MATH50010: Probability for Statistics Problem Sheet 5

1. In question 6 of Problem Sheet 4, you derived the cdfs of a number of random variables involving the minimum or maximum of a random sample. In this problem we will derive the limiting distribution of these same random variables.

Suppose (X_1, \ldots, X_n) is a collection of independent and identically distributed random variables taking values on X with pmf/pdf f_X and cdf F_X , let Y_n and Z_n correspond to the *maximum* and *minimum* order statistics derived from X_1, \ldots, X_n .

(a) Suppose $X_1, \ldots, X_n \sim \text{Unif}(0, 1)$, that is

$$
F_X(x) = x, \text{ for } 0 \le x \le 1.
$$

Find the limiting distributions of Y_n and Z_n as $n \longrightarrow \infty$.

(b) Suppose X_1, \ldots, X_n have cdf

$$
F_X(x) = 1 - x^{-1}
$$
, for $x \ge 1$.

Find the limiting distributions of Z_n and $U_n = Z_n^n$ as $n \longrightarrow \infty$.

(c) Suppose X_1, \ldots, X_n have cdf

$$
F_X(x) = \frac{1}{1 + e^{-x}}, \text{ for } x \in \mathbb{R}.
$$

Find the limiting distributions of Y_n and $U_n = Y_n - \log n$, as $n \to \infty$.

(d) Suppose X_1, \ldots, X_n have cdf

$$
F_X(x) = 1 - \frac{1}{1 + \lambda x}
$$
, for $x > 0$.

Let $U_n = Y_n/n$ and $V_n = nZ_n$. Find the limiting distributions of Y_n , Z_n , U_n , and V_n as $n \longrightarrow \infty$.

2. Suppose that the random variable X has mgf, $M_X(t)$ given by

$$
M_X(t) = \frac{1}{8}e^t + \frac{2}{8}e^{2t} + \frac{5}{8}e^{3t}.
$$

Find the probability distribution, expectation, and variance of X. [Hint: Consider M_X and its definition.]

3. Suppose that X is a continuous random variable with pdf

$$
f_X(x) = \exp\{-(x+2)\}\,
$$
, for $-2 < x < \infty$.

Find the mgf of X , and hence find the expectation and variance of X .

- 4. Suppose $Z \sim N(0, 1)$.
	- (a) Find the mgf of Z, and also the pdf and the mgf of the random variable X, where

$$
X = \mu + \frac{1}{\lambda}Z,
$$

for parameters μ and $\lambda > 0$.

- (b) Find the expectation of X, and the expectation of the function $g(X)$, where $g(x) = e^x$. Use both the definition of the expectation directly and the mgf and compare the complexity of your calculations.
- (c) Suppose now Y is the random variable defined in terms of X by $Y = e^X$. Find the pdf of Y , and show that the expectation of Y is

$$
\exp\left\{\mu+\frac{1}{2\lambda^2}\right\}.
$$

- (d) Let random variable T be defined by $T = Z^2$. Find the pdf and mgf of T.
- 5. Suppose that X is a random variable with pmf/pdf f_X and mgf M_X . The *cumulant generating function* of X, K_X , is defined by $K_X(t) = \log M_X(t)$. Prove that

$$
\frac{d}{dt} \left\{ K_X(t) \right\}_{t=0} = E(X), \qquad \frac{d^2}{dt^2} \left\{ K_X(t) \right\}_{t=0} = \text{Var}(X).
$$

- 6. Using the central limit theorem, construct Normal approximations to random variables with each of the following distributions,
	- (a) Binomial distribution, $X \sim Binomial(n, \theta)$;
	- (b) Poisson distribution, $X \sim \text{Poisson}(\lambda)$;
	- (c) Negative Binomial distribution, $X \sim$ Negative Binomial (n, θ) .

For discussion

7. Suppose we observe a sequence of random variables from a uniform distribution, $X_i \stackrel{\text{iid}}{\sim} \text{UNIFORM}(0,1)$, for $i = 1, 2, \ldots$ We wish to investigate the asymptotic distribution of the sample median of the first n variables in this sequence. We assume n is odd for simplicity; then M_n is the middle value in the ordered list of the first n variables. Let

$$
M_n = \text{median}(X_1, \dots, X_n), \text{ where } n \text{ is odd}
$$

$$
= r^{\text{th}} \text{ order statistic with } r = (n+1)/2.
$$

- (a) First, we will derive the CDF of M_n . Let J_n be the number of the X_1, \ldots, X_n that are less than or equal to x. Explain why $M_n \leq x$ if and only if *at least* r of the first n of the X_i are less than or equal to x. What is the distribution of J_n ?
- (b) Show that

$$
F_{M_n}(x) = \Pr\left(L_n \ge \frac{n+1-2nx}{2\sqrt{nx(1-x)}}\right),\,
$$

where L_n is a transformation of J_n that converges in distribution to $Z \sim N(0, 1)$ as $n \to \infty$. (c) Show that M_n has a degenerate limit

$$
\lim_{n \to \infty} F_{M_n}(x) = \begin{cases} 0 & \text{if } x < 1/2, \\ \frac{1}{2} & \text{if } x = 1/2, \\ 1 & \text{if } x > 1/2. \end{cases}
$$

- (d) As in the central limit theorem, we seek a rescaling of M_n that has a non-degenerate distribution. Consider the variable $S_n = (M_n - \frac{1}{2})$ $\frac{1}{2}$) n^p , for some power p. First, write down F_{S_n} in terms of F_{M_n} .
- (e) Show that

$$
\lim_{n \to \infty} F_{S_n}(s) = \Pr \left(Z \ge \frac{\frac{1}{2} - s n^{1-p}}{\sqrt{\frac{n}{4} - s^2 n^{1-2p}}} \right),\,
$$

where $Z \sim N(0, 1)$.

- (f) Find the value of p that gives rise to a non-degenerate distribution.
- (g) Deduce that M_n has an approximate normal distribution as n becomes large, and state (in terms of n) its mean and variance.