
Problem Sheet 3 Solutions
MATH50011

Statistical Modelling 1

Week 3

Lecture 5 (Asymptotic Normality)
1. Prove that if X1,X2, ... converges in probability to X and h is a continuous function, then h(X1), h(X2), ...

converges in probability to h(X ).

Solution. Let ε > 0 be given. We want to show that

lim
n→∞

P(|h(Xn)− h(X )| < ε) = 1.

By continuity of h, we know that there exists δ ≡ δ(ε) such that

|Xn − X | < δ ⇒ |h(Xn)− h(X )| < ε.

This implies that
P(|Xn − X | < δ) ≤ P(|h(Xn)− h(X )| < ε).

We know that the right hand side is bounded above by one. Taking limits we find

1 = lim
n→∞

P(|Xn − X | < δ) ≤ lim
n→∞

P(|h(Xn)− h(X )| < ε) ≤ 1,

where we have used Xn →p X . Hence, we conclude that h(Xn)→p h(X ).

2. Suppose that X1, ... ,Xn are iid with E (Xi) = µ and Var(Xi) = σ2. Define X̄n = n−1
∑n

i=1 Xi and
S2
n = (n − 1)−1

∑n
i=1(Xi − X̄n)2.

(a) Show that S2
n is a consistent estimator of σ2. Assume that all required higher order moments of

Xi exist and are finite.

Solution. First, we note that
S2
n =

n

n − 1
(Un + Vn)

with Un = 1
n

∑n
i=1 X

2
i and Vn = −X̄ 2

n . Since Un →p E (X 2) and Vn →p −µ2 by continuity
(see problem 1), we have by Slutsky’s lemma that Un + Vn →p E (X 2) − µ2 = σ2. Since
n

n−1 →p 1, further application of Slutsky’s lemma leads to the desired conclusion S2
n →p σ

2.
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(b) Use the result in (a) to show that

Tn =
√
n

 X̄n − µ√
S2
n

→d N(0, 1) .

Solution. By the CLT, we have that

Zn =
√
n
X̄n − µ
σ

→d N(0, 1).

We can write
Tn = Zn

σ√
S2
n

.

By part (a) and continuity of h(t) = σ/
√
t at t 6= 0, we have that h(S2

n ) →p 1. Hence, by
Slutsky’s lemma we have

Tn →d N(0, 1).

3. Suppose that X1, ... ,Xn are iid strictly positive random variables with E (logXi) = µ and Var(logXi) =

σ2. Use the delta method to derive the asymptotic normality of the geometric mean Gn = (
∏n

i=1 Xi)
1/n.

Solution. Let Tn = logGn = 1
n

∑n
i=1 logXi , which is the mean of iid random variables. By the

CLT, √
n(Tn − µ)→d N(0,σ2).

We have that Gn = exp(Tn) = g(Tn) with g(t) = g ′(t) = exp(t). By the delta method,
√
n(Gn − eµ)→d N(0, e2µσ2).

4. Suppose that X1, ... ,Xn are iid Uniform(0, θ) and define Tn = max(X1, ... ,Xn). Find a sequence an = nk

for some k such that an(Tn − θ)→d Z . What is the distribution of Z?

Solution. From PS2 Q7, we know that Var(Tn) is on the order of n−2. To prevent Var [an(Tn −
θ)]→ 0, we might expect that an = n1 = n is an appropriate scaling factor.

In any case, P(an(Tn−θ) ≤ t) = P(Tn ≤ θ+ t/an) =
(

1 + t/θ
an

)n
, where the probability is derived

as in PS2 Q7. It is now evident that for an = n, as n→∞,

P(an(Tn − θ) ≤ t) =

(
1 +

t/θ

n

)n

→ et/θ

for t < 0 and P(an(Tn − θ) ≤ t) = 1 for all t ≥ 0. That this sequence is supported on the
negative reals follows immediately from noting that P(Tn < θ) = 1 since 0 < Xi < θ for each i .
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5. Does
√
n(Tn− θ)→d N(0,σ2) imply that Tn is consistent for θ? If yes, prove this. Otherwise, provide

a counterexample.

Solution. We will make use of the following identity

P(|Tn − θ| < ε) = P(−ε < Tn − θ < ε)

= P(Tn − θ < ε)− P(Tn − θ ≤ −ε)
= P(

√
n(Tn − θ) <

√
nε)− P(

√
n(Tn − θ) ≤ −

√
nε).

We want to show that for any δ > 0, there exists n0 such that for n > n0 we have

P(|Tn − θ| < ε) > 1− δ.

Let z > 0 be such that Φ(z/σ)− Φ(−z/σ) = 1− δ/2, where Φ(t) denotes the standard normal
cdf. Whenever

√
nε > z ⇔ n > (z/ε)2, we find (by the identity above) that

P(|Tn − θ| < ε) ≥ P(
√
n(Tn − θ) < z)− P(

√
n(Tn − θ) ≤ −z).

By asymptotic normality, the right-hand side converges to 1−δ/2 for this choice of z . By definition
of convergence, there exists a value n1 such that for any n > n1 the right-hand side is at least
1− δ.
Taking n0 = max(n1, (z/ε)2), we have established that for n > n0 we have

P(|Tn − θ| < ε) > 1− δ

as desired. This completes the proof.
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Lecture 6 (Maximum Likelihood)
6. Find the MLE for estimating θ based on a random sample X1, ... ,Xn from the following distributions

(a) Bernoulli(θ); (see Example 8)

Solution. We have seen in the previous problem sheet that ∂
∂θ

log fθ(x) = x
θ
− 1−x

1−θ for n = 1.
Hence the MLE θ̂n solves

n∑
i=1

∂

∂θ
log fθ(Xi) =

n∑
i=1

Xi

θ
− 1− Xi

1− θ
=

n∑
i=1

Xi − θ
θ(1− θ)

= 0.

Solving for θ we obtain the solution θ̂n = X̄n, where X̄n is the sample mean.
We have also previously shown that ∂2

∂θ2
log fθ(x) = − x

θ2
− 1−x

(1−θ)2 < 0 which in turn implies θ̂
is indeed a point of maximum.

(b) Poisson(θ);

Solution. We have

fθ(x) =
θxe−θ

x!
∂

∂θ
log fθ(x) =

x

θ
− 1

∂2

∂θ2
log fθ(x) = − x

θ2

so the MLE solves
n∑

i=1

∂

∂θ
log fθ(Xi) =

n∑
i=1

(
Xi

θ
− 1) = 0

so that θ̂n = X̄n. The second derivative with respect to θ is again negative, so that this is a
point of maximum.

(c) Exponential(θ);

Solution. We have

log fθ(x) = log θ − θx
∂

∂θ
log fθ(x) =

1

θ
− x

∂2

∂θ2
log fθ(x) = − 1

θ2

so the MLE solves
n∑

i=1

∂

∂θ
log fθ(Xi) =

n∑
i=1

(
1

θ
− Xi) = 0
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and θ̂n = 1/X̄n. The second derivative with respect to θ is again negative, so that this is a
point of maximum.

7. For the distributions in 6(a-c), find Z such that
√
n(θ̂n − θ)→d Z .

Solution. We know from the asymptotic normality of the MLE that in each case
√
n(θ̂n − θ)→d N(0, I (θ)−1)

where I (θ) is the Fisher information for sample of n = 1 individuals. From the previous problem
sheet, we know

Bernoulli Poisson Exponential
I (θ) 1/θ(1− θ) 1/θ 1/θ2

I (θ)−1 θ(1− θ) θ θ2

We can also use the CLT directly to verify the distribution for the Bernoulli and Poisson distribution,
since the MLE is also the sample mean. For the exponential distribution, the CLT can be applied
in tandem with the delta method since the MLE is a differentiable function of the sample mean.

8. For the distributions in 6(a) and 6(b), find the MLE ν̂n of ν = g(θ) = Pθ(X1 = 0) and show that√
n(ν̂n − ν)→d Z . Find the distribution of Z in each case.

Solution. By invariance of the MLE, ν̂n = Pθ̂n(X1 = 0). For the Bernoulli distribution,

ν̂ = 1− θ̂

and
√
n(ν̂ − ν)→d N(0, θ(1− θ)) since ν̂ − ν = −(θ̂ − θ).

For the Poisson distribution,
ν̂ = e−θ̂

and
√
n(ν̂n − ν) =

√
n(e−θ̂n − e−θ)→d N(0, e−2θθ) by the delta method with g(t) = e−t .

9. Suppose that we wish to estimate θ based on a random sample X1, ... ,Xn of Bernoulli(θ) random
variables. However, we are only able to obtain a random sample (Yi ,Ri), ... , (Yn,Rn) where the Ri ’s
are iid Bernoulli(p0) for known p0 and Yi = RiXi for i = 1, ... , n. Derive the MLEs θ̂a, θ̂b and θ̂c for θ
based on

(a) The full data distribution of the Xi ’s;

Solution. See, e.g., problem 6(a).
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(b) The marginal distribution of the Yi ’s;

Solution. Recall from the previous problem sheet that

fθ(y) = [θp0]y (1− θp0)1−y

∂

∂θ
log fθ(y) =

y

θ
− p0

1− y

1− θp0
∂2

∂θ2
log fθ(y) = − y

θ2
− p20

1− y

(1− θp0)2

In(θ) = −nE
{
∂2

∂θ2
log fθ(Y )

}
=

np0
θ(1− θp0)

CRLBY =
θ(1− θp0)

np0

Hence, the MLE is the solution to
n∑

i=1

∂

∂θ
log fθ(Yi) =

n∑
i=1

Yi

θ
− p0

1− Yi

1− θp0
= 0

so that θ̂b = 1
np0

∑n
i=1 Yi . This is indeed a point of maximum since the second derivative is

negative.

(c) The joint distribution of the (Yi ,Ri)’s.

Solution. Recall from the previous problem sheet that

fθ(y , r) = pr0(1− p0)1−r{θy (1− θ)1−y}r

∂

∂θ
log fθ(y , r) = r

[
y

θ
− 1− y

1− θ

]
∂2

∂θ2
log fθ(y , r) = −r

[
y

θ2
+

1− y

(1− θ)2

]

In(θ) = −nE
{
∂2

∂θ2
log fθ(Y ,R)

}
=

np0
θ(1− θ)

CRLBY ,R =
θ(1− θ)

np0

Hence, the MLE is the solution to
n∑

i=1

∂

∂θ
log fθ(Yi ,Ri) =

n∑
i=1

Ri

[
Yi

θ
− 1− Yi

1− θ

]
= 0

so that θ̂c =
∑n

i=1 Yi/
∑n

i=1 Ri . This is indeed a point of maximum since the second derivative
is negative.

10. Let Tn and Un be estimators of θ such that
√
n(Tn − θ)→d N(0,σ2

T )
√
n(Un − θ)→d N(0,σ2

U) .
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The asymptotic relative efficiency of Tn with respect to Un is σ2
T/σ

2
U .

Find the asymptotic distributions of the MLEs in 8(b) and 8(c) and calculate the asymptotic relative
efficiency of θ̂b to θ̂c . Which of the MLEs do you prefer for estimating θ? Quantify the loss in efficiency
of your preferred estimator to θ̂a that is based on the (unobserved) Xi ’s. Explain.

Solution. Noting that the asymptotic variance of the MLE is the CRLB for n = 1 we use
calculations of the previous problem sheet below.
In particular, we have that

√
n(θ̂b − θ)→d N(0, θ(1− θp0)/p0)

and √
n(θ̂c − θ)→d N(0, θ(1− θ)/p0).

The asymptotic relative efficiency of θ̂b to θ̂c is

θ(1− θp0)/p0
θ(1− θ)/p0

=
1− θp0
1− θ

≥ 1

with equality iff p0 = 1 (so that Xi is observed with probability 1). Hence, we prefer the MLE θ̂c
based on the joint distribution of (Y ,R) on the basis of the asymptotic relative efficiency.
The asymptotic relative efficiency of θ̂c to the “complete data” MLE θ̂a is

θ(1− θ)/p0
θ(1− θ)

=
1

p0
≥ 1

with equality iff p0 = 1 (so that Ri = 1 and Xi is observed with probability 1).
Roughly speaking, a sample of (Yi ,Ri)s provides only a fraction of the information about θ that
direct observation of the Xis would. This fraction is precisely equal to p0.
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R lab: One-Step Estimators
This exercise is intended to reinforce concepts through use of the R software package.

In the notes, we saw that numerical methods can facilitate maximisation of the (log) likelihood. In this lab,
we illustrate how a simple one-step update to an initial estimator can lead to an accurate approximation of
the MLE. The step we take is based on Newton’s method.

Suppose that X1, ... ,Xn are iid with pdf fθ(x). Define

Un(θ) =
1

n

n∑
i=1

∂

∂θ
log fθ(Xi)

In(θ) = −1

n

n∑
i=1

∂2

∂θ2
log fθ(Xi)

The one-step estimator is defined as θ̂(1)n = Tn− In(Tn)−1Un(Tn), where Tn is an initial estimator of θ. If Tn

is an asymptotically normal estimator of θ, then
√
n(θ̂(1)n − θ)→d N(0, If (θ)−1).

You will prove this in the next problem sheet.

11. In this exercise, you will implement a simulation study to explore the behavior of the one-step estimator
for the location parameter θ of the Cauchy(θ) distribution with pdf

fθ(x) =
1

π [1 + (x − θ)2]
−∞ < x <∞, −∞ < θ <∞.

Note that fθ(x) is symmetric about θ. However, Eθ(X ) does not exist for the Cauchy distribution so
the sample mean would be an awful estimator here. Instead, we will use the sample median as an initial
estimator of θ.
After drawing X1, ... ,Xn i.i.d. Cauchy(θ), the sample median m̂n will be computed and stored as an
initial estimator. The values of Un(m̂n) and In(m̂n) are then computed and used to construct a one-step
estimator θ̂(1)n based on m̂n. This experiment will be independently replicated a total of 1000 times, so
that we can approximate the sampling distributions of m̂n and θ̂(1)n .
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The R code below implements the simulation study for n = 10 and θ = 0.

set.seed(50011)
result.m <- logical(length = 1000)
result.t1 <- logical(length = 1000)
n <- 10
theta <- 0
for(i in 1:1000){

X <- rcauchy(n, location = 0)
m <- median(X)
U <- NULL
I <- NULL
t1 <- m - U/I
result.m[i] <- sqrt(n)*(m-theta)
result.t1[i] <- sqrt(n)*(t1-theta)

}
hist(result.m, freq=FALSE)
hist(result.t1, freq=FALSE)

Note that the command set.seed(50011) ensures that you obtain the same results each time you
run this set of commands.
Type the above commands into an R script and then:

(a) Derive expressions for Un(m̂n) and In(m̂n) in terms of X and m. Use your expressions to replace
the appropriate NULL definitions in the for loop.

Solution. Taking derivatives of the log-likelihood we find

Un(θ) =
n∑

i=1

∂

∂θ
log fθ(Xi) =

n∑
i=1

2(Xi − θ)

1 + (Xi − θ)2

and
In(θ) = − ∂

∂θ
Un(θ) = −

n∑
i=1

2
1− (Xi − θ)2

[1 + (Xi − θ)2]2
.

In the code above, we can assign

U <- 2*sum((X-m)/(1+(X-m)^2))
I <- -2*sum((1-(X-m)^2)/(1+(X-m)^2)^2)

(b) Comment on why it is reasonable to store the values of
√
n(m̂n − θ) and

√
n(θ̂(1)n − θ) instead of

θ̂(1)n and m̂n.

Solution. We are concerned about convergence of the scaled and centered sequences. We
can always solve for the estimators based on the stored values.

(c) Explore how each histogram changes by increasing the value of n in this code to, e.g. n =
30, 50, 100, 200, 500, 1000. You might also compare other, say numerical, summaries (e.g. mean,
variance, quantiles).
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Solution. The histograms you generate should suggest that the median has a sampling
distribution with slightly higher spread. See below for examples for n = 50 and n = 1000.
In particular, for n = 1000, all of the bins for the one-step estimator are contained in the
interval [-4,4] whereas the histogram for the median extends beyond this interval.
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(d) Referring to your results from (c), comment on whether you prefer the sample median or one-step
estimator for estimating θ in this setting.

Solution. Using the histograms from the 1000 simulation experiments as approximations to
the sampling distribution, both histograms appear to be centered near zero for large sample
sizes. However, the one-step estimator is less variable in larger sample sizes. We would prefer
the one-step estimator based on these observations.

Challenge Do your simulations provide evidence that
√
n(θ̂(1)n −θ) convergences in distribution to a N(0, If (θ)−1)

random variable? Explain your answer using appropriate graphical and/or numerical evidence.

Solution. The histogram for n = 1000 may not look immediately like a normal distribution
(it is not quite symmetric or bell-shaped), but this may be due to Monte Carlo error. We can
also overlay the density of a normal distribution to help with our assessment.
See Figure 1 below for 9 independent replications of the experiment. Repeating the experiment
more than 1000 times (changing the definition of the loop and results vector) could be
necessary to get a reliable picture of the sampling distribution. In Figure 2, we see that by
increasing the number of replications of the experiment to 9000 there is much less variability
between each histogram (and each histogram fits fairly well to the N(0, I (θ)−1) density).
Simulation studies such as this one are common in statistical research. The Stochastic
Simulations module in Year 3 explores such ideas in greater detail.
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Figure 1: Nine histograms generated from independent runs with 1000 replications of the n = 1000
Cauchy one-step estimator.
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Figure 2: Nine histograms generated from independent runs with 9000 replications of the n = 1000
Cauchy one-step estimator.
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