MATH50010 Probability for Statistics Unseen Problem 6 Two Envelopes

Suppose we play a game, in which I have two sealed envelopes, one with $\pounds \theta$ and the other with $\pounds 2\theta$. You can have the money in one of the two envelopes.

- 1. Suppose you open an envelope and find £10. At this point in the game, you can either take the ± 10 , or you can take the money in the other envelope (without looking inside it). What should you do?
- 2. More generally, let the amount in the first envelope be the random variable X, and the amount in the second envelope be Y. Show that $E(Y|X = x) = \frac{5}{4}x > x$. What does this suggest that you should do?
- 3. Suppose we treat θ as an unknown constant, or equivalently, we consider the amount in the envelope as a random variable Θ and condition on $\Theta = \theta$. What are $E(X|\theta)$ and $E(Y|\theta)$? Does this contradict your answer to the previous parts?
- Suppose now we impose a realistic prior distribution on Θ: after all, I am not infinitely generous (as you have surely figured out by now...). Let's suppose Θ ~ UNIFORM(0, α) for some α > 0. So realistically, α is a number like £20. Or perhaps if you think I am very generous maybe α = £100.

Define the random variable

$$Z = \begin{cases} 0 & \text{if } X = \min(X, Y), \\ 1 & \text{if } X = \max(X, Y). \end{cases}$$

What is Pr(Z = 0)? What is $f_X(x|Z = 0)$? (Your second answer should depend on α).

- 5. What is $\Pr(Z = 0 | X = x)$
- 6. What is E(Y|X = x) now? (*Hint: use the previous part.*)
- 7. Show that if, as in the earlier part $E(Y|X = x) = \frac{5}{4}$, the random variables X and Z are independent. Is this a reasonable assumption?