
MATH50010: Probability for Statistics
Problem Sheet 6

1. Suppose (Ω,F Pr) is a probability space and A,B,C ∈ F . Show that

Pr(A ∩B|C) = Pr(A|B ∩ C) Pr(B|C).

Using the definition of conditional probability,

Pr(A ∩B | C) =
Pr(A ∩B ∩ C)

Pr(C)

=
Pr(A | B ∩ C) Pr(B ∩ C)

Pr(C)

= Pr(A | B ∩ C) Pr(B | C).

Note: we will appeal to this result repeatedly when working with Markov chains - it will
eventually become second nature!

2. (a) Let P be the transition matrix of a discrete Markov chain (Xn)n≥0. Show by induction that
the n-step transition matrix satisfies Pn = Pn.

(b) Show that a stochastic matrix has at least one eigenvalue equal to 1. Hence show that if P is
a stochastic matrix, then so is Pn for all n ∈ N.

(a) For n = 0, 1, the result holds as P0 = I , the identity matrix, and P1 = P by definition.
Assume the result is true for n = k, so Pk = P k and consider the (i, j) entry of P k+1. Then,

P k+1
ij = (P kP )ij

=
∑
l∈E

P k
ilPlj

=
∑
l∈E

Pil(k)Plj(1)

by induction. Using the Chapman-Kolmogorov equations, we can write this as

P k+1
ij = Pij(k + 1)

which is the (i, j) entry of Pk+1. The result follows as the entry (i, j) was arbitrary.

(b) Recall that a stochastic matrix P has non-negative entries and rows that sum to one. Let 1
be a column vector of ones. Then, as all the rows of P sum to one

P1 = 1

and so 1 is an eigenvector of any stochastic matrix with eigenvalue equal to 1. Further, if
P is a stochastic matrix, then all entries of Pn must also be non-negative. As the rows of P
sum to one,

Pn1 = Pn−1(P1) = Pn−11 = · · · = 1.

Hence, the rows of Pn also sum to one and Pn is a stochastic matrix.

1



1

2

30.6

0.35

0.05

0.2

0.7

0.1

0.05

0.85

0.1

Figure 1: Question 3 (b): Transition matrix
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Figure 2: 3(c): Transition matrix

3. For each matrix, decide whether it is stochastic. If it is, draw the corresponding transition diagram
(assuming the state space is given by E = {1, 2, 3}).

(a)

 0 0 1
0.5 −0.5 −1
0.25 0.25 0.5

 (b)

 0.6 0.35 0.05
0.2 0.7 0.1
0.1 0.05 0.85

 (c)

 1 0 0
0 0.9 0.1
0 0 1


(a) Not stochastic as it has negative entries.

(b) Stochastic matrix as it has positive entries with rows that sum to one.

(c) Stochastic matrix as it has positive entries with rows that sum to one.

4. Suppose we use a Markov chain to model the autumn weather in Bretagne (France), from day to
day, as follows. If it is raining today, there is a probability 0.3 that it will rain again tomorrow.
Similarly, if it is raining today, the probability of cloudy weather (with no rain) the next day is
0.5, and the probability of sunshine the next day is 0.2. Taking the states in order as rainy, cloudy,
sunny, the full transition matrix for the Markov chain is:

 0.3 0.5 0.2
0.3 0.4 0.3
0.2 0.5 0.3


2



Suppose today is a Friday in Bretagne, in mid-October, and it is raining.

(a) Calculate the probability that both the next two days, Saturday and Sunday, will be sunny.

(b) Calculate the probability of rain on Sunday.

(c) Suggest aspects of this model that are unrealistic. How might the model be improved?

Let X0, X1, X2 be the state of the weather on Friday, Saturday and Sunday respectively. Denote
the three possible states of the chain as {R,C, S} representing rainy, cloudy and sunny.

(a) The probability is

Pr(X2 = S, X1 = S | X0 = R) = Pr(X2 = S | X1 = S,X0 = R) Pr(X1 = S | X0 = R)

= Pr(X2 = S | X1 = S) Pr(X1 = S | X0 = R)

= Pr(X1 = S | X0 = S) Pr(X1 = S | X0 = R)

= 0.3× 0.2 = 0.06

using the markov property and time homogeneity.

(b) The probability of rain on Sunday is

Pr(X2 = R | X0 = R) =
∑

j∈{R,C,S}

Pr(X2 = R,X1 = j | X0 = R)

=
∑

j∈{R,C,S}

Pr(X2 = R | X1 = j,X0 = R) Pr(X1 = j | X0 = R)

=
∑

j∈{R,C,S}

Pr(X2 = R | X1 = j) Pr(X1 = j | X0 = R)

= 0.3× 0.3 + 0.5× 0.3 + 0.2× 0.2

= 0.28.

(c) We are assuming i) the Markov property and ii) time homogeneity. Neither of these will be
good assumptions in general. Moreover, we are summarizing a complex and heterogeneous
system by three states.
Many improvements to the model are possible, including

• Modelling weather variations within the days.
• Enlarging the state space.
• Including seasonal variations. To incorporate this correctly we would need to use an

inhomogeneous Markov chain.
• Allowing higher order Markov behaviour, i.e. given Xn−1, allow for conditional depen-

dency between Xn and Xn−k for k > 1.

5. Let Xn be the maximum reading obtained in the first n rolls of a fair die. Show that {Xn} is a
Markov chain, and give the transition probabilities.

Let Dn be the score on the nth roll of a fair die. Then,

Xn = max{D1, . . . , Dn} = max{Xn−1, Dn}.

As Dn is independent of X1, . . . , Xn−1, the random variable Xn depends on X1, . . . , Xn−1 only
through Xn−1 so it is a Markov chain. Consider the transition probabilities. Note that Xn will
remain the same as Xn−1 unless a higher number is rolled. So, for all i < j

Pr(Xn = i | Xn−1 = j) = 0.
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When i > j,
Pr(Xn = i | Xn−1 = j) = 1/6.

For i = j, a number less than or equal to j must be rolled. Thus,

Pr(Xn = j | Xn−1 = j) = j/6.

Combining these probabilities, the transition matrix is

P =



1/6 1/6 1/6 1/6 1/6 1/6
0 2/6 1/6 1/6 1/6 1/6
0 0 3/6 1/6 1/6 1/6
0 0 0 4/6 1/6 1/6
0 0 0 0 5/6 1/6
0 0 0 0 0 6/6

 .

6. Let (Sn) be a symmetrical random walk on the state space Z, so that if Sn−1 = k, then Sn = k−1
with probability 1

2 and Sn = k + 1 with probability 1
2 .

Determine whether each of these processes below is a time homogeneous Markov chain and, if
so, find the transition matrix.

(a) A = (Sn)n≥0,
(b) B = (Sn + n)n≥0,
(c) C = (Sn + n2)n≥0,
(d) D = (Sn + (−1)n)n≥0,

(e) E = (|Sn|)n≥0,

(f) F = (S2
n − n)n≥0,

(g) G = (S2n)n≥0.

For each chain, let Xn be the state of the chain at state n and let P be the transition matrix (where
it exists).

(a) True. The transition matrix is Pij = 1/2 if |i− j| = 1 and 0 otherwise.

(b) True. The transition probabilities are given by

Pr(Xn = i | Xn−1 = j) = Pr(Sn = i− n | Sn−1 = j − n + 1).

These are equal to 1/2 when i = j or i = j + 2 and 0 otherwise.

(c) False. If the chain was a time homogenous Markov chain then

Pr(X2 = 0, X1 = 0 | X0 = 0) = Pr(X2 = 0 | X1 = 0) Pr(X1 = 0 | X0 = 0)

= Pr(X1 = 0 | X0 = 0)2.

However,
Pr(X1 = 0 | X0 = 0) = Pr(S1 = −1 | S0 = 0) = 1/2,

and
Pr(X2 = 0, X1 = 0 | X0 = 0) = Pr(S2 = −4, S1 = −1 | S0 = 0) = 0.

(d) False (not time homogenous). The transition probabilities are given by

Pr(Xn = i | Xn−1 = j) = Pr(Sn = i− (−1)n | Sn−1 = j − (−1)n−1).

For n even: Pij = 1/2 if i = j + 1 or i = j + 3 and 0 otherwise. For n odd: Pij = 1/2 if
i = j − 1 or i = j − 3 and 0 otherwise.
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(e) True. The transition probabilities satisfy P0,1 = 1 and P0,j = 0 for j 6= 1. For i ≥ 1 we
have Pij = 1/2 if |i− j| = 1 and 0 otherwise.

(f) False. If it was a time homogeneous Markov chain then we would have

Pr(X5 = 0 | X4 = 0) = Pr(X1 = 0 | X0 = 0).

However,
Pr(X1 = 0 | X0 = 0) = Pr(S2

1 = 1 | S2
0 = 0) = 1

and

Pr(X5 = 0 | X4 = 0) = Pr(S2
5 = 5 | S2

4 = 4) = 0.

(g) True. Using the Chapman-Kolmogorov equations on the original Markov chain (Sn)n≥0,

Pr(S2n = i | S2(n−1) = j) =
∑
k

Pr(S2n = i | S2n−1 = k) Pr(S2n−1 = k | S2n−2 = j).

Thus, Pii = 1/2, Pij = 1/4 if |i− j| = 2 and 0 otherwise.
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For discussion

7. Define the sequence Y1, Y3, Y5, . . . of independent and identically distributed random variables by

Pr(Y2k+1 = −1) = Pr(Y2k+1 = 1) =
1

2
, k ≥ 0.

Further, define Y2k = Y2k−1Y2k+1

(a) Show that (Y2k)k≥0 is a sequence of independent, identically distributed random variables,
with the same distribution as the odd Y s.

(b) By determining E(Y2kY2k+1) or otherwise, show that Y1, Y2, . . . is a sequence of pairwise
independent random variables.

(c) Show further that pij(n) = Pr(Yn = j|Y0 = i) satisfies the Chapman-Kolmogorov equa-
tions.

(d) Explain why (Yk) is not a Markov chain (hence the C-K equations are necessary but not
sufficient for a stochastic process to be Markov).

(e) Show that Zn = (Yn, Yn+1) is a (non-homogeneous) Markov chain.

(a) First consider the distribution of Y2k. By independence of Y2k−1 and Y2k+1,

Pr(Y2k = −1) = Pr(Y2k−1 = 1, Y2k+1 = −1) + Pr(Y2k−1 = −1, Y2k+1 = 1)

= Pr(Y2k−1 = 1) Pr(Y2k+1 = −1) + Pr(Y2k−1 = −1) Pr(Y2k+1 = 1)

= 1/2.

As Y2k ∈ {−1, 1}, we have Pr(Y2k = 1) = 1 − Pr(Y2k = −1) = 1/2. Now, we show that
Y2i and Y2j are independent for i 6= j. For |j − i| > 1, note that Y2i−1, Y2i+1, Y2j−1 and
Y2j+1 are all independent and so, as functions of independent random variables, Y2i and
Y2j are also independent. When j = i + 1,

Pr(Y2i = 1, Y2(i+1) = 1) = Pr(Y2i−1 = Y2i+1, Y2i+1 = Y2i+3)

= Pr(Y2i−1 = Y2i+1 = Y2i+3 = 1)

+ Pr(Y2i−1 = Y2i+1 = Y2i+3 = −1)

= 1/4.

Further, Pr(Y2i = 1) Pr(Y2(i+1) = 1) = 1/4 so

Pr(Y2i = 1, Y2(i+1) = 1) = Pr(Y2i = 1) Pr(Y2(i+1) = 1).

Similarly,

Pr(Y2i = 1, Y2(i+1) = −1) = Pr(Y2i−1 = Y2i+1, Y2i+1 6= Y2i+3)

= Pr(Y2i−1 = Y2i+1 = 1, Y2i+3 = −1)

+ Pr(Y2i−1 = Y2i+1 = −1, Y2i+3 = 1)

= 1/4

= Pr(Y2i = 1) Pr(Y2(i+1) = −1).

Following similar arguments, it is possible to show that for a, b ∈ {−1, 1} and j = i± 1

Pr(Y2i = a, Y2j = b) = Pr(Y2i = a) Pr(Y2j = b).

Thus, we have shown that (Y2k)k≥0 is independent and identically distributed with the same
distribution as the odd Ys.
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(b) We have

E(Y2kY2k+1) = E(Y2k−1)E(Y 2
2k+1) = 0 = E(Y2k)E(Y2k+1).

As we have already shown pairwise independence among the odd and even indices, it is
enough to consider independence between Y2kY2l+1 for all k, j. Writing Y2k = Y2k−1Y2k+1,
independence follows easily unless k = l or k = l + 1. It is sufficient to consider the case
k = l. For i, j ∈ {−1, 1}

Pr(Y2k = i, Y2k+1 = j) = E

{
i(Y2k + i)

2

j(Y2k+1 + j)

2

}
= (ij)2/4

= 1/4

= Pr(Y2k = i) Pr(Y2k+1 = j).

(c) As the random variables are pairwise independent,

Pr(Ym+n = j | Y0 = i) = Pr(Ym+n = j).

Further, using pairwise independence again∑
l

Pr(Ym+n = j | Ym = l) Pr(Ym = l | Y0 = i) = Pr(Ym+n = j)
∑
l

Pr(Ym = l)

= Pr(Ym+n = j).

Hence, the Chapman Kolmogorov equations hold:

Pr(Ym+n = j | Y0 = i) =
∑
l

Pr(Ym+n = j | Ym = l) Pr(Ym = l | Y0 = i).

(d) Consider

Pr(Y3 = 1 | Y2 = 1, Y1 = 1) = Pr(Y3 = 1 | Y1Y3 = 1, Y1 = 1) = 1.

However,

Pr(Y3 = 1 | Y2 = 1) = Pr(Y3 = 1 | Y3Y1 = 1)

=
Pr(Y3 = 1, Y3Y1 = 1)

Pr(Y3Y1 = 1)

=
1/4

1/2

= 1/2.

Thus, Pr(Y3 = 1 | Y2 = 1, Y1 = 1) 6= Pr(Y3 = 1 | Y2 = 1) so the chain cannot be a
Markov chain.

(e) For n even,

Pr(Zn = zn | Zn−1 = zn−1, . . . , Z0 = z0) = Pr(Yn+1 = yn+1, Yn = yn | Yn = yn, . . . , Y0 = y0)

= Pr(Yn/Yn−1 = yn+1 | Yn = yn, . . . , Y0 = y0)

=

{
1 yn+1 = yn/yn−1,

0 otherwise.
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This is precisely Pr(Zn = zn | Zn−1 = zn−1). For n odd,

Pr(Zn = zn | Zn−1 = zn−1, . . . , Z0 = z0) = Pr(Yn+1 = yn+1 | Yn = yn, . . . , Y0 = y0)

= Pr(Yn+2Yn = yn+1 | Yn = yn, . . . , Y0 = y0)

= Pr(Yn+2 = yn+1/yn | Yn = yn, . . . , Y0 = y0)

= 1/2

which is also the value of Pr(Zn = zn | Zn−1 = zn−1) so Zn is a Markov chain.
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