Probability for Statistics Unseen Problem 2

Suppose X and Y are random variables on a probability space $(\Omega, \mathcal{F}, Pr)$. Verify that the following are random variables. *You may find it easier to verify the necessary and sufficient condition given in Proposition 2.9 for a function to be a random variable.*

- 1. $T = X + c$ for c constant.
- 2. $U = X^2$.
- 3. $V = min(X, Y)$.
- 4. (harder) $W = X + Y$ *. Hint: if* $X + Y > z$ *then* $X > z Y$ *. Between two distinct real numbers there exists a rational number.*
- 5. $Z = XY$.

X is a random varible so for all $x \in \mathbf{R}$,

$$
\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}.
$$

Now,

1. For any $t \in \mathbf{R}$ *,*

$$
\{\omega \in \Omega : T(\omega) \le t\} = \{\omega \in \Omega : X(\omega) \le t - c\} \in \mathcal{F}.
$$

2. For any $u \in \mathbf{R}$ *,*

$$
\{\omega \in \Omega : U(\omega) \le u\} = \{\omega \in \Omega : X(\omega) \in [-\sqrt{u}, \sqrt{u}]\}
$$

= $\{\omega \in \Omega : X(\omega) < -\sqrt{u}\}^c \cap \{\omega \in \Omega : X(\omega) \le \sqrt{u}\} \in \mathcal{F}.$

3. Note that $\min\{X, Y\} \leq v$ *if and only if either* $X \leq v$ *or* $V \leq v$ *. Hence we can write the event* $\{\omega \in \Omega : V(\omega) \leq v\}$ *as a union of two events*

$$
\{\omega \in \Omega : V(\omega) \le v\} = \{\omega \in \Omega : X(\omega) \le v\} \cup \{\omega \in \Omega : Y(\omega) \le v\} \in \mathcal{F}.
$$

Hence V *is a random variable.*

4. Note that $\{X + Y \leq z\} = \{X + Y > z\}^c$ *. Then* $X + Y > z$ *if and only if* $X > z - Y$ *, which is true if and only if there exists* $q \in \mathbf{Q}$ *such that* $X > q$ *and* $q > z - Y$ *. So then*

$$
\{X + Y > z\} = \bigcup_{q \in \mathbf{Q}} \{X > q\} \cap \{Y > z - q\}.
$$

Since X and *Y* are random variables, $\{X > q\} = \{\omega \in \Omega : X(\omega) > q\} \in \mathcal{F}$ and similarly ${Y > z - q} \in F$ *, so that* ${X + Y > z}$ *is a countable union of sets in* F, and hence also in F.

5. $XY = \frac{1}{2}$ $\frac{1}{2}\left(\left(X+Y\right) ^{2}-X^{2}-Y^{2}\right)$, so this follows by combining results of earlier parts.