MATH50010 - Probability for Statistics Unseen Problem 8

The transition matrix P of a Markov chain $\{X_n\}$ is:

	(0	0	0	0	0	1/2	0	1/2	0	0	١
P =	0	0	0	0	1	0	0	0	0	0	
	0	0	1/2	0	1/4	0	1/4	0	0	0	
	0	0	0	0	0	0	1	0	0	0	
	0	0	1/4	0	0	0	1/4	1/2	0	0	
	1/2	0	0	0	0	0	0	1/2	0	0	
	0	0	0	1/2	0	0	0	0	0	1/2	
	1/2	0	0	0	0	1/2	0	0	0	0	
	0	3/4	0	0	0	0	0	0	1/4	0	
	\ 0	0	0	0	0	0	1	0	0	0	Ι

- 1. Derive the transition diagram from the transition matrix P.
- 2. Find the absorbing probabilities for the recurrent states.
- 3. Find the stationary distributions of the chain. Decide if there is a limit distribution.
- 1. The transition diagram is given in Figure .
- 2. There are two recurrent classes $R1 = \{1, 6, 8\}$ and $R2 = \{4, 7, 10\}$, and the chain is absorbed in these classes once it enters them. Suppose the chain starts at a transient state $k \in T = \{2, 3, 5, 9\}$ and consider the probability it ever enters R_1 . Let

$$a_k = \mathbb{P}(\exists n > 0, X_n \in R_1 \mid X_0 = k).$$

Then, partitioning according to the value of X_1

$$a_{k} = \mathbb{P}(\exists n > 0, X_{n} \in R_{1} | X_{0} = k)$$

= $\mathbb{P}(\exists n > 0, X_{n} \in R_{1}, X_{1} \in R_{2} | X_{0} = k)$
+ $\mathbb{P}(\exists n > 0, X_{n} \in R_{1}, X_{1} \in R_{1} | X_{0} = k)$
+ $\mathbb{P}(\exists n > 0, X_{n} \in R_{1}, X_{1} \in T | X_{0} = k).$

As R_2 is an absorbing class, once we enter R_2 we will never enter R_1 . Thus,

$$\mathbb{P}(\exists n > 0, X_n \in R_1, X_1 \in R_2 \mid X_0 = k) = 0.$$

The second probability considers the probability that we enter R_1 in the first step. By looking at the transition diagram, this is only possible when k = 5. Thus, for $k \in T \setminus \{5\}$,

$$\mathbb{P}(\exists n > 0, X_n \in R_1, X_1 \in R_1 \mid X_0 = k) = 0$$

and

$$\mathbb{P}(\exists n > 0, X_n \in R_1, X_1 \in R_1 \mid X_0 = 5) \\ = \mathbb{P}(\exists n > 0, X_n \in R_1 \mid X_1 \in R_1, X_0 = 5) \mathbb{P}(X_1 \in R_1 \mid X_0 = 5).$$

The first term is equal to one as R_1 is an absorbing class. For the second term, the only way we can enter R_1 from state 5 in one step is along the path $5 \rightarrow 8$. This occurs with probability 1/2 so,

$$\mathbb{P}(\exists n > 0, X_n \in R_1, X_1 \in R_1 \mid X_0 = 5) = 1/2$$

Finally, we can write

$$\begin{split} \mathbb{P}(\exists n > 0, \, X_n \in R_1, \, X_1 \in T \mid X_0 = k) &= \sum_{l \in T} \mathbb{P}(\exists n > 0, \, X_n \in R_1, \, X_1 = l, \mid X_0 = k) \\ &= \sum_{l \in T} \mathbb{P}(\exists n > 0, \, X_n \in R_1 \mid X_1 = l) \mathbb{P}(X_1 = l \mid X_0 = k) \\ &= \sum_{l \in T} \mathbb{P}(\exists n > 0, \, X_n \in R_1 \mid X_0 = l) p_{kl}. \end{split}$$

Thus,

$$a_k = 1/2 \cdot \mathbf{1}\{k = 5\} + \sum_{l \in T} a_l p_{kl}$$

and substituting in values of p_{kl} we have

$$a_{2} = a_{5}$$

$$a_{3} = a_{3}/2 + a_{5}/4$$

$$a_{5} = 1/2 + a_{3}/4$$

$$a_{9} = a_{9}/4 + 3a_{2}/4.$$

Solving gives $a_2 = a_5 = a_9 = 4/7$ and $a_3 = 2/7$. Similar arguments can be used to find the absorption probabilities into R_2 .

3. Let π be a stationary distribution for this markov chain. We know from lectures that $\pi_2 = \pi_3 = \pi_5 = \pi_9 = 0$ as these are the transient states. Further, let $\pi(1)$ and $\pi(2)$ be the stationary distributions corresponding to the recurrent classes R_1 and R_2 . These will have zero entries in any states that are not present in the recurrent class. Let $\nu(1)$ and $\nu(2)$ be the non-zero entries of $\pi(1)$ and $\pi(2)$ respectively. Then, it must be true that

$$\nu(1) \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix} = \nu(1), \qquad \nu(2) \begin{pmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{pmatrix} = \nu(2).$$

Solving these systems of equations, we have

$$\nu(1) \in (a, a, a)^T, \qquad \nu(2) = (b, 2b, b)^T$$

for $a, b \in \mathbb{R}$. As the entries in $\nu(1)$ and $\nu(2)$ must be non-negative and sum to one, we must have

$$\nu(1) = (1/3, 1/3, 1/3)^T, \quad \nu(2) = (1/4, 2/4, 1/4).$$

Hence,

$$\pi(1) = (1/3, 0, 0, 0, 0, 1/3, 0, 1/3, 0, 0)^T$$

$$\pi(2) = (0, 0, 0, 1/4, 0, 0, 2/4, 0, 0, 1/4)^T.$$

Any stationary distribution can be written as $\lambda_1 \pi(1) + \lambda_2 \pi(2)$ for some $\lambda_1, \lambda_2 \ge 0$ such that $\lambda_1 + \lambda_2 = 1$. Thus, any stationary distribution π can be writted as

$$\pi = (\lambda_1/3, 0, 0, \lambda_2/4, 0, \lambda_1/3, 2\lambda_2/4, \lambda_1/3, 0, \lambda_2/4)^T$$

There is no limit distribution as the class R2 is periodic with period 2. In particular, $p_{4,10}(2n + 1) = 0$ whereas $p_{4,10}(2n) > 0$ for any integer n so the limit of $p_{4,10}(n)$ cannot exist as $n \to \infty$.

Figure 1: Transition diagram