MATH50010: Probability for Statistics Problem Sheet 7

- 1. A flea jumps randomly on vertices $\{1, 2, 3\}$ according to the transition probabilities shown in Figure 1. Let X_t be the position of the flea at time t $(t = 0, 1, \ldots)$.
	- (a) Write down the transition matrix P .
	- (b) Find $P(X_2 = 3 | X_0 = 1)$.
	- (c) Suppose that the flea is equally likely to start at any vertex at time 0. Find the probability distribution of X_1 .
	- (d) Suppose that the flea begins at vertex 1 at time 0. Find the probability distribution of X_2 .
	- (e) Suppose that the flea is equally likely to start on any vertex at time 0. Find the probability of obtaining the trajectory (3, 2, 1, 1, 3).

Figure 1: Transition diagram For Question 1

(a)

$$
P = \left(\begin{array}{ccc} 0.6 & 0.2 & 0.2 \\ 0.4 & 0 & 0.6 \\ 0 & 0.8 & 0.2 \end{array}\right)
$$

(b) By the Chapman Kolmogorov equations,

$$
Pr(X_2 = 3 | X_0 = 1) = \sum_{i \in \{1,2,3\}} Pr(X_2 = 3 | X_1 = i) Pr(X_1 = i | X_0 = 1)
$$

= $P_{11}P_{13} + P_{12}P_{23} + P_{13}P_{33}$
= $0.6 \times 0.2 + 0.2 \times 0.6 + 0.2 \times 0.2$
= 0.28.

Alternatively, one could compute the matrix P ² *and extract the entry* (1, 3) *to get the same answer.*

(c) As the flea is equally likely to start in any state, the initial distribution is $\pi = (1/3, 1/3, 1/3)^T$. *The distribution of* X_1 *is*

$$
\pi^T P = (1/3, 1/3, 1/3) \begin{pmatrix} 0.6 & 0.2 & 0.2 \\ 0.4 & 0 & 0.6 \\ 0 & 0.8 & 0.2 \end{pmatrix} = (1/3, 1/3, 1/3)^T.
$$

So the flea is equally likely to be in states 1, 2, or 3 after the first step.

(d) The initial distribution of X_0 is $\pi^T = (1, 0, 0)$. We need to compute the distribution of X_2 which is given by $\pi^T P^2$.

$$
\pi^T P^2 = (0.6, 0.2, 0.2) P = (0.44, 0.28, 0.28)^T.
$$

(e) Let $\pi = (1/3, 1/3, 1/3)^T$ *be the initial distribution. Using the Markov property, we can write*

$$
Pr(X_0 = 3, X_1 = 2, X_2 = 1, X_3 = 1, X_4 = 3) = \pi_3 p_{32} p_{21} p_{11} p_{13}
$$

= 1/3 × 0.8 × 0.4 × 0.6 × 0.2
= 0.0128.

2. Suppose a gambler has \$1 initially. At each round, he either wins \$1 with probability p or loses \$1 with probability $q = 1 - p$. The game ends when the gambler obtains \$N. Find the probability that the gambler goes broke, i.e., that his capital reaches \$0. What is the fate of a gambler who faces an opponent who is infinitely rich? (A reasonable model for an individual playing against a casino, who will always take the gambler's bet.)

Let Bⁱ *be the event that the gambler becomes broke if he starts with \$*i *and let* W *be the event that the gambler wins the first game. Define* $h_i = \mathbb{P}(B_i)$ *. Then, using the law of total probability*

$$
h_i = \mathbb{P}(B_i)
$$

= $\mathbb{P}(B_i | W)\mathbb{P}(W) + \mathbb{P}(B_i | W^C)\mathbb{P}(W^C)$
= $\mathbb{P}(B_i | W)p + \mathbb{P}(B_i | W^C)(1 - p).$

Consider the term $\mathbb{P}(B_i \mid W)$, the probability that the gambler becomes broke when he starts with \$i *even though he wins the first round. By the Markov property, this is equivalent to the probability that the gambler becomes broke given that he starts with* $\$i + 1$ *. So,* $\mathbb{P}(B_i \mid W) = \mathbb{P}(B_{i+1}) =$ h_{i+1} *. Similarly,* $\mathbb{P}(B_i \mid W^C) = h_{i-1}$ *so*

$$
h_i = p h_{i+1} + (1 - p) h_{i-1}.
$$

In particular,

$$
h_{i+1} - h_i = \left(\frac{1-p}{p}\right)(h_i - h_{i-1})
$$

which can be iterated to obtain

$$
h_{i+1} - h_i = \left(\frac{1-p}{p}\right)^i (h_1 - h_0) = \left(\frac{1-p}{p}\right)^i (h_1 - 1),
$$

 $as h_0 = 1$ *. Then,*

$$
h_i - h_0 = \sum_{k=0}^{i-1} (h_{k+1} - h_k)
$$

= $(h_1 - 1) \sum_{k=0}^{i-1} \left(\frac{1-p}{p}\right)^k$

.

Summing over the geometric series and using $h_0 = 1$ *gives*

$$
h_i = 1 + (h_1 - 1) \begin{cases} \frac{1 - [(1-p)/p]^i}{2p - 1} & p \neq 1/2, \\ i & p = 1/2. \end{cases}
$$

As $h_N = 0$ *, we can solve for* h_1 *to obtain*

$$
h_1 = 1 + \begin{cases} \frac{-(2p-1)}{1 - [(1-p)/p]^N} & p \neq 1/2, \\ -1/N & p = 1/2. \end{cases}
$$

Substituting this into the previous result

$$
h_i = 1 - \begin{cases} \frac{1 - [(1 - p)/p]^i}{1 - [(1 - p)/p]^N} & p \neq 1/2, \\ i/N & p = 1/2. \end{cases}
$$

When playing against an infinitely rich casino, we take $N \rightarrow \infty$ *to obtain*

$$
h_i = 1 - \begin{cases} 1 - [(1 - p)/p]^i & p > 1/2, \\ 0 & p \le 1/2. \end{cases}
$$

So, when p ≤ 1/2 *the gambler will go broke with probability one when he plays against an infinitely rich opponent (irrespective of his starting point).*

- 3. Consider the two Markov chains below and decide which are irreducible and which are periodic:
	- (a) A random walk on a cycle with state space $\mathcal{E} = \{0, 1, \dots, M 1\}$. At each step the walk increases by 1 (mod M) with probability p and decreases by 1 (mod M) with probability $1 - p$. That is:

$$
p_i j = \begin{cases} p & \text{if } j \equiv i + 1 \text{mod } M \\ 1 - p & \text{if } j \equiv i - 1 \text{mod } M \\ 0 & \text{otherwise} \end{cases}
$$

(b) Simple symmetric random walk on \mathbb{Z}^d . At each step the walk moves from its current site to one of its 2d neighbours chosen uniformly at random. That is:

$$
p_i j = \begin{cases} 1/2d & \text{if } |i - j| = 1\\ 0 & \text{otherwise} \end{cases}
$$

where $|i - j| = |i_1 - j_1| + \cdots + |i_d - j_d|$ for states $i = (i_1, ..., i_d), j = (j_1, ..., j_d)$.

Solution

- *(a) The random walk on the cycle is irreducible since every site is accessible from every other. It has period 2 if* M *is even, and is aperiodic if* M *is odd.*
- *(b)* The random walk on \mathbb{Z}^d is irreducible and has period 2 for any d.

4. Consider the random walk on $\{0, 1, 2, \ldots\}$, where $p_{01} = 1$ and for $i > 0$,

$$
p_{ij} = \begin{cases} q & j = i - 1 \\ p & j = i + 1 \\ 0 & \text{otherwise,} \end{cases}
$$

where $p + q = 1$.

Let h_i be the probability of hitting 0 when the chain starts from $X_0 = i$.

(a) Explain why h_i satisfies

$$
h_0 = 1 \qquad h_i = p h_{i+1} + q h_{i-1}, \quad i \ge 1.
$$

- (b) Show that if $u_i = h_{i-1} h_i$, then $u_i = \left(\frac{q}{n}\right)$ $\frac{q}{p}\Big)^{i-1}u_1.$
- (c) Hence determine h_i , distinguishing between the cases $p < \frac{1}{2}$, $p = \frac{1}{2}$ $\frac{1}{2}$ and $p > \frac{1}{2}$.
- *(a) By definition,*

$$
h_i = \Pr\left(\bigcup_{n=0}^{\infty} \{X_n = 0\} | X_0 = i\right).
$$

Applying the law of total probability,

$$
h_i = \Pr\left(\bigcup_{n=0}^{\infty} \{X_n = 0\} | X_1 = i + 1, X_0 = i\right) \Pr(X_1 = i + 1 | X_0 = i)
$$

$$
+ \Pr\left(\bigcup_{n=0}^{\infty} \{X_n = 0\} | X_1 = i - 1, X_0 = i\right) \Pr(X_1 = i - 1 | X_0 = i).
$$

Applying the Markov property, for $i \geq 1$ *this is*

$$
h_i = p h_{i+1} + q h_{i-1}, \quad i \ge 1.
$$

The boundary case $i = 0$ *is trivial.*

(b) For $i \geq 1$ *, we see that*

$$
(p+q)h_i = h_i = ph_{i+1} + qh_{i-1}.
$$

Rearranging gives

$$
p(h_i - h_{i+1}) = q(h_{i-1} - h_i),
$$

so that if $u_i = h_{i-1} - h_i$ *, we have*

$$
u_i = \frac{q}{p}u_{i-1}.
$$

(c) Substituting back for h_i , we get

$$
h_i = h_{i-1} - u_i = h_{i-2} - u_{i-1} - u_i = \ldots = h_0 - \sum_{k=1}^i u_k = 1 - u_1 \sum_{k=1}^i \left(\frac{q}{p}\right)^{k-1}.
$$

Summing the geometric series gives ($p \neq q$ *)*

$$
h_i = 1 - \frac{u_1 \left(1 - \left(\frac{q}{p}\right)^i\right)}{1 - \frac{q}{p}}.
$$

We determine u_1 *by requiring the* **minimal non-negative solution** *. When* $p > q$, h_i *is a decreasing function of* u_1 *and an increasing function of i, so for the minimal non-negative solution set* $h_i \to 0$ *as* $i \to \infty$ *. This then gives*

$$
u_1 = 1 - \frac{q}{p},
$$

so that $h_i = \left(\frac{q}{n}\right)$ $\frac{q}{p}$ ⁾^{*i*}. A smaller choice of u_1 would lead to a solution that is not minimal *non-negative; a larger choice of* u_1 *would lead to a solution with negative values.*

For $p < q$, since $\frac{q}{p} > 1$, h_i is unbounded unless $u_1 = 0$, so that $h_i = 1$ for all $i \ge 0$. *For* $p = q$ *, get that* $h_i = 1 - u_1i$ *, so that minimal non-negativity requires* $u_1 = 0$ *and* $h_i = 1$ *for all* $i \geq 0$ *.*

- 5. Extend the idea of the previous question to the more general birth-death chain on $\{0, 1, 2, \ldots\}$ for which $p_{i,i+1} = p_i$ and $p_{i,i-1} = q_i = 1 - p_i$, with zero probability for all other transitions, and $p_i, q_i > 0$ for all $i \geq 1$.
	- (a) Show that $h_i = p_i h_{i+1} + q_i h_{i-1}$ and deduce that $u_i = \frac{q_i}{n_i}$ $\frac{q_i}{p_i} u_{i-1}$, for $u_i = h_{i-1} - h_i$.
	- (b) Write u_i in terms of $\gamma_i = \prod_{k=1}^i \frac{q_k}{p_k}$ $\frac{q_k}{p_k}$ and u_1 .
	- (c) Determine u_1 and show that the chain is transient if and only if $\sum_{i=1}^{\infty} \gamma_i < \infty$.
	- *(a) By definition,*

$$
h_i = \Pr\left(\bigcup_{n=0}^{\infty} \{X_n = 0\} | X_0 = i\right).
$$

Applying the law of total probability as before,

$$
h_i = \Pr\left(\bigcup_{n=0}^{\infty} \{X_n = 0\} | X_1 = i + 1, X_0 = i\right) \Pr(X_1 = i + 1 | X_0 = i)
$$

$$
+ \Pr\left(\bigcup_{n=0}^{\infty} \{X_n = 0\} | X_1 = i - 1, X_0 = i\right) \Pr(X_1 = i - 1 | X_0 = i).
$$

Applying the Markov property, for i ≥ 1 *this is*

$$
h_i = p_i h_{i+1} + q_i h_{i-1}, \quad i \ge 1.
$$

The boundary case $i = 0$ *is trivial.*

(b) For $i \geq 1$ *, we see that*

$$
(p_i + q_i)h_i = h_i = p_i h_{i+1} + q_i h_{i-1}.
$$

Rearranging gives

$$
p_i(h_i - h_{i+1}) = q_i(h_{i-1} - h_i),
$$

so that if $u_i = h_{i-1} - h_i$ *, we have*

$$
u_i = \frac{q_i}{p_i} u_{i-1} = \prod_{k=1}^i \frac{q_k}{p_k} u_1 = \gamma_i u_1.
$$

(c) Substituting back for h_i , we get

$$
h_i = h_{i-1} - u_i = h_{i-2} - u_{i-1} - u_i = \ldots = h_0 - \sum_{k=1}^i u_k = 1 - u_1 \sum_{k=1}^i \gamma_k.
$$

For the minimal non-negative solution we set $u_1 = \frac{1}{\sum_{k=1}^{\infty} \gamma_k}$ if the sum in the denominator is *finite, and* $u_1 = 0$ *otherwise. The condition for transience follows.*

6. Let

$$
P = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \end{array}\right)
$$

Find π , the stationary distribution of P.

The stationary distribution must satisfy $\pi P = \pi$ *. Extracting individual entries, we obtain the following equations*

$$
\pi_3/2 = \pi_1
$$

\n
$$
\pi_1 + \pi_2/2 = \pi_2
$$

\n
$$
\pi_2/2 + \pi_3/2 = \pi_3.
$$

Solving this system of equations we have

$$
\pi_3=\pi_2=2\pi_1,
$$

so $\pi = c(1, 2, 2)$ *for any* $c \in \mathbb{R}$ *. As* π *must be a distribution we must have* $c(1 + 2 + 2) = 1$ *so*

$$
\pi = (1/5, 2/5, 2/5).
$$

Another approach is to find the left-eigenvectors of P*.*