
Problem Sheet 2 Solutions
MATH50011

Statistical Modelling 1

Week 2

Lecture 3 (CRLB)
1. In the lecture notes, we sketched the proof of the Cramér-Rao lower bound (CRLB) for continuous random

variables. Prove the CRLB for discrete random variables with finite support. (Recall that the support of
X is the set of values where the pdf/pmf is greater than zero.)

Solution. Without loss of generality, assume X takes values 1, 2, ... ,K and let fθ(k) denote its pmf.
By the Cauchy-Schwarz inequality,

Varθ(T )If (θ) = Eθ[(T − EθT )2]Eθ[(
∂

∂θ
log fθ(X ))2]

≥
(
Eθ

[
(T − EθT )

∂

∂θ
log fθ(X )

])2

.

As in the lecture notes, the lower bound in the preceding display equals one

Eθ

[
(T − EθT )

∂

∂θ
log fθ(X )

]
= Eθ

[
(T − EθT )

∂
∂θ
fθ(X )

fθ(X )

]

=
K∑

x=1

(T (x)− EθT ))
∂
∂θ
fθ(x)

fθ(x)
fθ(x)

=
K∑

x=1

T (x)
∂

∂θ
fθ(x)−

K∑
x=1

Eθ(T )
∂

∂θ
fθ(x)

=
∂

∂θ

K∑
x=1

T (x)fθ(x)− Eθ(T )
∂

∂θ

K∑
x=1

fθ(x)

=
∂

∂θ
Eθ(T )− 0

=
∂

∂θ
θ = 1.

Note that we do not need to worry about the validity of interchanging a sum with K <∞ terms and
differentiation. Thus, Varθ(T ) ≥ 1

If (θ)
. �
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2. Find the CRLB for estimating θ based on a random sample of size n from the following distributions

(a) Exponential(θ);
(b) Normal(θ,σ2) with known σ2 > 0;
(c) Bernoulli(θ); (see Example 8)
(d) Poisson(θ).

Solution. We let fθ be the pdf for n = 1 and In(θ) be the information for general n ≥ 1.

(a) For the exponential distribution we have

fθ(x) = θe−θx

log fθ(x) = log θ − θx
∂

∂θ
log fθ(x) =

1

θ
− x

∂2

∂θ2
log fθ(x) = − 1

θ2

In(θ) = −nE
{
∂2

∂θ2
log fθ(X )

}
=

n

θ2

CRLB =
θ2

n

(b) For the normal distribution we have

fθ(x) =
1√

2πσ2
exp

{
−(x − θ)2)

2σ2

}
∂

∂θ
log fθ(x) =

x − θ
σ2

∂2

∂θ2
log fθ(x) =

−1

σ2

In(θ) = −nE
{
∂2

∂θ2
log fθ(X )

}
=

n

σ2

CRLB =
σ2

n

(c) For the Bernoulli distribution we have

fθ(x) = θx(1− θ)1−x

∂

∂θ
log fθ(x) =

x

θ
− 1− x

1− θ
∂2

∂θ2
log fθ(x) = − x

θ2
− 1− x

(1− θ)2

In(θ) = −nE
{
∂2

∂θ2
log fθ(X )

}
=

n

θ(1− θ)

CRLB =
θ(1− θ)

n
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(d) For the Poisson distribution we have

fθ(x) =
θxe−θ

x!
∂

∂θ
log fθ(x) =

x

θ
− 1

∂2

∂θ2
log fθ(x) = − x

θ2

In(θ) = −E
{
∂2

∂θ2
log fθ(X )

}
=

n

θ

CRLB =
θ

n

3. For which of the distributions in 2(a-d) can the sample mean be used to construct an unbiased estimator
T with variance equal to the CRLB for estimating θ?

Solution. Note that X̄ is unbiased for Eθ(X ) = θ for each distribution in 2(b-d). Moreover, for each
distribution in 2(b-d), the CRLB equals Var(X̄ ) where X̄ is the sample mean based on a random
sample of size n from the given distribution. Hence, X̄ itself meets both requirements.
For the Exponential(θ) distribution, Eθ(X ) = 1/θ. However, by Jensen’s inequality, we know that
Eθ(1/X̄ ) 6= θ. We will find a constant an to correct for the bias. First, note that ∑n

i=1 Xi ∼
Gamma(θ, n).
Noting that Γ(n) = (n − 1)Γ(n − 1), we have

E

(
1/

n∑
i=1

Xi

)
=
∫ ∞
0

1

x

θn

Γ(n)
xn−1e−θxdx

=
∫ ∞
0

1

x

θn−1θ

(n − 1)Γ(n − 1)
xn−1e−θxdx

= θ
1

n − 1

∫ ∞
0

θn−1

Γ(n − 1)
x (n−1)−1e−θxdx

= θ
1

n − 1

so that T = (n − 1)/
∑n

i=1 Xi = (n − 1)/(nX̄ ) is unbiased. A similar calculation shows that the
second moment of 1/

∑n
i=1 Xi is

θ2

(n − 1)(n − 2)

so that
Var(T ) = (n − 1)2

θ2

(n − 1)2(n − 2)
=

θ2

n − 2
> CRLB .

Hence we cannot use X̄ to construct an unbiased estimator that attains the CRLB in this case.

4. Suppose that we wish to estimate θ based on a random sample X1, ... ,Xn of Bernoulli(θ) random vari-
ables. However, we are only able to obtain a random sample (Yi ,Ri), ... , (Yn,Rn) where the Ri ’s are
iid Bernoulli(p0) for known p0, independent of the Xi (updated 21 Jan) and Yi = RiXi for i = 1, ... , n.
Compare the CRLBs for estimating θ based on

(a) The full data distribution of the Xi ’s;
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(b) The marginal distribution of the Yi ’s;
(c) The joint distribution of the (Yi ,Ri)’s.

Solution.

(a) The CRLBX is θ(1− θ)/n from the either the notes or 2(c)
(b) Here, P(Yi = 1) = P(Xi = 1,Ri = 1) = θp0 so Yi ∼ Bernoulli(θp0) with p0 known. We have

fθ(y) = [θp0]y (1− θp0)1−y

∂

∂θ
log fθ(y) =

y

θ
− p0

1− y

1− θp0
∂2

∂θ2
log fθ(y) = − y

θ2
− p20

1− y

(1− θp0)2

In(θ) = −nE
{
∂2

∂θ2
log fθ(Y )

}
=

np0
θ(1− θp0)

CRLBY =
θ(1− θp0)

np0

(c) Some students have difficulties in solving this question. So I wrote all the passages explicitely.
Note that the joint distribution has support on the points (0, 0), (0, 1), and (1, 1) since Yi cannot
be 1 unless Ri = 1. In particular, we have that

fθ(y , r) = P((Yi ,Ri) = (y , r)) = P(Yi = y ,Ri = r)

= P(Yi = y |Ri = r)P(Ri = r) = P(rXi = y |Ri = r)P(Ri = r)

We know that P(Ri = r) = pr0(1− p0)1−r . Further, notice that for r = 1 we have that

P(rXi = y |Ri = 1) = P(Xi = y |Ri = 1) = P(Xi = y) = θy (1− θ)1−y

and for r = 0 (which means that y = 0 because we can never have y 6= 0 if r = 0) we have
that

P(rXi = y |Ri = 0) = P(0 = 0|Ri = 0) = 1.

Thus, P(rXi = y |Ri = r) is equal to θy (1− θ)1−y when r = 1, and it is equal to 1 when r = 0.
This means that P(rXi = y |Ri = r) = {θy (1− θ)1−y}r .
Hence, we have

fθ(y , r) = pr0(1− p0)1−r{θy (1− θ)1−y}r

∂

∂θ
log fθ(y , r) = r

[
y

θ
− 1− y

1− θ

]
∂2

∂θ2
log fθ(y , r) = −r

[
y

θ2
+

1− y

(1− θ)2

]

In(θ) = −nE
{
∂2

∂θ2
log fθ(Y ,R)

}
=

np0
θ(1− θ)

CRLBY ,R =
θ(1− θ)

np0
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This is an example where the responses Xi are missing completely at random. We see that

θ(1− θ)

n
≤ θ(1− θ)

np0
≤ θ(1− θp0)

np0

so CRLBX ≤ CRLBY ,R ≤ CRLBY . In particular, the best (lowest) possible variance for an
unbiased estimator of θ arises when we observe the Xi directly.
Unless p0 = 1 (so the Xi are observed with probability 1), we lose information for estimating θ
when they data are generated this way.
Fascinatingly, we can attain (in theory) better precision by using the joint distribution of the
observable (Yi ,Ri) than we can by using the marginal distribution of the Yi even though we
already know the distribution of Ri exactly.
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Lecture 4 (Consistency)
5. Show that an asymptotically unbiased estimator sequence need not be consistent. (Hint: consider esti-

mating µ based on a sequence of independent rv’s Xi ∼ N(µ, 2i) for i = 1, 2, 3, ... )

Solution. Since EX̄ = µ, it is unbiased, hence asymptotically unbiased. Var(X̄ ) = 2
∑

i

i

n2
=

n + 1

n
.

Hence,
X̄ ∼ N(µ,

n + 1

n
)

Fix δ > 0. Notice that if X ∼ N(µ,σ2)

P(|X − θ| ≥ δ) = P(X − θ > δ) + P(X − θ ≤ −δ)

= 1− Φ

(
δ + θ − µ

σ

)
+ Φ

(
−δ + θ − µ

σ

)
(1)

In general if θ = µ,

P(|X − θ| ≥ δ) = 2

(
1− Φ

(
δ

σ

))
(2)

Using (2) we get,

P(|X̄ − µ| > δ) = 2P(X̄ − µ > δ) = 2

1− Φ

 δ√
(n + 1)/n

→ 2(1− Φ(δ)) 6= 0.

Therefore X̄ is not a consistent estimator of µ.

6. Show that a consistent estimator sequence Tn need not be asymptotically unbiased. (Hint: consider
a sequence (Tn,Yn) with Yn ∼ Bernoulli(1/n) and Tn|Yn = 0 ∼ N(θ,σ2/n) and Tn|Yn = 1 ∼
N(n2, 1).)

Solution. We will use the notation

if Yn = 0, Tn = Zn ∼ N(θ,
σ2

n
)

if Yn = 1, Tn = Rn ∼ N(n2, 1)

Where we have Yn ∼ Bernoulli(
1

n
). We will show consistency using the definition of convergence in

probability. For any δ > 0,

P(|Tn − θ| ≥ δ) = P(|Tn − θ| ≥ δ,Yn = 0) + P(|Tn − θ| ≥ δ,Yn = 1)

=P(|Tn − θ| ≥ δ|Yn = 0)P(Yn = 0) + P(|Tn − θ| ≥ δ|Yn = 1)P(Yn = 1)

=P(|Zn − θ| ≥ δ)
(

1− 1

n

)
+ P(|Rn − θ| ≥ δ)

1

n

=2

(
1− Φ

(
δ
√
n

σ

))(
1− 1

n

)
+
(

1− Φ(δ + θ − n2) + Φ(−δ + θ − n2)
) 1

n

( Using (2) and (1))

→ 2(0)(1) + (1 + 0 + 0)0 = 0
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Hence, Tn is consistent for θ. However, we see that

E (Tn) = E{E (Tn|Yn = 0)P(Yn = 0) + E (Tn|Yn = 1)P(Yn = 1)} = θ(1− 1

n
) +

n2

n
→∞ (3)

Hence, Tn is not asymptotically unbiased.

7. Let X1,X2, ... be iid Uniform(0, θ) random variables and define θ̂n = max{X1, ... ,Xn}.

(a) Show that θ̂n is asymptotically unbiased and consistent.
(b) Find a sequence of constants an such that anθ̂n is unbiased and consistent.
(c) Compare the MSE of θ̂n and anθ̂n.

Solution.

(a) Let 0 < ε < 1. We can show convergence in probability directly. First, note that

P(θ̂n ≤ θ − ε) = P(X1, ... ,Xn ≤ θ − ε) =

(
θ − ε
θ

)n

=
(

1− ε

θ

)n

→ 0

Moreover, P(θ̂n ≥ θ + ε) = 0. Therefore,

P(|θ̂n − θ| ≥ ε)→ 0.

hence θ̂n is consistent for θ.

To show asymptotic unbiasedness, consider 0 ≤ x ≤ θ,

P(θ̂n ≤ x) =
(
x

θ

)n

So that the pdf of θ̂n is fθ̂n(x) = n
xn−1

θn
. Then, we see

E θ̂n =
n

θn

∫ θ

0
xxn−1dx

=
n

n + 1
θ.

Clearly, E θ̂n → θ as n→∞. Hence, θ̂n is asymptotically unbiased.
As an alternative to direct proof of convergence in probability, we can show that Var(θ̂n)→ 0.
We have

E (θ̂2n) =
n

θn

∫ θ

0
xn+1dx =

n

n + 2
θ2

and thus Var(θ̂n) = n
n+2

θ2 −
[

n

n + 1
θ
]2

= θ2 n
(n+2)(n+1)2

→ 0. Hence, θ̂n is consistent.

(b) From above, we see immediately that

E
n + 1

n
θ̂n =

n + 1

n

n

n + 1
θ = θ.
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Hence, an =
n + 1

n
. anθ̂n is asymptotically unbiased since it is an unbiased estimator of θ.

Var(anθ̂n) =
(n + 1)2

n2
θ2

n

(n + 2)(n + 1)2
=

1

n(n + 2)
θ2 → 0

Therefore θ̂n and anθ̂n are consistent estimators of θ.
(c) Recall that MSE (T ) = Var(T ) + bias(T )2. Using this, we find

MSE (θ̂n) = Var(θ̂n) + bias(θ̂n)2

= θ2
n

(n + 2)(n + 1)2
+
(

n

n + 1
θ − θ

)2

= θ2
n

(n + 2)(n + 1)2
+ θ2

(
n

n + 1
− 1

)2

=
2θ2

(n + 1)(n + 2)

and for the unbiased estimator anθ̂n, we have

MSE (anθ̂n) = a2nVar(θ̂)− 0

=
1

n(n + 2)
θ2.

We can compare the estimators using the ratio MSE (θ̂n)/MSE (anθ̂n) = 2n/(n + 1) > 1 for
n > 1. Hence the MSE for the unbiased anθ̂n is lower than for θ̂n.

8. Let X1,X2, ... be iid Bernoulli(θ) random variables and consider estimating g(θ) = Var(X1) = θ(1 − θ).
Define the sample mean X̄n = n−1

∑n
i=1 Xi .

(a) Show that Tn = X̄n(1− X̄n) is asymptotically unbiased and consistent.
(b) Find a sequence of constants an such that anTn is unbiased and consistent.
(c) Compare the MSE of Tn and anTn.

Note: This is intended to be a challenging problem and serves to highlight the utility of several asymptotic
results we will see soon relative to the direct approach. You may simplify variance calculations significantly
using the fact that

Var(S2
n ) =

µ4

n
− σ4(n − 3)

n(n − 1)

where σ2 = Var(Xi) and µ4 = E{(Xi − µ)4}. Direct calculations can also be avoided by appeal-
ing to Slutsky’s lemma or the continuous mapping theorem (which may have been seen before this
term).

Solution.
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(a) Since the data are binary, the parametric estimator can be expressedly equivalently as

Tn(~Xn) = X̄n(1− X̄n)

= X̄n − (X̄n)2

=
1

n

n∑
i=1

Xi − (X̄n)2

=
1

n

n∑
i=1

X 2
i − (X̄n)2

= σ̂2
n,

which was defined previously. We know that the bias is

−σ2/n = −g(θ)/n→ 0

as n→∞, so Tn is asymptotically unbiased for g(θ) = θ(1− θ).
An application of Slutsky’s lemma allows us to conclude that since X̄n →p θ and 1−X̄n →p 1−θ
that Tn →p g(θ).
A direct proof using the lemma on MSE and consistency requires showing Var(Tn) → 0. A
rather involved calculation leads to

Var(Tn) =
n − 1

n3
[(n − 1)g(θ)(1− 3g(θ))− (n − 3)g(θ)2]→ 0.

(b) Using part (a) of this problem, an = n/(n − 1). Hence,

anTn =
n

n − 1
X̄n(1− X̄n) = s2n .

Since an → 1, a further application of Slutsky’s lemma allows us to conclude that anTn is
consistent for g(θ).
A direct proof using the lemma on MSE and consistency requires showing Var(anTn) → 0. A
rather involved calculation leads to

Var(anTn) =
1

n(n − 1)
[(n − 1)g(θ)(1− 3g(θ))− (n − 3)g(θ)2]→ 0.

(c) This part requires direct comparison of the MSE, so no shortcut is readily available. We have
that MSE (anTn) = Var(anTn) + 0 and

MSE (Tn) =
(n − 1)2

n2
Var(anTn) +

g(θ)2

n

For sufficiently large n, the difference in MSE will be dominated by the squared bias term g(θ)2/n
for Tn. This term is maximized when θ = 1/2 so that this term is 1/(16n).
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R lab: Consistency of the sample median
9. In R, the code below implements the simulation study for n = 10 and ε = 0.1.

set.seed(50011)
result <- logical(length = 1000)
n <- 10
epsilon <- .1
for(i in 1:1000){

X <- rnorm(n, mean = 0)
m <- median(X)
result[i] <- abs(m - 0) < epsilon

}
mean(result)

Note that the command set.seed(50011) ensures that you obtain the same results each time you run
this set of commands.
Type the above commands into your R console (or write a script) and then:

(a) Explore how the value of mean(result) changes by increasing the value of n in this code to, e.g.
n = 30, 50, 100, 200, 500, 1000.

(b) Referring to the results of your experimentation, comment on whether the sample median appears
to be consistent for µ in this setting.

Solution. The purpose of this problem is to obtain a better understanding of convergence in
probability and consistency.
Running the above code (including setting the random seed) for each suggested value of n
results in the following table

n 10 30 50 100 200 500 1000
P̂(|mn − 0| < 0.1) 0.238 0.340 0.467 0.613 0.764 0.930 0.985

where P̂(|mn − 0| < 0.1)) is the value of mean(result).

Since P̂(|mn − 0| < 0.1)) → 1 based on the results of this experiment, it suggests the sample
median converges to µ in probability (is consistent). To make this argument more compelling,
we could repeat the experiment with smaller values of ε and different values of µ in the normal
distribution.
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