
Problem Sheet 3
MATH50011

Statistical Modelling 1

Week 3

Lecture 5 (Asymptotic Normality)
1. Prove that if X1,X2, ... converges in probability to X and h is a continuous function,

then h(X1), h(X2), ... converges in probability to h(X ).

2. Suppose that X1, ... ,Xn are iid with E (Xi) = µ and Var(Xi) = σ2. Define X̄n =
n−1 ∑n

i=1 Xi and S2
n = (n − 1)−1 ∑n

i=1(Xi − X̄n)2.

(a) Show that S2
n is a consistent estimator of σ2. Assume that all required higher

order moments of Xi exist and are finite.
(b) Use the result in (a) to show that

Tn =
√
n

 X̄n − µ√
S2
n

→d N(0, 1) .

3. Suppose that X1, ... ,Xn are iid strictly positive random variables with E (logXi) = µ
and Var(logXi) = σ2. Use the delta method to derive the asymptotic normality of
the geometric mean Gn = (

∏n
i=1 Xi)

1/n.

4. Suppose that X1, ... ,Xn are iid Uniform(0, θ) and define Tn = max(X1, ... ,Xn).
Find a sequence an = nk for some k such that an(Tn − θ) →d Z . What is the
distribution of Z?

5. Does
√
n(Tn−θ)→d N(0,σ2) imply that Tn is consistent for θ? If yes, prove this.

Otherwise, provide a counterexample.
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Lecture 6 (Maximum Likelihood)
6. Find the MLE for estimating θ based on a random sample X1, ... ,Xn from the

following distributions

(a) Bernoulli(θ); (see Example 8)
(b) Poisson(θ);
(c) Exponential(θ);

7. For the distributions in 6(a-c), find Z such that
√
n(θ̂n − θ)→d Z .

8. For the distributions in 6(a) and 5(b), find the MLE ν̂n of ν = g(θ) = Pθ(X1 = 0)
and show that

√
n(ν̂n − ν)→d Z . Find the distribution of Z in each case.

9. Suppose that we wish to estimate θ based on a random sample X1, ... ,Xn of
Bernoulli(θ) random variables. However, we are only able to obtain a random
sample (Yi ,Ri), ... , (Yn,Rn) where the Ri ’s are iid Bernoulli(p0) for known p0 and
Yi = RiXi for i = 1, ... , n. Derive the MLEs θ̂a, θ̂b and θ̂c for θ based on

(a) The full data distribution of the Xi ’s;
(b) The marginal distribution of the Yi ’s;
(c) The joint distribution of the (Yi ,Ri)’s.

10. Let Tn and Un be estimators of θ such that
√
n(Tn − θ)→d N(0,σ2

T )
√
n(Un − θ)→d N(0,σ2

U) .

The asymptotic relative efficiency of Tn with respect to Un is σ2
T/σ

2
U .

Find the asymptotic distributions of the MLEs in 9(b) and 9(c) and calculate the
asymptotic relative efficiency of θ̂b to θ̂c . Which of the MLEs do you prefer for
estimating θ? Quantify the loss in efficiency of your preferred estimator to θ̂a that
is based on the (unobserved) Xi ’s. Explain.
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R lab: One-Step Estimators
This exercise is intended to reinforce concepts through use of the R software package.

In the notes, we saw that numerical methods can facilitate maximisation of the (log)
likelihood. In this lab, we illustrate how a simple one-step update to an initial estimator
can lead to an accurate approximation of the MLE. The step we take is based on Newton’s
method.

Suppose that X1, ... ,Xn are iid with pdf fθ(x). Define

Un(θ) =
1

n

n∑
i=1

∂

∂θ
log fθ(Xi)

In(θ) = −1

n

n∑
i=1

∂2

∂θ2
log fθ(Xi)

The one-step estimator is defined as θ̂(1)n = Tn − In(Tn)−1Un(Tn), where Tn is an initial
estimator of θ. If Tn is an asymptotically normal estimator of θ, then

√
n(θ̂(1)n − θ)→d N(0, If (θ)−1).

You will prove this in the next problem sheet.

11. In this exercise, you will implement a simulation study to explore the behavior of
the one-step estimator for the location parameter θ of the Cauchy(θ) distribution
with pdf

fθ(x) =
1

π [1 + (x − θ)]2
−∞ < x <∞, −∞ < θ <∞.

Note that fθ(x) is symmetric about θ. However, Eθ(X ) does not exist for the Cauchy
distribution so the sample mean would be an awful estimator here. Instead, we will
use the sample median as an initial estimator of θ.
After drawing X1, ... ,Xn i.i.d. Cauchy(θ), the sample median m̂n will be computed
and stored as an initial estimator. The values of Un(m̂n) and In(m̂n) are then
computed and used to construct a one-step estimator θ̂(1)n based on m̂n. This
experiment will be independently replicated a total of 1000 times, so that we can
approximate the sampling distributions of m̂n and θ̂(1)n .
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The R code below implements the simulation study for n = 10 and θ = 0.

set.seed(50011)
result.m <- logical(length = 1000)
result.t1 <- logical(length = 1000)
n <- 10
theta <- 0
for(i in 1:1000){

X <- rcauchy(n, location = 0)
m <- median(X)
U <- NULL
I <- NULL
t1 <- m - U/I
result.m[i] <- sqrt(n)*(m-theta)
result.t1[i] <- sqrt(n)*(t1-theta)

}
hist(result.m, freq=FALSE)
hist(result.t1, freq=FALSE)

Note that the command set.seed(50011) ensures that you obtain the same
results each time you run this set of commands.
Type the above commands into an R script and then:

(a) Derive expressions for Un(m̂n) and In(m̂n) in terms of X and m. Use your
expressions to replace the appropriate NULL definitions in the for loop.

(b) Comment on why it is reasonable to store the values of
√
n(m̂n − θ) and√

n(θ̂(1)n − θ) instead of θ̂(1)n and m̂n.
(c) Explore how each histogram changes by increasing the value of n in this code

to, e.g. n = 30, 50, 100, 200, 500, 1000. You might also compare other, say
numerical, summaries (e.g. mean, variance, quantiles).

(d) Referring to your results from (c), comment on whether you prefer the sample
median or one-step estimator for estimating θ in this setting.

Challenge Do your simulations provide evidence that
√
n(θ̂(1)n − θ) convergences in dis-

tribution to a N(0, If (θ)−1) random variable? Explain your answer using ap-
propriate graphical and/or numerical evidence.
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