
MATH50010: Probability for Statistics
Problem Sheet 4

1. The joint pdf of the random variables X1 and X2 is

fX1,X2(x1, x2) = k exp

{
−
(
x21
6
− x1x2

3
+

2x22
3

)}
, for −∞ < x1, x2 <∞.

Find E(X1),E(X2),Var(X1),Var(X2),Cov(X1, X2) and k.

Objective: Deepen understanding of the bivariate normal distribution, and become com-
fortable with the form of its joint density

Because the log pdf is quadratic in x1 and x2, (X1, X2) must follow a bivariate normal distribu-
tion. Further since the exponent lacks a constant term, µ1 = E(X1) and µ2 = E(X2) are both
zero. Thus the joint pdf of (X1, X2) is

1

2πσ1σ2
√

1− ρ2
exp

{
− 1

2(1− ρ2)

(
y21
σ21

+
y22
σ22
− 2ρy1y2

σ1σ2

)}
,

where

2(1− ρ2)σ21 = 6, 2(1− ρ2)σ22 =
3

2
, and

σ1σ2(1− ρ2)
ρ

= 3.

Solving for σ21 and σ22 in first two equations and substituting into the square of the third equation

gives
9

4ρ2
= 9, and thus ρ = 1/2, σ21 = 4, and σ22 = 1. Finally, by the properties of the

bivariate normal distribution, Var(X1) = 4,Var(X2) = 1,Cov(X1, X2) = ρσ1σ2 = 1, and
k = (2πσ1σ2

√
1− ρ2)−1 = 1/(2

√
3π).

2. Suppose (
X1

X2

)
∼ N2

[
µ =

(
2
−5

)
,Σ =

(
1 −0.5
−0.5 4

)]
.

Compute Pr(X1 > 0) and Pr(X2 < −6).

Objective: Recognise the marginal distributions of a multivariate normal vector, and be-
come comfortable computing normal probabilities.

Using the result shown in the notes, X1 ∼ N(2, 1) and X2 ∼ N(−5, 4). Thus

Pr(X1 > 0) = Pr(Z > −2) = 1− Φ(−2) = Φ(2) = 97.73%,

where Z is a standard normal random variable. Likewise,

Pr(X2 > −6) = Pr

(
Z <

−6 + 5

2

)
= Φ(−1/2) = 1− Φ(1/2) = 30.85%.

3. Suppose X1, X2, and X3 are iid N(1, 1) random variables. Let X4 = 2X2 + 2X3 and X5 =
X2 − 2X3.

(a) Find the joint pdf of (X1, X4, X5).

(b) Find the marginal pdf of X5.

Objective: Get comfortable with linear transformations of multivariate normal vectors.
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(a) Let U = (X2, X3)
>, V = (X4, X5)

>, and M =

(
2 2
1 −2

)
, so that V = MU . Because

X2 and X3 are independent normal random variables, they are jointly bivariate normal.
(This can be verified by comparing their joint pdf with that of a bivariate normal random
variable.) Thus

U ∼ N2

((
1
1

)
,

(
1 0
0 1

))
and

V ∼ N2

(
M

(
1
1

)
,M

(
1 0
0 1

)
M>

)
,

i.e.,

V ∼ N2

((
4
−1

)
,

(
8 −2
−2 5

))
. (1)

Finally, because X1 and V are independent normal random vectors, they are jointly multi-
variate normal, so X1

X4

X5

 ∼ N3

 1
4
−1

 ,

1 0 0
0 8 −2
0 −2 5

 .

(b) By (1) X4 and X5 are bivariate normal, so using results from the notes, X5 ∼ N(−1, 5).

Reflect: what (if anything) would change if X4 and X5 had been linearly dependent combi-
nations of X2 and X3?

4. Suppose X and Y are two random variables each with finite mean and variance. Prove −1 ≤
ρXY ≤ 1 by using the fact that

Var

(
X

σX
+

Y

σY

)
and Var

(
X

σX
− Y

σY

)
are both positive quantities.

Objective: Derive the Cauchy-Schwarz inequality for the covariance inner product.

Var

(
X

σX
+

Y

σY

)
=

Var(X)

σ2X
+

Var(Y )

σ2Y
+

2Cov(X,Y )

σXσY
= 2(1 + ρXY ) ≥ 0.

Thus ρXY ≥ −1. Likewise,

Var

(
X

σX
− Y

σY

)
=

Var(X)

σ2X
+

Var(Y )

σ2Y
− 2Cov(X,Y )

σXσY
= 2(1− ρXY ) ≥ 0.

Thus ρXY ≤ 1.

Reflect: as this is essentially the Cauchy-Schwarz inequality for the inner product Cov(·, ·),
you can perhaps think of other ways of showing this.

5. Suppose that U1 and U2 are independent and identically distributed Unif(0, 1) random variables.
Let random variables Z1 and Z2 be defined by

Z1 =
√
−2 log(U1) cos (2πU2) ,

Z2 =
√
−2 log(U1) sin (2πU2) .
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Find the joint pdf of (Z1, Z2).

Objective: Practise working with multivariate transformations, by considering a famous
(and practically useful!) example

The inverse of the transformation Z1 =
√
−2 log(U1) cos (2πU2)

Z2 =
√
−2 log(U1) sin (2πU2)

is
U1 = exp

{
−1

2

(
Z2
1 + Z2

2

)}
U2 = I{Z2 > 0}

( 1

2π
arccos

Z1√
Z2
1 + Z2

2

)
+ I{Z2 < 0}

(
1− 1

2π
arccos

Z1√
Z2
1 + Z2

2

) ,

where I{} is an indicator function and the arccos function has a range of (0, π). Notice, from the
definition of Z2, that Z2 < 0 if and only if U2 >

1
2 . The range of the new variables is R× R.

When Z2 > 0, the Jacobian of the transformation is∣∣∣∣∣∣
∂u1
∂z1

∂u1
∂z2

∂u2
∂z1

∂u2
∂z2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
−z1 exp

{
−1

2

(
z21 + z22

)}
−z2 exp

{
−1

2

(
z21 + z22

)}
− 1

2π
z2

z21+z
2
2

1
2π

z1
z21+z

2
2

∣∣∣∣∣∣
=

∣∣∣∣ 1

2π

z21
z21 + z22

exp

{
−1

2

(
z21 + z22

)}
+

1

2π

z22
z21 + z22

exp

{
−1

2

(
z21 + z22

)}∣∣∣∣
=

1

2π
exp

{
−1

2

(
z21 + z22

)}
.

When Z2 < 0, the signs on ∂u2/∂z1 and ∂u2/∂z2 change, but this does not affect the absolute
value of the Jacobian. Hence the joint pdf is

fZ1,Z2 (z1, z2) = fU1,U2

(
exp

{
−1

2

(
z21 + z22

)}
,

1

2π
arctan

z2
z1

)
J (z1, z2)

= 1× 1

2π
exp

{
−1

2

(
z21 + z22

)}
=

1

2π
exp

{
−1

2

(
z21 + z22

)}
,

for (z1, z2) ∈ R2. Note that

fZ1,Z2 (z1, z2) = fZ1 (z1) fZ2 (z2) ,

where

fZ1 (z1) =
1√
2π

exp

{
−1

2
z21

}
, fZ2 (z2) =

1√
2π

exp

{
−1

2
z22

}
,

so in fact Z1 and Z2 are independent standard Normal random variables.

Reflect: This result tells us that if we can easily simulate (pairs of independent) uniform
random variables, then we can easily simulate (pairs of independent) standard normal vari-
ables. This is extremely useful in practice! The result here is called the Box-Muller trans-
form, and it is reviewed in an R tutorial on Blackboard. It is intimately connected to the
polar coordinates trick for evaluating the Gaussian integral.
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6. Suppose (X1, . . . , Xn) is a collection of independent and identically distributed random variables
taking values on X with pmf/pdf fX and cdf FX . Let Yn and Zn correspond to the maximum and
minimum order statistics derived from (X1, . . . , Xn), that is

Yn = max {X1, . . . , Xn} , Zn = min {X1, . . . , Xn} .

(a) Show that the cdfs of Yn and Zn are given by

FYn(y) = {FX(y)}n , FZn(z) = 1− {1− FX(z)}n .

(b) Suppose X1, . . . , Xn ∼ Unif(0, 1), that is

FX(x) = x, for 0 ≤ x ≤ 1.

Find the cdfs of Yn and Zn.

(c) Suppose X1, . . . , Xn have cdf

FX(x) = 1− x−1, for x ≥ 1.

Find the cdfs of Zn and Un = Znn .

(d) Suppose X1, . . . , Xn have cdf

FX(x) =
1

1 + e−x
, for x ∈ R.

Find the cdfs of Yn and Un = Yn − log n.

(e) Suppose X1, . . . , Xn have cdf

FX(x) = 1− 1

1 + λx
, for x > 0.

Find the cdfs of Yn, Zn, Un = Yn/n, and Vn = nZn.

Objective: Get used to working with order statistics, and in particular with minima and
maxima). Set the scene for some nice convergence questions on the next problem sheet!

(a) From first principles,

FYn(y) = Pr(Yn ≤ y) = Pr
(

max{X1, . . . , Xn} ≤ y
)

= Pr
(
X1 ≤ y, . . . , Xn ≤ y

)
=

n∏
i=1

Pr(Xi ≤ y) =

n∏
i=1

FX(y) = {FX(y)}n .

Likewise,

Pr(Zn > z) = Pr
(

min{X1, . . . , Xn} > z
)

= Pr
(
X1 > z, . . . ,Xn > z

)
=

n∏
i=1

Pr(Xi > z) =

n∏
i=1

{1− FX(z)} = {1− FX(z)}n .

So that FZn(z) = 1− Pr(Zn > z) = 1− {1− FX(z)}n.

(b) Directly applying the formulae derived in part (a),

FYn(y) = {FX(y)}n = yn

and
FZn(z) = 1− {1− FX(z)}n = 1− (1− z)n.
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(c) Again,

FZn(z) = 1− {1− FX(z)}n = 1−
(

1−
(

1− 1

z

))n
= 1− 1

zn
, z ≥ 1.

Setting Un = Znn , we have from first principles that, for u > 1,

FUn(u) = Pr (Un ≤ u) = Pr (Znn ≤ u) = Pr
(
Zn ≤ u1/n

)
= 1− 1(

u1/n
)n = 1− 1

u
,

which is a valid cdf, but which does not depend on n. Hence the limiting distribution of Un
is precisely

FU (u) = 1− 1

u
, u > 1.

(d) And again,

FYn(y) = {FX(y)}n =

(
1

1 + e−y

)n
, y ∈ R.

Setting Un = Yn − log n, we have from first principles that,

FUn(u) = Pr (Un ≤ u) = Pr (Yn − log n ≤ u)

= Pr (Yn ≤ u+ log n) = FYn(u+ log n) =

(
1

1 + e−u−logn

)n
.

(e) And once again applying the formula from (a),

FYn(y) = {FX(y)}n =

(
λy

1 + λy

)n
, for y > 0,

and

FZn(z) = 1− {1− FX(z)}n = 1−
(

1−
(

1− 1

1 + λz

))n
= 1− 1

(1 + λz)n
.

Now, setting Un = Yn/n, we have from first principles that, for u > 0,

FUn(u) = Pr (Un ≤ u) = Pr (Yn/n ≤ u) = Pr (Yn ≤ nu) = FYn(nu) =

(
λnu

1 + λnu

)n
.

And setting Vn = nZn, we have from first principles that, for v > 0,

FVn(v) = Pr (Vn ≤ v) = Pr (nZn ≤ v) = Pr (Zn ≤ v/n) = FZn(v/n) = 1−

(
1

1 + λv
n

)n
.

Reflect: What happens in the n→∞ limit in each case? See the discussion question imme-
diately below for one example.

For discussion

7. Let X1, . . . Xn ∼ UNIFORM(0, 1) and let Mn = max {X1, . . . Xn}.

(a) Show that for sufficiently small ε > 0,

Pr(Mn < 1− ε) = (1− ε)n.
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(b) Use the result above to show that for all ε > 0

lim
n→∞

Pr(|Mn − 1| ≥ ε) = 0.

Later we will say that this shows that the random variable Mn converges in probability to
the constant value 1.

(c) Now (by taking ε = t
n ), show that the distribution function of the rescaled variable n(1−Mn)

converges to the CDF of a known distribution.

(a) Mn < x iff Xi < x for each i = 1, . . . , n so by independence:

Pr(Mn < 1− ε) =
n∏
i=1

Pr(Xi < 1− ε) = (1− ε)n.

(b)
Pr(|Mn − 1| ≥ ε) = Pr(Mn > 1 + ε) + Pr(Mn ≤ 1− ε) = 0 + (1− ε)n → 0

(c)

Pr (n (1−Mn) ≤ t) = Pr

(
Mn ≥ 1− t

n

)
= 1−Pr

(
Mn < 1− t

n

)
= 1−

(
1− t

n

)n
→ 1−exp(−t).

This is the CDF of a rate 1 exponential variable.

8. Suppose Y and X = (X1, X2)
> jointly follow a trivariate normal distribution. Here Y is a

univariate random variable and Z = (Y,X1, X2)
> is a (3 × 1) trivariate normal random vector

with mean

µ =

(
µY
µX

)
and variance-covariance matrix M−1 =

(
mY Y MYX

M>
YX MXX

)−1
,

where µY is the univariate mean of Y , µX is the (2×1) mean vector ofX , µ is the (3×1) mean
vector of bothX and Y ,mY Y is the first diagonal element ofM ,MXX is the lower-right (2×2)
submatrix of M , and MYX is the remaining off-diagonal (1 × 2) submartix of M . (Note that
we parameterize the multivariate normal in terms of the inverse of its variance-covariance matrix.
This will significantly simplify calculations!)

(a) Derive the conditional distribution of Y given both X1 and X2. [Hint: Use vector/matrix
notation.]

(b) Now suppose Y and X = (X1, . . . , Xn)> jointly follow a multivariate normal distribution.
Here Y remains a univariate random variable andZ = (Y,X1, . . . , Xn)> is an [(n+1)×1]
multivariate normal random vector. Use the same notation for the mean and the inverse
of the variance-covariance matrix, but with appropriately adjusted dimensions. Derive the
conditional distribution of Y given X1, . . . , Xn. [Hint: If you used vector/matrix notation
in part (a), this problem will be very easy. If you did not, it will be very hard!]

(c) Set n = 1 and check that your answer is the same as the conditional distribution for the
bivariate normal derived in lecture.

(a) The conditional distribution of Y given X = (X1, X2) is proportional to the joint distribu-
tion of (Y,X1, X2), using z as short hand for (y, x1, x2)

>,

fY |X1,X2
(y|x1, x2) ∝ fY,X1,X2(y, x1, x2) = |M |1/2(2π)−3/2 exp

{
−1

2
(z − µ)>M(z − µ)

}
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∝ exp

{
−1

2
(z − µ)>M(z − µ)

}
∝ exp

{
−1

2

(
y − µY

x− µX

)>(
mY Y MYX

M>
YX MXX

)(
y − µY

x− µX

)}
∝ exp

{
−1

2

[
(y − µY )2mY Y + 2(y − µY )MYX(x− µX)

]}
∝ exp

{
−1

2

[
y2mY Y − 2ymY Y

(
µY −

MYX

mY Y
(x− µX)

)]}
.

In the first three lines we simply omit the normalizing constant for the trivariate normal
and rewrite the pdf in our specialized notation. In the fourth line we expand the matrix
product, dropping the MXX term because it does not involve y. In the last line we expand
(y − µY )2, collect terms that are quadratic and linear in y, and drop remaining terms that
do not involve y. Next, we pull outmY Y and complete the square (in y) by adding a constant
term, fY |X1,X2

(y|x1, x1)

∝ exp

{
−mY Y

2

[
y2 − 2y

(
µY −

MYX

mY Y
(x− µX)

)
+

(
µY −

MYX

mY Y
(x− µX)

)2
]}

∝ exp

{
−mY Y

2

[
y −

(
µY −

MYX

mY Y
(x− µX)

)]2}
.

Since the log of the pdf is quadratic in y, we find

Y |X ∼ N

(
µY −

MYX

mY Y
(x− µX),

1

mY Y

)
. (2)

Notice that we employ our general strategy for computing conditional distributions. Start
with the joint distribution, remove all the constant factors, and identify the remaining distri-
bution and its normalizing constant.

(b) We use the same notation as in part (a), noting thatµX is now (n×1),MYX is now (1×n),
and MXX is (n × n). With these changes the calculations are exactly the same as in part
(a). (Well almost exactly the same, the power on 2π should be −(n+ 1)/2 instead of −3/2
but that does not change anything.) The conditional distribution of Y givenX is exactly the
same as that given in (2).

(c) We can deriveM in the bivariate case by inverting the variance-covariance matrix,

Σ−1 =

(
σ2Y σY σXρ

σY σXρ σ2X

)−1
=

1

σ2Y σ
2
X(1− ρ2)

(
σ2X −σY σXρ

−σY σXρ σ2Y

)
= M .

Substituting MY X = − ρ

σY σX(1− ρ2)
and mY Y =

1

σ2Y (1− ρ2)
into (2), gives

Y |X ∼ N

(
µY +

ρσY
σX

(x− µX), σ2Y (1− ρ2)
)
.
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