Imperial College London

Problem Sheet 2

MATH50011 Statistical Modelling 1

Week 2

Lecture 3 (CRLB)

- In the lecture notes, we sketched the proof of the Cramér-Rao lower bound (CRLB) for continuous random variables. Prove the CRLB for discrete random variables with finite support. (Recall that the *support* of X is the set of values where the pdf/pmf is greater than zero.)
- 2. Find the CRLB for estimating θ based on a random sample of size *n* from the following distributions
 - (a) Exponential(θ);
 - (b) Normal(θ , σ^2) with known $\sigma^2 > 0$;
 - (c) Bernoulli(θ); (see Example 8)
 - (d) Poisson(θ).
- 3. For which of the distributions in 2(a-d) can the sample mean be used to construct an unbiased estimator T with variance equal to the CRLB for estimating θ ?
- 4. Suppose that we wish to estimate θ based on a random sample X₁,..., X_n of Bernoulli(θ) random variables. However, we are only able to obtain a random sample (Y_i, R_i), ..., (Y_n, R_n) where the R_i's are iid Bernoulli(p₀) for known p₀ and Y_i = R_iX_i for i = 1, ..., n. Compare the CRLBs for estimating θ based on
 - (a) The full data distribution of the X_i 's;
 - (b) The marginal distribution of the Y_i 's;
 - (c) The joint distribution of the (Y_i, R_i) 's.

Lecture 4 (Consistency)

- 5. Show that an asymptotically unbiased estimator sequence need not be consistent. (Hint: consider estimating μ based on a sequence of independent rv's $X_i \sim N(\mu, 2i)$ for i = 1, 2, 3, ...)
- 6. Show that a consistent estimator sequence T_n need not be asymptotically unbiased. (Hint: consider a sequence (T_n, Y_n) with $Y_n \sim \text{Bernoulli}(1/n)$ and $T_n|Y_n = 0 \sim N(\theta, \sigma^2/n)$ and $T_n|Y_n = 1 \sim N(n^2, 1)$.)
- 7. Let X_1, X_2, \dots be iid Uniform $(0, \theta)$ random variables and define $\hat{\theta}_n = \max\{X_1, \dots, X_n\}$.
 - (a) Show that $\hat{\theta}_n$ is asymptotically unbiased and consistent.
 - (b) Find a sequence of constants a_n such that $a_n\hat{\theta}_n$ is unbiased and consistent.
 - (c) Compare the MSE of $\hat{\theta}_n$ and $a_n \hat{\theta}_n$.
- 8. Let $X_1, X_2, ...$ be iid Bernoulli(θ) random variables and consider estimating $g(\theta) = Var(X_1) = \theta(1-\theta)$. Define the sample mean $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$.
 - (a) Show that $T_n = \bar{X}_n(1 \bar{X}_n)$ is asymptotically unbiased and consistent.
 - (b) Find a sequence of constants a_n such that $a_n T_n$ is unbiased and consistent.
 - (c) Compare the MSE of T_n and $a_n T_n$.

This exercise is intended to reinforce concepts through use of the R software package.

We consider an example of a simulation study. The simulation consists of 1000 independent replications of the following process:

- i. Generate X_1, \ldots, X_n iid $N(\mu, 1)$ with $\mu = 0$;
- ii. Estimate μ by calculating the sample median m_n ;
- iii. Record whether the statement $|m_n \mu| < \epsilon$ is *true* or *false*.

Lastly, the proportion of times/1000 that the statement in iii. is *true* is calculated.

9. In R, the code below implements the simulation study for n = 10 and $\epsilon = 0.1$.

```
set.seed(50011)
result <- logical(length = 1000)
n <- 10
epsilon <- .1
for(i in 1:1000){
    X <- rnorm(n, mean = 0)
    m <- median(X)
    result[i] <- abs(m - 0) < epsilon
}
mean(result)</pre>
```

Note that the command set.seed(50011) ensures that you obtain the same results each time you run this set of commands.

Type the above commands into your R console (or write a script) and then:

- (a) Explore how the value of mean(result) changes by increasing the value of n in this code to, e.g. n = 30, 50, 100, 200, 500, 1000.
- (b) Referring to the results of your experimentation, comment on whether the sample median appears to be consistent for μ in this setting.