∞
−∞

fV,Z(v, z) dz =

∫ v

0
e−v dz = ve−v, v > 0,

and zero otherwise.

Reflect: of course, we should be able to obtain the same results by the joint transformation.
Let’s check. Set

U = X/Y
V = − log(XY )

⇐⇒ X = U1/2e−V/2

Y = U−1/2e−V/2

and note that, as X and Y lie in (0, 1) we have XY < X/Y and XY < Y/X , giving con-
straints e−V < U and e−V < 1/U , so that 0 < e−V < min {U, 1/U}. The support of U and
V is sketched in Figure 1(c). The Jacobian of the transformation is

J(u, v) =

∣∣∣∣∣∣∣∣∣
u−1/2e−v/2

2
−u

1/2e−v/2

2

−u
−3/2e−v/2

2
−u
−1/2e−v/2

2

∣∣∣∣∣∣∣∣∣ = u−1e−v/2.

Hence
fU,V (u, v) = u−1e−v/2, 0 < e−v < min {u, 1/u} , u > 0.

The corresponding marginals are given below: let g(u) = − log(min {u, 1/u}), then

fU (u) =

∫ ∞
−∞

fU,V (u, v) dv =

∫ ∞
g(u)

e−v

2u
dv = −e

−v

2u

∣∣∣∣∣
∞

g(u)

=
min {u, 1/u}

2u
, u > 0,

fV (v) =

∫ ∞
−∞

fU,V (u, v) du =

∫ ev

e−v

e−v

2u
du =

log u

2
e−v

∣∣∣∣∣
ev

e−v

= ve−v, v > 0.
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5. Suppose that X and Y are absolutely continuous random variables with pdf given by

fX,Y (x, y) =
1

2π
exp

{
−1

2

(
x2 + y2

)}
, for x, y ∈ R.

(a) Let the random variable U be defined by U = X/Y . Find the pdf of U .

(b) Suppose now that S ∼ χ2
ν is independent of X and Y . (The pdf of S is given by

fS(s) = c(ν)sν/2−1e−s/2, for s > 0,

where ν is a positive integer and c(ν) is a normalizing constant depending on ν.) Find the
pdf of random variable T defined by

T =
X√
S/ν

.

This is the pdf of a t random variable with ν degrees of freedom.

Objective: Derive distributions of huge practical signifiance in statistical modelling. (a) is the
Cauchy distribution, the most famous counter-example to the central limit theorem and (b)
is the t distribution, the distribution of the sample mean of a normal random sample when
standardized by an appropriate estimate of its standard error. In practical contents, the
random variable labelled here as X is the sample mean X̄ = 1

n

∑n
i=1Xi of a random sample

(X1, . . . , Xn) and S2 = 1
n−1

∑n
i=1(Xi − X̄)2. Given that X̄ and S2 are both functions of

the same random sample, it may be surprising that they are independent random variables.
This fact is certainly not obvious - it follows from Cochran’s theorem.

(a) Put U = X/Y and V = Y ; the inverse transformations are therefore X = UV and
Y = V . In terms of the multivariate transformation theorem, we have transformation
functions defined by

g1(t1, t2) = t1/t2, g−11 (t1, t2) = t1t2,

g2(t1, t2) = t2, g−12 (t1, t2) = t2,

and the Jacobian of the transformation is given by

J(u, v) =

∣∣∣∣∣∣
v u

0 1

∣∣∣∣∣∣ = v

and hence

fU,V (u, v) = fX,Y (uv, v) |v| =
(

1

2π

)
exp

{
−1

2
(u2v2 + v2)

}
|v| , for (u, v) ∈ R2.

Now, for any real u,

fU (u) =

∫ ∞
−∞

fU,V (u, v) dv =

∫ ∞
−∞

(
1

2π

)
exp

{
−1

2
(u2v2 + v2)

}
|v| dv

=

(
1

π

)∫ ∞
0
v exp

{
−v

2

2
(1 + u2)

}
dv (as integrand is even function)
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=

(
1

π

)[
− 1

(1 + u2)
exp

{
−v

2

2
(1 + u2)

}] ∣∣∣∣∣
∞

0

=
1

π(1 + u2)
,

with the final step following by direct integration.
Reflect: This is the infamous Cauchy distribution. It is most commonly encountered
as a case where results such as the central limit theorem do not apply, because U does
not have finite moments of any order. In particular, it does not have a finite mean or
variance.

As its pdf is an even function, we might be tempted to assert that its mean should be
zero. But this does not respect the definition we made when defining expectation. E|U |
is not finite, so E(U) is not defined. Equivalently, its mean is zero only if we allow
∞−∞ = 0, which we do not.

(b) Now put T = X/
√
S/ν and R = S; the inverse transformations are therefore X =

T
√
R/ν and S = R. In terms of the multivariate transformation theorem, we have trans-

formation functions from (X,S)→ (T,R) defined by

g1(t1, t2) = t1/
√
t2/ν, g−11 (t1, t2) = t1

√
t2/ν,

g2(t1, t2) = t2, g−12 (t1, t2) = t2,

and the Jacobian of the transformation is given by

J(t, r) =

∣∣∣∣∣∣∣∣
√
r

ν

t

2
√
rν

0 1

∣∣∣∣∣∣∣∣ =

√
r

ν
,

and hence

fT,R(t, r) = fX,S

(
t

√
r

ν
, r

)√
r

ν
= fX

(
t

√
r

ν

)
fS (r)

√
r

ν
, for t ∈ R, r ∈ R+,

and zero otherwise. Now, for any real t,

fT (t) =

∫ ∞
−∞

fT,R(t, r) dr

=

∫ ∞
0

(
1

2π

)1/2

exp

{
−rt

2

2ν

}
c(ν)rν/2−1e−r/2

√
r

ν
dr

=

(
1

2π

)1/2 c(ν)√
ν

∫ ∞
0
r(ν+1)/2−1 exp

{
−r

2

(
1 +

t2

ν

)}
dr

=

(
1

2π

)1/2 c(ν)√
ν

(
1 +

t2

ν

)−(ν+1)/2 ∫ ∞
0
z(ν+1)/2−1 exp

{
−z

2

}
dz setting z = r

(
1 +

t2

ν

)

=

(
1

2π

)1/2 c(ν)√
ν

(
1 +

t2

ν

)−(ν+1)/2
1

c(ν + 1)
,
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as the integrand is proportional to a Gamma pdf. We also can see that fS is a Gamma(ν/2, 1/2)
(otherwise known as a χ2(ν) or χ2

ν) density, and that the normalizing constant c(ν) is given
by

c(ν) =

(
1

2

)ν/2
Γ
(ν

2

) =⇒ fT (t) =

Γ

(
ν + 1

2

)
Γ
(ν

2

) (
1

πν

)1/2 1

(1 + t2/ν)(ν+1)/2
,

which, in fact, is the density of the Student(ν) or tν distribution. You will recall this from
your work on the t-test last year.

For discussion

6. Consider two independent random variables X1 and X2, exponentially distributed with rate 1.
Suppose we wish to consider the density function of X1 conditional on the event {X1 = X2}.

(a) One way to do this is to consider the variable Z = X1 − X2, and condition on the event
Z = 0. Find the pdf f(x1|z = 0).

fX1,Z(x1, z) = e−(2x1−z), x1 > 0, z < x1.

So then the value of the marginal pdf of Z at Z = 0 is given by

fZ(z) =

∫ ∞
0

fX1,Z(x1, 0) dx1 =

∫ ∞
0

e−2x1 dx1 =
1

2
.

Then we see

f(x1|z = 0) =
fX1,Z(x1, 0)

fZ(0)
= 2e−2x1 x1 > 0.

(b) Alternatively, one could consider the variable W = X2
X1

, and condition on the event W = 1.
Find the pdf f(x1|w = 1).
By standard tranformation methods,

fX1,W (x1, w) = x1e
−(x1+wx1), x1 > 0, w > 0.

So then the value of the marginal pdf of W at W = 1 is given by

fW (w) =

∫ ∞
0

fX1,W (x1, 1) dx1 =

∫ ∞
0

x1e
−2x1 dx1 =

1

4
.

Then we see

f(x1|w = 1) =
fX1,W (x1, 1)

fW (1)
= 4x1e

−2x1 x1 > 0.

(c) Comment on your answers to the two parts above. (This is an instance of the Borel-Kolmogorov
paradox.)
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Reflect: Conditioning on an event of probability zero (such as {X1 = X2}) is not well-
defined. Here (say for Z), we condition on eventsAn with Pr(An) > 0 but limn→∞ Pr(An) =
0. When for W we approach the limit using a different sequence, unsurprisingly, we get a
different answer.

7. Consider the data in Table 1, taken from Richard Doll’s 1950s study of smoking. The table shows
per capita consumption of cigarettes in 11 countries in 1930, and the death rates from lung cancer
for men in 1950.

(a) Produce a scatter plot of the data.

(b) Why does the study compare cigarette consumption in 1930 with lung cancer rates 20 years
later?

(c) Why does the study only consider death rates in men?

(d) Is it fair to conclude from these data that, on the whole, the higher the rate of smoking in a
country in 1930, the higher the death rate from lung cancer in 1950?

(e) Is it fair to conclude from these data that lung cancer death rates amongst smokers tend to
be higher?

Table 1: Data on smoking and lung cancer rates

Country Cigarette consumption Deaths per million
Australia 480 180
Canada 500 150

Denmark 380 170
Finland 1100 350

Great Britain 1100 460
Iceland 230 60

Netherlands 490 240
Norway 250 90
Sweden 300 110

Switzerland 510 250
USA 1300 200

(a) See Figure 2.

(b) Lung cancer (supposing it results from smoking) is the cumulative effect of many years of
exposure to cigarettes.

(c) In 1930, smoking was very uncommon amongst women.

(d) There is a positive correlation between the two variables(r ≈ 0.74), supporting the inter-
pretation given.

(e) Not a reasonable conclusion from the data (although it is true). What we know is that the
countries consuming more cigarettes tend to have higher incidence of lung cancer - these
data do not say whether or not it is the people who consume the cigarettes that are dying.
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Figure 2: Scatter plot of cigarette consumption against lung cancer death rates.
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