
MATH50010: Probability for Statistics
Problem Sheet 5

1. In question 6 of Problem Sheet 4, you derived the cdfs of a number of random variables involving
the minimum or maximum of a random sample. In this problem we will derive the limiting
distribution of these same random variables.

Suppose (X1, . . . , Xn) is a collection of independent and identically distributed random variables
taking values on X with pmf/pdf fX and cdf FX , let Yn and Zn correspond to the maximum and
minimum order statistics derived from X1, . . . , Xn.

(a) Suppose X1, . . . , Xn ∼ Unif(0, 1), that is

FX(x) = x, for 0 ≤ x ≤ 1.

Find the limiting distributions of Yn and Zn as n −→∞.

(b) Suppose X1, . . . , Xn have cdf

FX(x) = 1− x−1, for x ≥ 1.

Find the limiting distributions of Zn and Un = Znn as n −→∞.

(c) Suppose X1, . . . , Xn have cdf

FX(x) =
1

1 + e−x
, for x ∈ R.

Find the limiting distributions of Yn and Un = Yn − log n, as n −→∞.

(d) Suppose X1, . . . , Xn have cdf

FX(x) = 1− 1

1 + λx
, for x > 0.

Let Un = Yn/n and Vn = nZn. Find the limiting distributions of Yn, Zn, Un, and Vn as
n −→∞.

(a) In the limit as n→∞ we have the limit for fixed y as

FYn(y) = {FX(y)}
n = yn →

{
0, y < 1
1, y ≥ 1

.

This is a step function with single step of size 1 at y = 1. Hence the limiting random variable
Y is discrete with Pr (Y = 1) = 1, that is, the limiting distribution is degenerate at 1. Also
in the limit as n→∞ we have the limit for fixed z as

FZn(z) = 1− {1− FX(z)}n = 1− (1− z)n →
{

0, z ≤ 0
1, z > 0

.

This is a step function with single step of size 1 at z = 0. Hence the limiting random
variable Z is a discrete variable with Pr (Z = 0) = 1, that is, the limiting distribution is
degenerate at 0. Note here that the limiting function is not a cdf as it is not right-continuous,
but the limiting distribution still exists. The definition of convergence in distribution only
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refers to pointwise convergence at points of continuity of the limit function, and here the
limit function is not continuous at zero.

These results are intuitively reasonable. As the sample size gets increasingly large, we will
very probably obtain a random variable arbitrarily close to each end of the range.
We have established convergence in distribution, but we also have for 1 > ε > 0 and as
n→∞,

Pr (|Yn − 1| < ε) = Pr (1− Yn < ε) = Pr (1− ε < Yn) = 1− Pr (Yn < 1− ε) = 1− εn → 1,
Pr (|Zn − 0| < ε) = Pr (Zn < ε) = 1− (1− ε)n → 1.

So Yn and Zn converge in probability to 1 and 0, respectively.
(b) Recall that

FZn(z) = 1− {1− FX(z)}n = 1−
(
1−

(
1− 1

z

))n
= 1− 1

zn
, for z > 1.

In the limit as n→∞ we have for fixed z

FZn(z)→
{

0, z ≤ 1
1, z > 1

.

This is a step function with single step of size 1 at z = 1. Hence the limiting random
variable Z is a discrete variable with

Pr (Z = 1) = 1,

Again, the limiting function is not a cdf as it is not right continuous at one. This does not
affect our conclusion since the limit function is not continuous at this point.

Setting Un = Znn , we found that, for u > 1,

FUn(u) = Pr (Un ≤ u) = Pr (Znn ≤ u) = Pr
(
Zn ≤ u1/n

)
= 1− 1(

u1/n
)n = 1− 1

u
,

which does not depend on n. Hence the limiting distribution of Un is

FU (u) = 1− 1

u
, for u > 1.

For u ≤ 1, FU (u) = 0 for all n.
(c) Recall

FYn(y) = {FX(y)}
n =

(
1

1 + e−y

)n
, y ∈ R.

In the limit as n→∞, for fixed y

FYn(y)→ 0, for all y.

Hence there is no limiting distribution. Recall also that

FUn(u) = FYn(u+ log n) =

(
1

1 + e−u−logn

)n
,

so that

FUn(u) =

(
1

1 + e−u

n

)n
=

(
1 +

e−u

n

)−n
→ exp

{
−e−u

}
, as n→∞,

which is a valid cdf. Hence the limiting distribution is

FU (u) = exp
{
−e−u

}
, u ∈ R.
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(d) Recall

FYn(y) = {FX(y)}
n =

(
λy

1 + λy

)n
, for y > 0,

and so as n→∞ for fixed y
FYn(y)→ 0, for all y

and there is no limiting distribution. In the limit as n→∞ for fixed z > 0

FZn
(z) = 1−{1− FX(z)}n = 1−

(
1−

(
1− 1

1 + λz

))n

= 1− 1

(1 + λz)n
→
{

0, z ≤ 0
1, z > 0

.

This is a step function with single step of size 1 at z = 0. Hence the limiting random
variable Z is a discrete variable with P(Z = 0) = 1: the limiting distribution is degenerate
at 0. Again, the limiting function is not a cdf as it is not right continuous at zero, but this
does not affect our conclusion, as the limit function is not continuous at this point.
Recall that for u > 0,

FUn(u) = Pr (Un ≤ u) = Pr (Yn/n ≤ u) = Pr (Yn ≤ nu) = FYn(nu) =

(
λnu

1 + λnu

)n
,

so that

FUn(u) =

(
λnu

1 + λnu

)n
=

(
1 +

1

nλu

)−n
→ exp

{
− 1

λu

}
, as n→∞,

which is a valid cdf. Hence the limiting distribution is

FU (u) = exp

{
− 1

λu

}
, for u > 0.

Finally, recall that for v > 0,

FVn(v) = Pr (Vn ≤ v) = Pr (nZn ≤ v) = Pr (Zn ≤ v/n) = FZn(v/n) = 1−

(
1

1 + λv
n

)n
so that

FVn(v) = 1−
(
1 +

λv

n

)−n
→ 1− exp {−λv} , as n→∞,

which is a valid cdf. Hence the limiting distribution is

FV (v) = 1− exp {−λv} , for v > 0.

Hence the limiting distribution of V is Exponential(λ).

2. Suppose that the random variable X has mgf, MX(t) given by

MX(t) =
1

8
et +

2

8
e2t +

5

8
e3t.

Find the probability distribution, expectation, and variance of X .

[Hint: Consider MX and its definition.]
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By definition of mgfs for discrete variables, we can deduce immediately that since

MX(t) =

∞∑
x=−∞

etxfX(x),

Pr(X = x) is just the coefficient of etx in the expression for MX . Hence Pr(X = 1) = 1/8,
Pr(X = 2) = 1/4 and Pr(X = 3) = 5/8. Now E(Xr) =M

(r)
X (0), so that

E(X) =M
(1)
X (0) = 1

8 + 21
4 + 35

8 = 5
2 ,

E(X2) =M
(2)
X (0) = 1

8 + 41
4 + 95

8 = 27
4 ,

so therefore

Var(X) = E(X2)− {E(X)}2 = 1

2
.

3. Suppose that X is a continuous random variable with pdf

fX(x) = exp {−(x+ 2)} , for − 2 < x <∞.

Find the mgf of X , and hence find the expectation and variance of X .

For this pdf,

MX(t) =

∫ ∞
−∞

etxfX(x) dx =

∫ ∞
−2
etxe−(x+2) dx = e−2

∫ ∞
−2
e−(1−t)x dx

=
e−2

1− t

∫ ∞
−2(1−t)

e−y dy =
e−2

1− t
[
−e−y

] ∣∣∣∞
−2(1−t)

=
e−2t

1− t
, for t < 1.

Now
M

(1)
X (t) = e−2t

(1−t)2 (2t− 1), M
(2)
X (t) = e−2t

(1−t)3
[
1 + (2t− 1)2

]
,

so that M (1)
X (0) = −1 = E(X) and M (2)

X (0) = 2 = E(X2) =⇒ Var(X) = 1.

4. Suppose Z ∼ N(0, 1).

(a) Find the mgf of Z, and also the pdf and the mgf of the random variable X , where

X = µ+
1

λ
Z,

for parameters µ and λ > 0.

(b) Find the expectation of X , and the expectation of the function g(X), where g(x) = ex. Use
both the definition of the expectation directly and the mgf and compare the complexity of
your calculations.

(c) Suppose now Y is the random variable defined in terms of X by Y = eX . Find the pdf of
Y , and show that the expectation of Y is

exp

{
µ+

1

2λ2

}
.

(d) Let random variable T be defined by T = Z2. Find the pdf and mgf of T .
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(a) To calculate the mgf

MZ(t) = E(etZ) =

∫ ∞
−∞

ezt
1√
2π

exp

{
−z

2

2

}
dz = et

2/2

∫ ∞
−∞

1√
2π

exp

{
−(z − t)2

2

}
dz

= et
2/2

∫ ∞
−∞

1√
2π

exp

{
−u

2

2

}
du = et

2/2,

completing the square in z, and then setting u = z − t, as the integrand is a pdf.
Now, using the transformation theorem for univariate one-to-one transformations we have
X = µ+ 1

λZ implies Z = λ(X − µ), so

fX(x) = fZ(λ(x− µ)) λ =
λ√
2π

exp

{
−λ

2

2
(x− µ)2

}
, x ∈ R.

To calculate the mgf of X ,

MX(t) = E
(
et(µ+Z/λ)

)
= eµtMZ(t/λ) = exp

{
µt+

t2

2λ2

}
.

(b) Using the definition of expectation,

E (X) =

∫ ∞
−∞

xfX(x) dx =

∫ ∞
−∞

x

(
λ2

2π

)1/2

exp

{
−λ

2

2
(x− µ)2

}
dx

=

∫ ∞
−∞

(
µ+ tλ−1

)(λ2
2π

)1/2

exp

{
− t

2

2

}
λ−1 dt [with t = λ(x− µ)]

= µ

∫ ∞
−∞

(
1

2π

)1/2

exp

{
− t

2

2

}
dt+ λ−1

∫ ∞
−∞

t

(
1

2π

)1/2

exp

{
− t

2

2

}
dt

= µ,

as the first integral is 1, and the second integral is zero, as the integrand is an odd function
about zero. Hence

E (X) = µ.

Note that it is generally true that if a pdf is symmetric about a particular value, then that
value is the expectation (if the expectation integral is finite). Alternately, we could use the
mgf result

E (X) =
d

ds
{MX(s)}s=0 =M

(1)
X (0),

to compute

E (X) =
d

ds

{
exp

{
µs+

s2

2λ2

}}
s=0

=

{(
µ+

s

λ2

)
exp

{
µs+

s2

2λ2

}}
s=0

= µ.

The expectation of g(X) = eX is

E [g(X)] =

∫ ∞
−∞

g(x)fX(x) dx =

∫ ∞
−∞

ex
(
λ2

2π

)1/2

exp

{
−λ

2

2
(x− µ)2

}
dx
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=

∫ ∞
−∞

exp
{
µ+ tλ−1

}(λ2
2π

)1/2

exp

{
− t

2

2

}
λ−1 dt, [ setting t = λ(x− µ)]

=

(
1

2π

)1/2 ∫ ∞
−∞

exp

{
µ+ tλ−1 − t2

2

}
dt

=

(
1

2π

)1/2 ∫ ∞
−∞

exp

{
−1

2

(
t2 − 2tλ−1 − 2µ

)}
dt.

Completing the square in the exponent, we have

t2 − 2tλ−1 − 2µ =
(
t− λ−1

)2 − (2µ+ λ−2
)

and hence

E [g(X)] =

(
1

2π

)1/2 ∫ ∞
−∞

exp

{
−1

2

(
t− λ−1

)2
+

(
µ+

1

2λ2

)}
dt

= exp

{
µ+

1

2λ2

}∫ ∞
−∞

(
1

2π

)1/2

exp

{
−1

2

(
t− λ−1

)2}
dt = exp

{
µ+

1

2λ2

}
,

as the integral is equal to 1 since it is the integral of a pdf for all choices of λ.
Alternatively, simply note that E(eX) ≡MX(1).

(c) If Y = eX , the support of Y is Y = R+. From first principles

FY (y) = Pr (Y ≤ y) = Pr
(
eX ≤ y

)
= Pr (X ≤ log y) = FX(log y),

so by differentiation

fY (y) = fX(log y)
1

y
, for y > 0.

Note that the function g(t) = et is a monotone increasing function, with g−1(t) = log t, so
that we can use the transformation result directly. That is,

fY (y) = fX(g
−1(y)) |J(y)| where |J(y)| =

∣∣∣∣ ddt {g−1(t)}t=y
∣∣∣∣ = ∣∣∣∣ ddt {log t}t=y

∣∣∣∣ = 1

y
.

Hence

fY (y) =
1

y

(
λ2

2π

)1/2

exp

{
−λ

2

2
(log y − µ)2

}
, for y > 0.

For the expectation, we have from first principles

E (Y ) =

∫ ∞
0

yfY (y) dy =

∫ ∞
−∞

y
1

y

(
λ2

2π

)1/2

exp

{
−λ
2
(log y − µ)2

}
dy

=

∫ ∞
−∞

(
λ2

2π

)1/2

exp

{
−λ

2

2
(t− µ)2

}
et dt = exp

{
µ+

1

2λ2

}
,

where t = log y, as the integral is precisely the one carried out above. Note that the ex-
pectation could be written down immediately as MX(1). This illustrates the transforma-
tion/expectation result that, if Y = g(X), then

E (Y ) = E [g(X)] .
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(d) If T = Z2, then from first principles

FT (t) = Pr(T ≤ t) = Pr(Z2 ≤ t) = Pr(−
√
t ≤ Z ≤

√
t)

=⇒ fT (t) = 1
2
√
t

[
fZ(
√
t) + fZ(−

√
t)
]
= 1√

2π
t−1/2 exp

{
− t

2

}
, t > 0,

and hence

MT (t) = E(etT ) =

∫ ∞
−∞

etxfT (x) dx =

∫ ∞
0
etx

1√
2πx

exp
{
−x
2

}
dx

=

∫ ∞
0

1√
2πx

exp

{
−(1− 2t)x

2

}
dx

=

(
1

1− 2t

)1/2 ∫ ∞
0

1√
2πy

exp
{
−y
2

}
dy =

(
1

1− 2t

)1/2

,

where y = (1− 2t)x, as the integrand is a pdf.

5. Suppose that X is a random variable with pmf/pdf fX and mgf MX . The cumulant generating
function of X , KX , is defined by KX(t) = log [MX(t)]. Prove that

d

dt
{KX(t)}t=0 = E(X),

d2

dt2
{KX(t)}t=0 = Var(X).

We have KX(t) = logMX(t), hence

K
(1)
X (t) =

d

ds
{KX(t)}s=t =

d

ds
{logMX(t)}s=t =

M
(1)
X (t)

MX(t)
=⇒ K

(1)
X (0) =

M
(1)
X (0)

MX(0)
= E(X),

as MX(0) = 1. Similarly

K
(2)
X (t) =

MX(t)M
(2)
X (t)−

{
M

(1)
X (t)

}2

{MX(t)}2
,

and hence

K
(2)
X (0) =

MX(0)M
(2)
X (0)−

{
M

(1)
X (0)

}2

{MX(0)}2
= E(X2)− {E(X)}2 ,

so that K(2)
X (0) = Var(X).

6. Using the central limit theorem, construct Normal approximations to random variables with each
of the following distributions,

(a) Binomial distribution, X ∼ Binomial(n, θ);

(b) Poisson distribution, X ∼ Poisson(λ);

(c) Negative Binomial distribution, X ∼ Negative Binomial(n, θ).
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The key is to find iid random variables X1, . . . , Xn such that

X =

n∑
i=1

Xi,

and then to use the Central Limit Theorem for large n:

Zn =

∑n
i=1Xi − nµ√

nσ2
D−→ Z ∼ Normal(0, 1), so that X =

n∑
i=1

Xi
approx∼ Normal(nµ, nσ2),

where µ =E(Xi) and σ2 =Var(Xi).

(a) X ∼ Binomial(n, θ) =⇒ X =
n∑
i=1

Xi where Xi ∼ Bernoulli(θ), so that µ =E(Xi) = θ

and σ2 =Var(Xi) = θ(1− θ), and hence

Zn =

∑n
i=1Xi − nθ√
nθ(1− θ)

∼ Normal(0, 1) =⇒ X
approx∼ Normal(nθ, nθ(1− θ)).

(b) X ∼ Poisson(λ) =⇒ X =
n∑
i=1

Xi where Xi ∼ Poisson (λ/n), so that µ =E(Xi) = λ/n

and σ2 =Var(Xi) = λ/n, and hence

Zn =

∑n
i=1Xi − nλn√
n (λ/n)

=

∑n
i=1Xi − λ√

λ

D−→ Normal(0, 1) =⇒ X
approx∼ Normal(λ, λ).

Note that this uses the result that the sum of independent Poisson variables also has a Poisson
distribution.

(c) X ∼ Negative Binomial(n, θ) =⇒ X =
n∑
i=1

Xi where Xi ∼ Geometric(θ), so that

µ =E(Xi) = 1/θ and σ2 =Var(Xi) = (1− θ) /θ2, and hence

Zn =

∑n
i=1Xi − n1

θ√
n ((1− θ) /θ2)

D−→ Normal(0, 1) =⇒ X
approx∼ Normal

(
n

θ
,
n(1− θ)

θ2

)
.

For discussion

7. Suppose we observe a sequence of random variables from a uniform distribution,Xi
iid∼ UNIFORM(0, 1),

for i = 1, 2, . . .. We wish to investigate the asymptotic distribution of the sample median of the
first n variables in this sequence. We assume n is odd for simplicity; then Mn is the middle value
in the ordered list of the first n variables. Let

Mn = median(X1, . . . , Xn), where n is odd

= rth order statistic with r = (n+ 1)/2.

(a) First, we will derive the CDF of Mn. Let Jn be the number of the X1, . . . , Xn that are less
than or equal to x. Explain why Mn ≤ x if and only if at least r of the first n of the Xi are
less than or equal to x. What is the distribution of Jn?
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(b) Show that

FMn(x) = Pr

(
Ln ≥

n+ 1− 2nx

2
√
nx(1− x)

)
,

where Ln is a transformation of Jn that converges in distribution to Z ∼ N(0, 1) as n→∞.

(c) Show that Mn has a degenerate limit

lim
n→∞

FMn(x) =



0 if x < 1/2,

1
2 if x = 1/2,

1 if x > 1/2.

(d) As in the central limit theorem, we seek a rescaling of Mn that has a non-degenerate distri-
bution. Consider the variable Sn = (Mn − 1

2)n
p, for some power p. First, write down FSn

in terms of FMn .

(e) Show that

lim
n→∞

FSn(s) = Pr

(
Z ≥

1
2 − sn

1−p√
n
4 − s2n1−2p

)
,

where Z ∼ N(0, 1).

(f) Find the value of p that gives rise to a non-degenerate distribution.

(g) Deduce that Mn has an approximate normal distribution as n becomes large, and state (in
terms of n) its mean and variance.

(a) Since Pr(Xi ≤ x) = x for each i, and the variables are independent, we know that Jn ∼
BINOMIAL(n, p = x) and Pr(Mn ≤ x) = Pr(Jn ≥ r):

FMn(x) = Pr(Jn ≥ r) =
n∑
j=r

(
n
j

)
xj(1− x)n−j .

(b) By the normal approximation to the binomial, we know that as n→∞

Jn − nx√
nx(1− x)

D−→ N(0, 1).

Transforming Pr(Jn ≥ r) and using r = n+1
2 gives the result stated.

(c) Considering the point of Ln to which Mn = x corresponds,

lim
n→∞

n+ 1− 2nx

2
√
nx(1− x)

= lim
n→∞

n(1− 2x) + 1

2
√
nx(1− x)

=



−∞ if x < 1/2,

0 if x = 1/2,

∞ if x > 1/2.

Applying FZ , the cdf of a standard normal variable, then gives the result stated:
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lim
n→∞

FMn(x) =



FZ(−∞) = 0 if x < 1/2,

FZ(0) =
1
2 if x = 1/2,

FZ(∞) = 1 if x > 1/2.

(d)

FSn(s) = Pr(Sn ≤ s) = Pr

((
Mn −

1

2

)
np ≤ s

)
= Pr

(
Mn ≤

1

2
+ sn−p

)
= FMn

(
1

2
+ sn−p

)
(e) From the earlier representation in terms of Jn and Ln,

lim
n→∞

FSn(s) = lim
n→∞

Pr

 Jn − n
2 − sn

1−p√
n(12 + sn−p)(12 − sn−p)

≥ 1− 2sn1−p

2
√
n(12 + sn−p)(12 − sn−p)

 = Pr(Z ≥ cn)

(1)
Where again Z ∼ N(0, 1) and

cn =
1− 2sn1−p

2
√
n(12 + sn−p)(12 − sn−p)

=
1
2 − sn

1−p√
n
4 − s2n1−2p

.

(f) To avoid a degenerate asymptotic distribution, we want to pick p so that limn→∞ cn = c,
where c is finite. By inspection try p = 1

2 :

cn =
1
2 − s

√
n√

n
4 − s2

−→ −2s as n→∞.

(g)

lim
n→∞

FSn(s) = Pr(Z ≥ −2s) = Pr

(
−Z

2
≤ s
)

= Pr

(
Z

2
≤ s
)
.

Thus, Sn
D−→ N(0, 14) and and because Mn = Sn√

n
+ 1

2 , we have Mn
approx∼ N(12 ,

1
4n).
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