MATH50010: Probability for Statistics Problem Sheet 4

1. The joint pdf of the random variables X_1 and X_2 is

$$f_{X_1,X_2}(x_1,x_2) = k \exp\left\{-\left(\frac{x_1^2}{6} - \frac{x_1x_2}{3} + \frac{2x_2^2}{3}\right)\right\}, \text{ for } -\infty < x_1, x_2 < \infty.$$

Find $E(X_1)$, $E(X_2)$, $Var(X_1)$, $Var(X_2)$, $Cov(X_1, X_2)$ and k.

2. Suppose

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathcal{N}_2 \left[\mu = \begin{pmatrix} 2 \\ -5 \end{pmatrix}, \Sigma = \begin{pmatrix} 1 & -0.5 \\ -0.5 & 4 \end{pmatrix} \right].$$

Compute $Pr(X_1 > 0)$ and $Pr(X_2 < -6)$.

- 3. Suppose X_1, X_2 , and X_3 are iid N(1,1) random variables. Let $X_4 = 2X_2 + 2X_3$ and $X_5 = X_2 2X_3$.
 - (a) Find the joint pdf of (X_1, X_4, X_5) .
 - (b) Find the marginal pdf of X_5 .
- 4. Suppose X and Y are two random variables each with finite mean and variance. Prove $-1 \le \rho_{XY} \le 1$ by using the fact that

$$\operatorname{Var}\left(\frac{X}{\sigma_X} + \frac{Y}{\sigma_Y}\right)$$
 and $\operatorname{Var}\left(\frac{X}{\sigma_X} - \frac{Y}{\sigma_Y}\right)$

are both positive quantities.

5. Suppose that U_1 and U_2 are independent and identically distributed Unif(0, 1) random variables. Let random variables Z_1 and Z_2 be defined by

$$Z_1 = \sqrt{-2\log(U_1)}\cos(2\pi U_2),$$
$$Z_2 = \sqrt{-2\log(U_1)}\sin(2\pi U_2).$$

Find the joint pdf of (Z_1, Z_2) .

6. Suppose (X_1, \ldots, X_n) is a collection of independent and identically distributed random variables taking values on \mathbb{X} with pmf/pdf f_X and cdf F_X . Let Y_n and Z_n correspond to the *maximum* and *minimum* order statistics derived from (X_1, \ldots, X_n) , that is

$$Y_n = \max \{X_1, \dots, X_n\}, \quad Z_n = \min \{X_1, \dots, X_n\}.$$

(a) Show that the cdfs of Y_n and Z_n are given by

$$F_{Y_n}(y) = \{F_X(y)\}^n, \quad F_{Z_n}(z) = 1 - \{1 - F_X(z)\}^n.$$

(b) Suppose $X_1, \ldots, X_n \sim \text{Unif}(0, 1)$, that is

$$F_X(x) = x$$
, for $0 \le x \le 1$.

Find the cdfs of Y_n and Z_n .

(c) Suppose X_1, \ldots, X_n have cdf

$$F_X(x) = 1 - x^{-1}$$
, for $x \ge 1$.

Find the cdfs of Z_n and $U_n = Z_n^n$.

(d) Suppose X_1, \ldots, X_n have cdf

$$F_X(x) = \frac{1}{1+e^{-x}}, \text{ for } x \in \mathbb{R}.$$

Find the cdfs of Y_n and $U_n = Y_n - \log n$.

(e) Suppose X_1, \ldots, X_n have cdf

$$F_X(x) = 1 - \frac{1}{1 + \lambda x}$$
, for $x > 0$.

Find the cdfs of Y_n , Z_n , $U_n = Y_n/n$, and $V_n = nZ_n$.

For discussion

- 7. Let $X_1, ..., X_n \sim \text{UNIFORM}(0, 1)$ and let $M_n = \max \{X_1, ..., X_n\}$.
 - (a) Show that for $\epsilon > 0$,

$$\Pr(M_n < 1 - \epsilon) = (1 - \epsilon)^n.$$

(b) Use the result above to show that for all $\epsilon > 0$

$$\lim_{n \to \infty} \Pr(|M_n - 1| \ge \epsilon) = 0.$$

Later we will say that this shows that the random variable M_n converges in probability to the constant value 1.

- (c) Now (by taking $\epsilon = \frac{t}{n}$), show that the distribution function of the rescaled variable $n(1-M_n)$ converges to the CDF of a known distribution.
- 8. Suppose Y and $\mathbf{X} = (X_1, X_2)^{\top}$ jointly follow a trivariate normal distribution. Here Y is a univariate random variable and $\mathbf{Z} = (Y, X_1, X_2)^{\top}$ is a (3×1) trivariate normal random vector with mean

$$\mu = \begin{pmatrix} \mu_Y \\ \mu_X \end{pmatrix}$$
 and variance-covariance matrix $M^{-1} = \begin{pmatrix} m_{YY} & M_{YX} \\ M_{YX}^{\top} & M_{XX} \end{pmatrix}^{-1}$

where μ_Y is the univariate mean of Y, μ_X is the (2×1) mean vector of X, μ is the (3×1) mean vector of both X and Y, m_{YY} is the first diagonal element of M, M_{XX} is the lower-right (2×2) submatrix of M, and M_{YX} is the remaining off-diagonal (1×2) submatrix of M. (Note that we parameterize the multivariate normal in terms of the *inverse* of its variance-covariance matrix. This will significantly simplify calculations!)

- (a) Derive the conditional distribution of Y given both X_1 and X_2 . [Hint: Use vector/matrix notation.]
- (b) Now suppose Y and X = (X₁,...,X_n)[⊤] jointly follow a multivariate normal distribution. Here Y remains a univariate random variable and Z = (Y, X₁,...,X_n)[⊤] is an [(n+1)×1] multivariate normal random vector. Use the same notation for the mean and the inverse of the variance-covariance matrix, but with appropriately adjusted dimensions. Derive the conditional distribution of Y given X₁,...,X_n. [Hint: If you used vector/matrix notation in part (a), this problem will be very easy. If you did not, it will be very hard!]
- (c) Set n = 1 and check that your answer is the same as the conditional distribution for the bivariate normal derived in lecture.