
Problem Sheet 4 Solutions
MATH50011

Statistical Modelling 1

Week 4

Lecture 7 (Proof of MLE Consistency and Asymptotic Normality)
1. In the lecture notes, we saw that MLEs are asymptotically normal and sketched a proof of this (subject

to regularity conditions). Many other estimators are also the solutions to estimating equations.
Let X1, ... ,Xn be i.i.d. real-valued random variables and suppose that we wish to estimate the value
of θ0 ∈ R defined as the unique E [ψ(X1, θ)] = 0 for a twice continuously differentiable function
ψ : R2 → R. Define θ̂n as the unique solution to ∑n

i=1 ψ(Xi , θ) = 0.
Sketch a proof that

√
n(θ̂n − θ0)→d N(0,σ2(θ0)) and find an expression for σ2(θ0). At what steps in

your proof sketch do you need additional assumptions required to justify an operation?

Solution. We largely follow the steps for the proof of asymptotic normality of the MLE. We begin
with a first-order Taylor expansion/mean value theorem so that

0 =
n∑

i=1

ψ(Xi , θ̂n) =
n∑

i=1

ψ(Xi , θ0) +
n∑

i=1

∂

∂θ
ψ(Xi , θ)

∣∣∣∣∣
θ=θ̃n

(θ̂n − θ0)

for some θ̃n between θ̂n and θ0. Let

Ψ̇(θ̃n) =
1

n

n∑
i=1

∂

∂θ
ψ(Xi , θ)

∣∣∣∣∣
θ=θ̃n

.

After some rearranging, we have that

−Ψ̇(θ̃n)(θ̂n − θ0) =
1

n

n∑
i=1

ψ(Xi , θ0).

The RHS above has mean zero by assumption. Provided

Var{ψ(Xi , θ0)} = E{ψ(Xi , θ0)2} = A(θ0)

exists and is finite, we can apply the central limit theorem to find

−Ψ̇(θ̃n)
√
n(θ̂n − θ0) =

1√
n

n∑
i=1

ψ(Xi , θ0)→d N(0,A(θ0)).
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If we have that −Ψ̇(θ̃n) →p B(θ0) = E
{

∂
∂θ
ψ(Xi , θ)

∣∣∣
θ=θ0

}
where 0 < B(θ0) < ∞, then by

Slutsky’s lemma
−Ψ̇(θ̃n)

B(θ0)
B(θ0)

√
n(θ̂n − θ0)→d N(0,A(θ0)).

Hence, we also have √
n(θ̂n − θ0)→d N(0,B−2(θ0)A(θ0))

so that σ2(θ0) = B−2(θ0)A(θ0).
Note that:

• A 2nd-order Taylor expansion could also be used at the beginning of the proof, which then
requires that the higher-order term converges to zero in probability.

• The assumption that −Ψ̇(θ̃n) converges in probability could be stated in similar equivalent
ways (such as we did for the second partial derivatives of the log-likelihood in the lecture
notes).

• For a regular parametric model, with ψ(x ; θ) = ∂
∂θ

log f (x ; θ) we would have A(θ0) = B(θ0) =
If (θ0) so that σ2(θ0) = If (θ0)−1 as expected.

2. In the notation of Problem Sheet 3.10 (the R lab), define the one-step estimator

θ̂(1)
n = Tn + In(Tn)−1Un(Tn).

Suppose that Tn is asymptotically normal and that In(Tn) is consistent for the Fisher information If (θ).
Show that √

n(θ̂(1)
n − θ0)→d N(0, If (θ0)−1).

Hint: use a first-order Taylor expansion of Un(θ).

Solution. Recall that

Un(θ) =
1

n

n∑
i=1

∂

∂θ
log fθ(Xi)

In(θ) = −1

n

n∑
i=1

∂2

∂θ2
log fθ(Xi)

Using the Taylor expansion with mean value remainder we have

Un(θ0) = Un(Tn) +
∂

∂θ
Un(θ)

∣∣∣∣∣
θ=T̃n

(θ0 − Tn) = Un(Tn)− In(T̃n)(θ0 − Tn)

for some T̃n between θ0 and Tn. Rearranging this, we have

Un(θ0) =In(T̃n)Tn + Un(Tn)− In(T̃n)θ0

=In(Tn)Tn + Un(Tn)− In(Tn)θ0

+ [In(T̃n)− In(Tn)](Tn − θ0).

Moreover, we can then express this as
√
n{Tn + In(Tn)−1Un(Tn)− θ0} = In(Tn)−1

√
nUn(θ0)− In(Tn)−1[In(T̃n)− In(Tn)]

√
n(Tn − θ0).
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Noting that In(Tn)−1 →p If (θ0)−1,
√
nUn(θ0)→d N(0, If (θ0)), In(T̃n)−In(Tn)→p 0, and

√
n(Tn−

θ0) → N(0,σ2(θ0)) for some σ2(θ0), we have the RHS converges to N(0, If (θ0)−1) by Slutsky’s
lemma. Hence, we have

√
n(θ̂(1)

n − θ0) =
√
n{Tn + In(Tn)−1Un(Tn)− θ0} →d N(0, If (θ0)−1).

Lecture 8 (Confidence Intervals)
3. Dr. Jetson asked a random sample of 10000 UK households whether or not they own a robotic vacuum

cleaner. She finds that 1300 of the households own a robotic vacuum and the other 8700 do not. Based
on this data, she estimates that 13% of UK households own a robotic vacuum with a 95% confidence
interval of 12.3% to 13.7%. Dr. Jetson tells you that

“There is a 95% probability that between 12.3% and 13.7% of UK households own a robotic
vacuum cleaner.”

What is the main problem with the above statement? Provide a correct description of the confidence
interval suitable for a non-statistician.

Solution. The main problem with Dr. Jetson’s statement is that it tries to make a probability
statement based on the fixed interval and fixed proportion of UK households owning a robotic
vacuum cleaner. The 0.95 probability refers to a property of the random confidence intervals. If Dr.
Jetson repeated her survey many times and constructed 95% confidence intervals for the proportion
each time, approximately 95% of the resulting intervals would contain the true proportion.

4. A random sample of 11 components in a factory is collected. The length in cm of each component is
recorded below

3.26 1.76 1.63 1.79 2.43 0.88 0.99 1.12 4.56 2.11 2.73

Assume that the lengths are normally distributed with mean µ and variance σ2. Construct a 99%
confidence interval for µ.

Solution. As pivotal quantity we use x̄−µ
s/
√
n
which is tn−1 distributed, where n = 11, where x̄ and s2

are the observed sample mean and variance. Using a table (or a calculator/computer), this implies

P(| x̄ − µ
s2/
√
n
| ≤ k) = 0.99,

where k = 3.169. Hence, a 99% confidence interval for µ is (x̄−s/
√
nk , x̄+s/

√
nk) = (1.07, 3.16)

(using x̄ = 2.114545 and s2 = 1.201427).

5. Let Y1, ... ,Yn be i.i.d. Exp(λ), where λ > 0 is unknown.

(a) Show that 2λ
∑n

i=1 Yi has a χ2-distribution with 2n degrees of freedom;
(b) Derive a (1− α)× 100% confidence interval for λ;
(c) Using the following observations, compute a 95% confidence interval for λ.
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1.04 1.39 0.1 2.04 4.73 0.89 0.51 0.89 0.66 0.93
(Note: for X ∼ χ2

20, P(X ≤ 9.59) = 0.025 and P(X ≤ 34.17) = 0.975.)

Solution. Note that 2λYi is Exp(1
2
), which is χ2

2. Since the Yi ’s are independent, 2λ
∑

Yi is the
sum of n independent χ2

2 random variables and is therefore distributed as χ2
2n. Hence,

P(c1 < 2λ
∑

Yi < c2) = 1− α,

where 0 < α < 1 and where P(X < c1) = P(X > c2) = α
2
and X ∼ χ2

2n. A 1 − α confidence
interval for λ is thus given by

(
c1

2
∑

yi
, c2

2
∑

yi

)
.

Hence, the confidence interval for the data based on ∑Yi is: (0.36, 1.3)

6. Find an approximate 95% confidence interval for the odds that a randomly selected UK household owns
a robotic vacuum based on the data in Exercise 3. (Hint: use the delta method.)

Solution. A point estimate for the odds will be 0.13/0.87 = 0.1494253.
Using the delta method, we know that with Odds(p) = p/(1− p) and Odds ′(p) = 1/(1− p)2 the
standard error for the odds will be√√√√ p̂(1− p̂)

n(1− p̂)4
=

√√√√ 0.13(1− 0.13)

10000(1− 0.13)4
= 0.004763577

which leads to an approximate 95% confidence interval with limits

0.1494253± 1.96× 0.004763577

or (0.1400887, 0.1587619).
Alternatively, since the odds are an invertible function of the probability, we can apply p/(1 − p)
to the limits of the original interval and still have a valid 95% confidence interval. This leads to
the very similar interval estimate

(0.1402509, 0.1587486)

7. Use the Bonferroni correction to find a 95% confidence region for (µ,σ2) based on a random sample
X1, ... ,Xn from a N(µ,σ2) distribution. Apply your result to construct a 95% confidence region for
(µ,σ2) based on the data in Exercise 4.

Solution. We will make use of example 27 from the lecture notes for a normal random sample
with both µ and σ unknown. To obtain a 95% confidence region for (µ,σ2) with the Bonferroni
correction, we will construct two-sided (1-0.05/2)100% = 97.5% confidence intervals for each
parameter.
Let X̄ and S2 be the sample mean and variance of the Xis.
The 97.5% confidence interval for µ has the form

X̄ ± tn−1,0.9875
S√
n

=⇒
(
X̄ − tn−1,0.9875

S√
n

, X̄ + tn−1,0.9875
S√
n

)

4



for tn−1,0.9875 the value such that the P(Tn−1 ≤ tn−1,0.9875) = 0.9875 = 1− 0.025/2.
The 97.5% confidence interval for σ2 has the form(

(n − 1)S2

c2
,

(n − 1)S2

c1

)

where P(χ2
n−1 ≤ c1) = 0.0125 and P(χ2

n−1 ≤ c2) = 0.9875.
We have, by the Bonferroni correction, that(

X̄ − tn−1,0.9875
S√
n

, X̄ + tn−1,0.9875
S√
n

)
×
(

(n − 1)S2

c2
,

(n − 1)S2

c1

)

is a 95% confidence region for (µ,σ2).
We use x̄ = 2.114545, s2 = 1.201427, n = 11 to find that t10,0.9875 = 2.633767, c1 = 2.707213,
and c2 = 22.55825. This results in the 95% confidence region (simultaneous confidence intervals)

(1.2441242.984967)× (0.5325889, 4.4378752) ≈ (1.2, 3.0)× (0.5, 4.4).
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R lab: The Bootstrap
This exercise introduces concepts through use of the R software package.

Let Tn be an asymptotically normal estimator of θ based on a random sample Y1, ... ,Yn. We now consider
a flexible method called the bootstrap that allows us to approximate the sampling distribution of Tn using
observations y1, ... , yn.

The bootstrap sampling distribution can be used to construct confidence intervals for θ by either:

i. Computing SE(Tn) with respect to the bootstrap sampling distribution and using the formula Tn ±
cα/2 SE(Tn) from the notes;

ii. Computing the α/2 and 1− α/2 quantiles of the bootstrap sampling distribution.

This procedure is widely applicable, but is most useful for estimators where it is difficult to obtain a closed-form
expression for SE(Tn).

In R, the code below shows how we usually compute ȳ and estimate its standard error based on 4 data points:
2, 4, 9, and 12.

y <- c(2,4,9,12)
ybar <- mean(y)
se.ybar <- sqrt(var(y)/4)

Running the above code, we find that the standard error is about 2.29.

The bootstrap sampling distribution of Ȳ is obtained by resampling the data points with replacement and
computing Ȳ based on the resampled data. There are 4 data points, so there are 44 = 256 equally likely
resamples. We can use R to obtain all 256 values in the bootstrap sampling distribution as follows:

# All 4^4 = 256 possible resamples with replacement
y.star <- expand.grid(y,y,y,y)

# All 256 sample means based on resampling w/replacement
ybar.star <- apply(y.star, 1, mean)

# The standard error based on this is
se.ybar.star <- sqrt(var(ybar.star))

From the above, we find that the bootstrap standard error is about 1.98.

It is a good idea to also visualise the bootstrap distribution of Ȳ . This can be achieve with hist(ybar.star).
For large sample sizes, we would expect the bootstrap sampling distribution to look approximately normal.
The normal approximation for n = 4 seems to be less than ideal.

The number of bootstrap resamples nn grows too quickly to be reasonable for the average statistician. Instead,
we usually approximate the bootstrap sampling distribution by drawing a large number of random samples as
follows.

set.seed(50011)

ybar.boot <- numeric(length = 10000)
for(i in 1:10000){
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y.boot <- sample(y, size = 4, replace = TRUE)
ybar.boot[i] <- mean(y.boot)
}
se.ybar.boot <- sqrt(var(ybar.boot))

From the above, we find that the bootstrap standard error is about 1.99. This is nearly the same as the value
obtained by enumerating all 256 samples.

8. Using the code examples above:

(a) Construct three approximate 95% confidence intervals for the mean µ based on the formula Tn±
cα/2 SE(Tn) where the standard error is based on se.ybar, se.ybar.star, and se.ybar.boot.

(b) Construct two additional approximate 95% confidence intervals for the mean with limits define
by the 2.5% and 97.5% percentiles of ybar.star and ybar.boot. (Hint: use the quantile()
function.)

(c) Compare the similarities/differences in the confidence intervals you constructed in parts (a) and
(b).

(d) Replace the data y in your code with a random sample of n = 30 standard exponential random
variables: y <- rexp(n=30). Based on your previous code, construct an approximate 95% con-
fidence interval for the mean based on a normal approximation. Construct two different bootstrap
95% confidence intervals for the mean based on 10000 resamples. (Note: you are not being asked
to enumerate all 3030 resamples.)

Solution.

(a) We ran the following additional code in R to generate the 95% confidence intervals:

> ybar +c(-1,1)* 1.96*se.ybar
[1] 2.267995 11.232005
> ybar +c(-1,1)* 1.96*se.ybar.star
[1] 2.860867 10.639133
> ybar +c(-1,1)* 1.96*se.ybar.boot
[1] 2.848146 10.651854

So the three intervals are, to two decimals,

(2.27, 11.23), (2.86, 10.64), and (2.85, 10.65).

(b) We use the following code to generate the 95% confidence intervals based on the percentiles:

> quantile(ybar.star, c(0.025,0.975))
2.5% 97.5%
3.0 10.5
> quantile(ybar.boot, c(0.025,0.975))
2.5% 97.5%
3.0 10.5

So the two intervals are both (3.0, 10.5) using this method.
(c) The interval based on the usual standard error estimate s/

√
n is wider than the bootstrap

confidence intervals. The results of taking 10000 resamples do not differ greatly from enu-
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merating the full sampling distribution. The percentile-based bootstrap confidence intervals
result in the narrowest 95% confidence intervals in this example.

(d) When we replace the original data with the n = 30 random samples from the exponential
distribution, we run the following code:

y <- rexp(n=30)
ybar <- mean(y)
se.ybar <- sqrt(var(y)/30)

# The bootstrap using Monte Carlo sampling
set.seed(50011)

ybar.boot <- numeric(length = 10000)
for(i in 1:10000){
y.boot <- sample(y, size = 30, replace = TRUE)
ybar.boot[i] <- mean(y.boot)
}
se.ybar.boot <- sqrt(var(ybar.boot))

# Confidence intervals using se.ybar, se.ybar.boot
# c_{\alpha/2} is approx 1.96
ybar +c(-1,1)* 1.96*se.ybar
ybar +c(-1,1)* 1.96*se.ybar.boot

# Confidence intervals using quantiles of ybar.boot
quantile(ybar.boot, c(0.025,0.975))

Note that your results may differ slightly depending on whether you reset your random seed.
We obtain a 95% confidence interval of (0.3770655, 0.9975993) using the normal approxi-
mation, (0.3793849 0.9952799) using the bootstrap standard error, and (0.418570 1.031513)
using the percentile method. Here, the first two intervals are fairly similar. The percentile-
based bootstrap interval is shifted upward relative to the other two intervals. This may
be because the percentiles are not exactly symmetric for our bootstrap distribution. The
histogram of the resamples contained in ybar.boot supports this.
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Histogram of ybar.boot
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