
MATH50010: Probability for Statistics
Problem Sheet 7

1. A flea jumps randomly on vertices {1, 2, 3} according to the transition probabilities shown in
Figure 1. Let Xt be the position of the flea at time t (t = 0, 1, ...).

(a) Write down the transition matrix P .

(b) Find P (X2 = 3|X0 = 1).

(c) Suppose that the flea is equally likely to start at any vertex at time 0. Find the probability
distribution of X1.

(d) Suppose that the flea begins at vertex 1 at time 0. Find the probability distribution of X2.

(e) Suppose that the flea is equally likely to start on any vertex at time 0. Find the probability of
obtaining the trajectory (3, 2, 1, 1, 3).
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Figure 1: Transition diagram For Question 1

(a)

P =

 0.6 0.2 0.2
0.4 0 0.6
0 0.8 0.2


(b) By the Chapman Kolmogorov equations,

Pr(X2 = 3|X0 = 1) =
∑

i∈{1,2,3}

Pr(X2 = 3 | X1 = i) Pr(X1 = i | X0 = 1)

= P11P13 + P12P23 + P13P33

= 0.6× 0.2 + 0.2× 0.6 + 0.2× 0.2

= 0.28.

Alternatively, one could compute the matrix P 2 and extract the entry (1, 3) to get the same
answer.

1



(c) As the flea is equally likely to start in any state, the initial distribution is π = (1/3, 1/3, 1/3)T .
The distribution of X1 is

πTP = (1/3, 1/3, 1/3)

 0.6 0.2 0.2
0.4 0 0.6
0 0.8 0.2

 = (1/3, 1/3, 1/3)T .

So the flea is equally likely to be in states 1, 2, or 3 after the first step.

(d) The initial distribution of X0 is πT = (1, 0, 0). We need to compute the distribution of X2

which is given by πTP 2.

πTP 2 = (0.6, 0.2, 0.2)P = (0.44, 0.28, 0.28)T .

(e) Let π = (1/3, 1/3, 1/3)T be the initial distribution. Using the Markov property, we can
write

Pr(X0 = 3, X1 = 2, X2 = 1, X3 = 1, X4 = 3) = π3p32p21p11p13

= 1/3× 0.8× 0.4× 0.6× 0.2

= 0.0128.

2. Suppose a gambler has $1 initially. At each round, he either wins $1 with probability p or loses $1
with probability q = 1 − p. The game ends when the gambler obtains $N . Find the probability
that the gambler goes broke, i.e., that his capital reaches $0. What is the fate of a gambler who
faces an opponent who is infinitely rich? (A reasonable model for an individual playing against a
casino, who will always take the gambler’s bet.)

Let Bi be the event that the gambler becomes broke if he starts with $i and let W be the event that
the gambler wins the first game. Define hi = P(Bi). Then, using the law of total probability

hi = P(Bi)

= P(Bi |W )P(W ) + P(Bi |WC)P(WC)

= P(Bi |W )p+ P(Bi |WC)(1− p).

Consider the term P(Bi |W ), the probability that the gambler becomes broke when he starts with
$i even though he wins the first round. By the Markov property, this is equivalent to the probability
that the gambler becomes broke given that he starts with $i + 1. So, P(Bi | W ) = P(Bi+1) =
hi+1. Similarly, P(Bi |WC) = hi−1 so

hi = phi+1 + (1− p)hi−1.

In particular,

hi+1 − hi =
(
1− p
p

)
(hi − hi−1)

which can be iterated to obtain

hi+1 − hi =
(
1− p
p

)i
(h1 − h0) =

(
1− p
p

)i
(h1 − 1),

as h0 = 1. Then,

hi − h0 =
i−1∑
k=0

(hk+1 − hk)

= (h1 − 1)

i−1∑
k=0

(
1− p
p

)k
.
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Summing over the geometric series and using h0 = 1 gives

hi = 1 + (h1 − 1)

{
1−[(1−p)/p]i

2p−1 p 6= 1/2,

i p = 1/2.

As hN = 0, we can solve for h1 to obtain

h1 = 1 +

{ −(2p−1)
1−[(1−p)/p]N p 6= 1/2,

−1/N p = 1/2.

Substituting this into the previous result

hi = 1−

{
1−[(1−p)/p]i
1−[(1−p)/p]N p 6= 1/2,

i/N p = 1/2.

When playing against an infinitely rich casino, we take N →∞ to obtain

hi = 1−

{
1− [(1− p)/p]i p > 1/2,

0 p ≤ 1/2.

So, when p ≤ 1/2 the gambler will go broke with probability one when he plays against an
infinitely rich opponent (irrespective of his starting point).

3. Consider the two Markov chains below and decide which are irreducible and which are periodic:

(a) A random walk on a cycle with state space E = {0, 1, · · · ,M − 1}. At each step the walk
increases by 1 (mod M ) with probability p and decreases by 1 (mod M ) with probability
1− p. That is:

pij =


p if j ≡ i+ 1mod M
1− p if j ≡ i− 1mod M
0 otherwise

(b) Simple symmetric random walk on Zd. At each step the walk moves from its current site to
one of its 2d neighbours chosen uniformly at random. That is:

pij =

{
1/2d if |i− j| = 1
0 otherwise

where |i− j| = |i1 − j1|+ · · ·+ |id − jd| for states i = (i1, ..., id), j = (j1, · · · , jd).

Solution

(a) The random walk on the cycle is irreducible since every site is accessible from every other.
It has period 2 if M is even, and is aperiodic if M is odd.

(b) The random walk on Zd is irreducible and has period 2 for any d.
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4. Consider the random walk on {0, 1, 2, . . .}, where p01 = 1 and for i > 0,

pij =


q j = i− 1

p j = i+ 1

0 otherwise,

where p+ q = 1.

Let hi be the probability of hitting 0 when the chain starts from X0 = i.

(a) Explain why hi satisfies

h0 = 1 hi = phi+1 + qhi−1, i ≥ 1.

(b) Show that if ui = hi−1 − hi, then ui =
(
q
p

)i−1
u1.

(c) Hence determine hi, distinguishing between the cases p < 1
2 , p = 1

2 and p > 1
2 .

(a) By definition,

hi = Pr

( ∞⋃
n=0

{Xn = 0}|X0 = i

)
.

Applying the law of total probability,

hi =Pr

( ∞⋃
n=0

{Xn = 0}|X1 = i+ 1, X0 = i

)
Pr(X1 = i+ 1|X0 = i)

+Pr

( ∞⋃
n=0

{Xn = 0}|X1 = i− 1, X0 = i

)
Pr(X1 = i− 1|X0 = i).

Applying the Markov property, for i ≥ 1 this is

hi = phi+1 + qhi−1, i ≥ 1.

The boundary case i = 0 is trivial.

(b) For i ≥ 1, we see that

(p+ q)hi = hi = phi+1 + qhi−1.

Rearranging gives

p(hi − hi+1) = q(hi−1 − hi),

so that if ui = hi−1 − hi, we have

ui =
q

p
ui−1.
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(c) Substituting back for hi, we get

hi = hi−1 − ui = hi−2 − ui−1 − ui = . . . = h0 −
i∑

k=1

uk = 1− u1
i∑

k=1

(
q

p

)k−1
.

Summing the geometric series gives (p 6= q)

hi = 1−
u1

(
1−

(
q
p

)i)
1− q

p

.

We determine u1 by requiring the minimal non-negative solution . When p > q, hi is a
decreasing function of u1 and an increasing function of i, so for the minimal non-negative
solution set hi → 0 as i→∞. This then gives

u1 = 1− q

p
,

so that hi =
(
q
p

)i
. A smaller choice of u1 would lead to a solution that is not minimal

non-negative; a larger choice of u1 would lead to a solution with negative values.

For p < q, since q
p > 1, hi is unbounded unless u1 = 0, so that hi = 1 for all i ≥ 0.

For p = q, get that hi = 1−u1i, so that minimal non-negativity requires u1 = 0 and hi = 1
for all i ≥ 0.

5. Extend the idea of the previous question to the more general birth-death chain on {0, 1, 2, . . .} for
which pi i+1 = pi and pi i−1 = qi = 1 − pi, with zero probability for all other transitions, and
pi, qi > 0 for all i ≥ 1.

(a) Show that hi = pihi+1 + qihi−1 and deduce that ui = qi
pi
ui−1, for ui = hi−1 − hi.

(b) Write ui in terms of γi =
∏i
k=1

qk
pk

and u1.

(c) Determine u1 and show that the chain is transient if and only if
∑∞

i=1 γi <∞.

(a) By definition,

hi = Pr

( ∞⋃
n=0

{Xn = 0}|X0 = i

)
.

Applying the law of total probability as before,

hi =Pr

( ∞⋃
n=0

{Xn = 0}|X1 = i+ 1, X0 = i

)
Pr(X1 = i+ 1|X0 = i)

+Pr

( ∞⋃
n=0

{Xn = 0}|X1 = i− 1, X0 = i

)
Pr(X1 = i− 1|X0 = i).

Applying the Markov property, for i ≥ 1 this is

hi = pihi+1 + qihi−1, i ≥ 1.

The boundary case i = 0 is trivial.
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(b) For i ≥ 1, we see that

(pi + qi)hi = hi = pihi+1 + qihi−1.

Rearranging gives

pi(hi − hi+1) = qi(hi−1 − hi),

so that if ui = hi−1 − hi, we have

ui =
qi
pi
ui−1 =

i∏
k=1

qk
pk
u1 = γiu1.

(c) Substituting back for hi, we get

hi = hi−1 − ui = hi−2 − ui−1 − ui = . . . = h0 −
i∑

k=1

uk = 1− u1
i∑

k=1

γk.

For the minimal non-negative solution we set u1 = 1∑∞
k=1 γk

if the sum in the denominator is
finite, and u1 = 0 otherwise. The condition for transience follows.

6. Let

P =

 0 1 0
0 1/2 1/2

1/2 0 1/2


Find π, the stationary distribution of P .

The stationary distribution must satisfy πP = π. Extracting individual entries, we obtain the
following equations

π3/2 = π1

π1 + π2/2 = π2

π2/2 + π3/2 = π3.

Solving this system of equations we have

π3 = π2 = 2π1,

so π = c(1, 2, 2) for any c ∈ R. As π must be a distribution we must have c(1 + 2 + 2) = 1 so

π = (1/5, 2/5, 2/5).

Another approach is to find the left-eigenvectors of P .
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