Imperial College London

Problem Sheet 3

MATH50011 Statistical Modelling 1

Week 3

Lecture 5 (Asymptotic Normality)

- 1. Prove that if $X_1, X_2, ...$ converges in probability to X and h is a continuous function, then $h(X_1)$, $h(X_2)$, ... converges in probability to $h(X)$.
- 2. Suppose that $X_1, ..., X_n$ are iid with $E(X_i) = \mu$ and $\textsf{Var}(X_i) = \sigma^2$. Define $\bar{X}_n =$ $n^{-1} \sum_{i=1}^{n} X_i$ and $S_n^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$.
	- (a) Show that S_n^2 is a consistent estimator of σ^2 . Assume that all required higher order moments of X_i exist and are finite.
	- (b) Use the result in (a) to show that

$$
\mathcal{T}_n = \sqrt{n} \left(\frac{\bar{X}_n - \mu}{\sqrt{S_n^2}} \right) \rightarrow_d N(0, 1).
$$

- 3. Suppose that $X_1, ..., X_n$ are iid strictly positive random variables with $E(\log X_i) = \mu$ and $\mathsf{Var}(\log X_i) = \sigma^2$. Use the delta method to derive the asymptotic normality of the geometric mean $G_n = \left(\prod_{i=1}^n X_i\right)^{1/n}$.
- 4. Suppose that $X_1, ..., X_n$ are iid Uniform $(0, \theta)$ and define $T_n = \max(X_1, ..., X_n)$. Find a sequence $a_n = n^k$ for some k such that $a_n(T_n - \theta) \rightarrow_d Z$. What is the distribution of Z?
- 5. Does $\sqrt{n}(\overline{T}_n \theta) \rightarrow_d N(0, \sigma^2)$ imply that \overline{T}_n is consistent for θ ? If yes, prove this. Otherwise, provide a counterexample.

Lecture 6 (Maximum Likelihood)

- 6. Find the MLE for estimating θ based on a random sample X_1, \ldots, X_n from the following distributions
	- (a) Bernoulli(*θ*); (see Example 8)
	- (b) Poisson(*θ*);
	- (c) Exponential(*θ*);
- 7. For the distributions in 6(a-c), find *Z* such that $\sqrt{n}(\hat{\theta}_n \theta) \rightarrow_d Z$.
- 8. For the distributions in 6(a) and 5(b), find the MLE $\hat{\nu}_n$ of $\nu = g(\theta) = P_\theta(X_1 = 0)$ and show that $\sqrt{n}(\hat{\nu}_n - \nu) \rightarrow_d Z$. Find the distribution of Z in each case.
- 9. Suppose that we wish to estimate θ based on a random sample $X_1, ..., X_n$ of Bernoulli(*θ*) random variables. However, we are only able to obtain a random sample $(\,Y_i,\,R_i),\,\ldots\,,(\,Y_n,\,R_n)\,$ where the $\,R_i$'s are iid Bernoulli $(\,p_0)\,$ for known $\,p_0\,$ and $Y_i = R_i X_i$ for $i = 1, ..., n$. Derive the MLEs $\hat{\theta}_a$, $\hat{\theta}_b$ and $\hat{\theta}_c$ for θ based on
	- (a) The full data distribution of the X_i 's;
	- (b) The marginal distribution of the Y_i 's;
	- (c) The joint distribution of the (Y_i, R_i) 's.
- 10. Let T_n and U_n be estimators of θ such that

$$
\sqrt{n}(T_n - \theta) \rightarrow_d N(0, \sigma_T^2)
$$

$$
\sqrt{n}(U_n - \theta) \rightarrow_d N(0, \sigma_U^2).
$$

The *asymptotic relative efficiency* of T_n with respect to U_n is σ_T^2/σ_U^2 .

Find the asymptotic distributions of the MLEs in $9(b)$ and $9(c)$ and calculate the asymptotic relative efficiency of $\hat{\theta}_b$ to $\hat{\theta}_c$. Which of the MLEs do you prefer for estimating θ ? Quantify the loss in efficiency of your preferred estimator to $\hat{\theta}_a$ that is based on the (unobserved) X_i 's. Explain.

R lab: One-Step Estimators

This exercise is intended to reinforce concepts through use of the *R* software package.

In the notes, we saw that numerical methods can facilitate maximisation of the (\log) likelihood. In this lab, we illustrate how a simple one-step update to an initial estimator can lead to an accurate approximation of the MLE. The step we take is based on Newton's method.

Suppose that X_1, \ldots, X_n are iid with pdf $f_\theta(x)$. Define

$$
U_n(\theta) = \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial \theta} \log f_{\theta}(X_i)
$$

$$
I_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \frac{\partial^2}{\partial \theta^2} \log f_{\theta}(X_i)
$$

The one-step estimator is defined as $\widehat{\theta}_n^{(1)} = \mathcal{T}_n - I_n(\mathcal{T}_n)^{-1}U_n(\mathcal{T}_n)$, where \mathcal{T}_n is an initial estimator of θ . If T_n is an asymptotically normal estimator of θ , then

$$
\sqrt{n}(\hat{\theta}_n^{(1)} - \theta) \rightarrow_d N(0, I_f(\theta)^{-1}).
$$

You will prove this in the next problem sheet.

11. In this exercise, you will implement a simulation study to explore the behavior of the one-step estimator for the location parameter θ of the Cauchy(θ) distribution with pdf

$$
f_{\theta}(x)=\frac{1}{\pi\,[1+(x-\theta)]^2} \quad -\infty
$$

Note that $f_\theta(x)$ is symmetric about θ . However, $E_\theta(X)$ does not exist for the Cauchy distribution so the sample mean would be an awful estimator here. Instead, we will use the sample median as an initial estimator of *θ*.

After drawing $X_1, ..., X_n$ i.i.d. Cauchy(θ), the sample median \hat{m}_n will be computed and stored as an initial estimator. The values of $U_n(\hat{m}_n)$ and $I_n(\hat{m}_n)$ are then computed and used to construct a one-step estimator $\hat{\theta}_n^{(1)}$ based on \hat{m}_n . This experiment will be independently replicated a total of 1000 times, so that we can approximate the sampling distributions of \hat{m}_n and $\hat{\theta}_n^{(1)}$.

The R code below implements the simulation study for $n = 10$ and $\theta = 0$.

```
set.seed(50011)
result.m <- logical(length = 1000)
result.t1 \leftarrow logical(length = 1000)
n <- 10
theta <-0for(i in 1:1000){
   X \leftarrow \text{rcauchy}(n, \text{location} = 0)m \leftarrow \text{median}(X)U <- NULL
   I \leftarrow NULLt1 <- m - U/Iresult.m[i] \leftarrow sqrt(n)*(m-theta)
   result.t1[i] <- sqrt(n)*(t1-theta)}
hist(result.m, freq=FALSE)
hist(result.t1, freq=FALSE)
```
Note that the command set.seed(50011) ensures that you obtain the same results each time you run this set of commands.

Type the above commands into an R script and then:

- (a) Derive expressions for $U_n(\hat{m}_n)$ and $I_n(\hat{m}_n)$ in terms of X and m. Use your expressions to replace the appropriate NULL definitions in the for loop.
- (b) Comment on why it is reasonable to store the values of $\sqrt{n}(\hat{m}_n \theta)$ and $\overline{n}(\hat{\theta}_{n}^{(1)} - \theta)$ instead of $\hat{\theta}_{n}^{(1)}$ and \hat{m}_{n} .
- (c) Explore how each histogram changes by increasing the value of n in this code to, e.g. $n = 30, 50, 100, 200, 500, 1000$. You might also compare other, say numerical, summaries (e.g. mean, variance, quantiles).
- (d) Referring to your results from (c), comment on whether you prefer the sample median or one-step estimator for estimating *θ* in this setting.
- **Challenge** Do your simulations provide evidence that $\sqrt{n}(\hat{\theta}_n^{(1)} \theta)$ convergences in distribution to a $\mathcal{N}(0,I_f(\theta)^{-1})$ random variable? Explain your answer using appropriate graphical and/or numerical evidence.