Imperial College London

Problem Sheet 3

MATH50011 Statistical Modelling 1

Week 3

Lecture 5 (Asymptotic Normality)

- 1. Prove that if $X_1, X_2, ...$ converges in probability to X and h is a continuous function, then $h(X_1), h(X_2), ...$ converges in probability to h(X).
- 2. Suppose that X_1, \ldots, X_n are iid with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$. Define $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ and $S_n^2 = (n-1)^{-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$.
 - (a) Show that S_n^2 is a consistent estimator of σ^2 . Assume that all required higher order moments of X_i exist and are finite.
 - (b) Use the result in (a) to show that

$$T_n = \sqrt{n} \left(\frac{\bar{X}_n - \mu}{\sqrt{S_n^2}} \right) \rightarrow_d N(0, 1).$$

- Suppose that X₁,..., X_n are iid strictly positive random variables with E(log X_i) = μ and Var(log X_i) = σ². Use the delta method to derive the asymptotic normality of the geometric mean G_n = (Πⁿ_{i=1} X_i)^{1/n}.
- 4. Suppose that $X_1, ..., X_n$ are iid Uniform $(0, \theta)$ and define $T_n = \max(X_1, ..., X_n)$. Find a sequence $a_n = n^k$ for some k such that $a_n(T_n - \theta) \rightarrow_d Z$. What is the distribution of Z?
- 5. Does $\sqrt{n}(T_n \theta) \rightarrow_d N(0, \sigma^2)$ imply that T_n is consistent for θ ? If yes, prove this. Otherwise, provide a counterexample.

Lecture 6 (Maximum Likelihood)

- 6. Find the MLE for estimating θ based on a random sample $X_1, ..., X_n$ from the following distributions
 - (a) Bernoulli(θ); (see Example 8)
 - (b) Poisson(θ);
 - (c) Exponential(θ);
- 7. For the distributions in 6(a-c), find Z such that $\sqrt{n}(\hat{\theta}_n \theta) \rightarrow_d Z$.
- 8. For the distributions in 6(a) and 5(b), find the MLE $\hat{\nu}_n$ of $\nu = g(\theta) = P_{\theta}(X_1 = 0)$ and show that $\sqrt{n}(\hat{\nu}_n - \nu) \rightarrow_d Z$. Find the distribution of Z in each case.
- 9. Suppose that we wish to estimate θ based on a random sample X₁,..., X_n of Bernoulli(θ) random variables. However, we are only able to obtain a random sample (Y_i, R_i),..., (Y_n, R_n) where the R_i's are iid Bernoulli(p₀) for known p₀ and Y_i = R_iX_i for i = 1,..., n. Derive the MLEs θ_a, θ_b and θ_c for θ based on
 - (a) The full data distribution of the X_i 's;
 - (b) The marginal distribution of the Y_i 's;
 - (c) The joint distribution of the (Y_i, R_i) 's.
- 10. Let T_n and U_n be estimators of θ such that

$$\frac{\sqrt{n}(T_n - \theta) \rightarrow_d N(0, \sigma_T^2)}{\sqrt{n}(U_n - \theta) \rightarrow_d N(0, \sigma_U^2)}.$$

The asymptotic relative efficiency of T_n with respect to U_n is σ_T^2/σ_U^2 .

Find the asymptotic distributions of the MLEs in 9(b) and 9(c) and calculate the asymptotic relative efficiency of $\hat{\theta}_b$ to $\hat{\theta}_c$. Which of the MLEs do you prefer for estimating θ ? Quantify the loss in efficiency of your preferred estimator to $\hat{\theta}_a$ that is based on the (unobserved) X_i 's. Explain.

R lab: One-Step Estimators

This exercise is intended to reinforce concepts through use of the R software package.

In the notes, we saw that numerical methods can facilitate maximisation of the (log) likelihood. In this lab, we illustrate how a simple one-step update to an initial estimator can lead to an accurate approximation of the MLE. The step we take is based on Newton's method.

Suppose that X_1, \ldots, X_n are iid with pdf $f_{\theta}(x)$. Define

$$egin{aligned} U_n(heta) &= rac{1}{n}\sum_{i=1}^nrac{\partial}{\partial heta}\log f_ heta(X_i)\ I_n(heta) &= -rac{1}{n}\sum_{i=1}^nrac{\partial^2}{\partial heta^2}\log f_ heta(X_i) \end{aligned}$$

The one-step estimator is defined as $\hat{\theta}_n^{(1)} = T_n - I_n(T_n)^{-1}U_n(T_n)$, where T_n is an initial estimator of θ . If T_n is an asymptotically normal estimator of θ , then

$$\sqrt{n}(\hat{\theta}_n^{(1)}-\theta) \rightarrow_d N(0, I_f(\theta)^{-1}).$$

You will prove this in the next problem sheet.

11. In this exercise, you will implement a simulation study to explore the behavior of the one-step estimator for the location parameter θ of the Cauchy(θ) distribution with pdf

$$f_{ heta}(x) = rac{1}{\pi \left[1+(x- heta)
ight]^2} \quad -\infty < x < \infty, \ -\infty < heta < \infty.$$

Note that $f_{\theta}(x)$ is symmetric about θ . However, $E_{\theta}(X)$ does not exist for the Cauchy distribution so the sample mean would be an awful estimator here. Instead, we will use the sample median as an initial estimator of θ .

After drawing X_1, \ldots, X_n i.i.d. Cauchy(θ), the sample median \hat{m}_n will be computed and stored as an initial estimator. The values of $U_n(\hat{m}_n)$ and $I_n(\hat{m}_n)$ are then computed and used to construct a one-step estimator $\hat{\theta}_n^{(1)}$ based on \hat{m}_n . This experiment will be independently replicated a total of 1000 times, so that we can approximate the sampling distributions of \hat{m}_n and $\hat{\theta}_n^{(1)}$. The R code below implements the simulation study for n = 10 and $\theta = 0$.

```
set.seed(50011)
result.m <- logical(length = 1000)
result.t1 <- logical(length = 1000)</pre>
n <- 10
theta <- 0
for(i in 1:1000){
   X \leftarrow rcauchy(n, location = 0)
   m <- median(X)</pre>
   U <- NULL
   I <- NULL
   t1 <- m - U/I
   result.m[i] <- sqrt(n)*(m-theta)</pre>
   result.t1[i] <- sqrt(n)*(t1-theta)</pre>
}
hist(result.m, freq=FALSE)
hist(result.t1, freq=FALSE)
```

Note that the command set.seed(50011) ensures that you obtain the same results each time you run this set of commands.

Type the above commands into an R script and then:

- (a) Derive expressions for $U_n(\hat{m}_n)$ and $I_n(\hat{m}_n)$ in terms of X and m. Use your expressions to replace the appropriate NULL definitions in the for loop.
- (b) Comment on why it is reasonable to store the values of $\sqrt{n}(\hat{m}_n \theta)$ and $\sqrt{n}(\hat{\theta}_n^{(1)} \theta)$ instead of $\hat{\theta}_n^{(1)}$ and \hat{m}_n .
- (c) Explore how each histogram changes by increasing the value of n in this code to, e.g. n = 30, 50, 100, 200, 500, 1000. You might also compare other, say numerical, summaries (e.g. mean, variance, quantiles).
- (d) Referring to your results from (c), comment on whether you prefer the sample median or one-step estimator for estimating θ in this setting.
- **Challenge** Do your simulations provide evidence that $\sqrt{n}(\hat{\theta}_n^{(1)} \theta)$ convergences in distribution to a $N(0, I_f(\theta)^{-1})$ random variable? Explain your answer using appropriate graphical and/or numerical evidence.