Probability for Statistics Unseen Problem 3

1. In this question, we will see how to evaluate some definite integrals using only simple ideas from probability theory. Let X_1, X_2, \ldots be a sequence of independent random variables, uniformly distributed on (0, 1).

Consider the first two variables, X_1 and X_2 . Clearly, by symmetry, the probability that X_1 lies to the right of X_2 is $\frac{1}{2}$. This probability can also be calculated by conditioning on the value of X_1 :

$$\Pr(X_2 < X_1) = \int_0^1 \Pr(X_2 < x) \, dx = \int_0^1 x \, dx = \frac{1}{2}$$

(a) Use a similar argument to that given above to explain, without explicitly calculating the integral, why if *n* is a positive integer,

$$\frac{1}{n+1} = \int_0^1 x^n \, dx.$$

(b) Extend your argument to calculate the beta integral, for positive integer m and n,

$$\int_0^1 x^m (1-x)^n \, dx.$$

2. The data in Table 1 concern a long-term study into the benefits of screening for breast cancer. The subjects were 62,000 women in the USA who were members of a particular health insurance plan. The women were randomized to two groups of equal size. Women in the treatment group were encouraged to attend an annual screening, while those in the control group were offered their usual health care. Not all of the women in the treatment group attended the screening: 10,800 subjects refused. Less affluent subjects were more likely to refuse screening.

Table 1: Results from a study of screening for breast cancer in the USA. Rates are per thousand

		Cause of death			
		breast cancer		all other	
		number	rate	number	rate
Treatment group					
Examined	20,200	23	1.1	428	21
Refused	10,800	16	1.5	409	38
Total	31,000	39	1.3	837	27
Control group	31,000	63	2.0	879	28

(a) Is screening worthwhile? Explain with reference to the data in the table.

- (b) Is breast cancer associated with income? If so, in what direction is the association?
- (c) The death rate from all causes is roughly halved in the screened group compared with the group who refused treatment. Is screening responsible for this difference? If not, what explains the difference?

Data taken from Freedman, Pisani & Purves, Statistics.