Problem Sheet 5 Solutions

MATH50011 Statistical Modelling 1

Week 5

Lecture 9 (Hypothesis Testing)

1. A clinical trial is conducted to establish whether treatment A has a different effect on systolic blood pressure than treatment B. The treatment effect will be measured by comparing the mean of a group receiving A and a group receiving B. Write a few sentences suitable for a non-statistician (better yet, a non-mathematician!) explaining what is meant by the terms type I error and type II error in this context.

Solution. Here, a "different effect" most likely coincides with testing H_0 : $\mu_A = \mu_B$ against H_1 : $\mu_A \neq \mu_B$ where μ_A and μ_B are the true mean SBP for each group.

A type I error would mean that we reject H_0 when we should not have. In this context we can tell a non-statistician that this corresponds to deciding erroneously to claim treatment B has an effect on SBP different than treatment A.

A type II error means that we do not reject H_0 when we should have. This would mean that we act as if there were no difference between treatment A and B even though there is a true difference.

Note that in applications we can never be certain that we have or have not made either of these errors (or a correct decision), since they are defined with respect to the unknown parameters.

2. In the results of a study, you read the following sentence:

"Since $p < 0.05$, there is a less than 5% chance that the null hypothesis is true."

Write an explanation of why this statement is false. Give a correct interpretation of a p-value suitable for a non-statistician.

Solution. This statement is wrong because a p-value is not a probability statement about the null hypothesis. Rather, the p-value is a statement about observing the data when the null hypothesis is true. A correct interpretation would be a statement such as, "If the null hypothesis is true, the probability of observing a test statistic at least as extreme as this in repeated sampling is less than 5%."

3. The mean level of prothrombin in the general population is known to be 22.0 mg/100 ml of plasma. A sample of 30 patients showing vitamin K deficiency has a mean prothrombin level of 19.5 mg/100ml and standard deviation 4 mg/100ml of plasma.

(a) Is the mean prothrombin level in patients with vitamin K deficiency different from that in the general population? Set up a null and alternative hypothesis that addresses this question.

Solution. Here, we have H_0 : $\mu = 22.0$ mg/100 ml of plasma vs H_1 : $\mu \neq 22.0$ mg/100 ml of plasma.

(b) Find the critical values for the sample mean to test the hypotheses in (a) using $\alpha = .05$. Use these critical values to test the hypotheses in (a); state your statistical and scientific conclusions. Clearly state the test statistic and distribution you are using.

Solution. We do not assume that the individual prothrombin levels are normally distributed in the problem statement. However, we can still use a normal approximation based on the central limit theorem:

$$
\bar{X} \sim N(\mu, \sigma^2/n) = N(22.0, 4^2/30)
$$

This means that, approximately,

$$
\frac{\bar{X}-22.0}{4/\sqrt{30}}\sim \mathcal{N}(0,1)
$$

For a two-sided test, as in (a), we have that the critical values based on the normal distribution are $\pm z_{0.975} \approx \pm 1.96$. The test is equivalent to rejecting H₀ if 22.0 is not contained in the 95% confidence interval with upper/lower confidence limits given by

$$
\bar{x} \pm 1.96 \times 4/\sqrt{30}.
$$

For the given data, we have $\bar{x} = 19.5$ mg/100ml. This leads to the 95% confidence interval

 $19.5 \pm 1.96 \times 4/$ √ 30 \implies 95% CI: 18.1 mg/100ml to 20.9 mg/100ml

which does not contain 22.0 mg/100ml. Hence, we reject H_0 at the $\alpha = 0.05$ level. We conclude based on this evidence that mean prothrombin level in patients with vitamin K deficiency differs from that in the general population.

(c) Compute the p-value and use that to test the hypotheses in (a) using $\alpha = .05$. State both your statistical and scientific conclusions.

Solution. The two-sided test has a p-value of

$$
p = 2P\left(Z > \left|\frac{\bar{x} - 22.0}{4/\sqrt{30}}\right|\right) = 0.000618735
$$

where $Z \sim N(0, 1)$. We find that $p = 0.0006$, and reject H_0 at the $\alpha = 0.05$ level. We conclude based on this evidence that mean prothrombin level in patients with vitamin K deficiency differs from that in the general population.

4. Suppose that, in the general population, birth weights are approximately normally distributed with a mean weight of 3200g and a standard deviation of 400g. A sample of 25 babies born to teenage mothers has an average birth weight of 2980g.

(a) You would like to use this sample to determine if the average birth weight of babies born to teenage mothers is different from the general population. Set up a null and alternative hypothesis that addresses this question and carry out a hypothesis test using $\alpha = .05$. Be sure to state both your statistical and scientific conclusions.

Solution. Here, H_0 : $\mu = 3200$ g and H_1 : $\mu \neq 3200$ g. We have that the two-sided test has a p-value of

$$
p = 2P\left(Z > \left|\frac{2980 - 3200}{400/\sqrt{25}}\right|\right) = 2P\left(Z > 2.75\right) = 0.005959526
$$

where $Z \sim N(0, 1)$. We reject the null hypothesis at the $\alpha = 0.05$ level. This means that based on these data, we find evidence that birth weight of babies born to teenage mothers is different from the general population.

(b) Give a 95% confidence interval for the mean weight of babies born to teenage mothers.

Solution. A corresponding two-sided 95% confidence interval is given by

 $2980 \pm z_{0.975}$ 400 $/$ √ $25 \implies 95\%$ CI: 2823.2g to 3136.8g

(c) Describe how you could use the confidence interval from (d) to test the hypotheses in (a).

Solution. We note that since the value defining the null hypothesis, 3200g, is not contained in the 95% confidence interval for μ that we reject H₀ at the $\alpha = 0.05$ level.

5. In this exercise, we consider a typical sample size calculation. These types of methods are common during the planning of a study.

Let X_1,\ldots,X_n be a random sample from a $N(\theta,\sigma^2)$ population with σ^2 known. We consider testing Let $X_1, ..., X_n$ be a random sample from a $W(\theta, \theta)$ population with θ Kn
 $H_0: \theta \le \theta_0$ against $H_1: \theta > \theta_0$. We will reject H_0 if $(\bar{X} - \theta_0)/(\sigma/\sqrt{n}) > c$.

(a) Find the power function *β*(*θ*) of the test. Express your answer in terms of the standard normal cdf $\Phi(z)$;

Solution. The power function of this test is

$$
\beta(\theta) = P_{\theta} \left(\frac{\bar{X} - \theta_0}{\sigma/\sqrt{n}} > c \right)
$$
\n
$$
= P_{\theta} \left(\frac{\bar{X} - \theta}{\sigma/\sqrt{n}} > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} \right)
$$
\n
$$
= P \left(Z > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} \right)
$$
\n
$$
= 1 - \Phi \left(c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} \right)
$$

where Z ∼ N(0, 1) has a distribution that is free of *θ*.

(b) Define the value c_{α} of *c* such that the test has level α ;

Solution. As θ increases, we see that $\beta(\theta) \rightarrow 1$ monotonically. Hence, it suffices to find c_{α} such that $\beta(\theta_0) = \alpha$. In particular, we have that

$$
\beta(\theta_0) = 1 - \Phi\left(c + \frac{\theta_0 - \theta_0}{\sigma/\sqrt{n}}\right) = 1 - \Phi(c) \equiv \alpha
$$

so that $c_{\alpha} = \Phi^{-1}(1-\alpha)$.

(c) Find values *c* and *n* such that the test has level α and $\beta(\theta) \ge b$ for all $\theta \ge \theta_0 + \sigma$.

Solution. We take $c_{\alpha} = \Phi^{-1}(1-\alpha) \equiv z_{1-\alpha}$ as before, since this does not depend on *n*. Since $\beta(\theta)$ is increasing, the requirement $\beta(\theta) \ge b$ for all $\theta \ge \theta_0 + \sigma$ will be met if *n* is chosen so that $\beta(\theta_0 + \sigma) = b$. We have

$$
\beta(\theta_0 + \sigma) = 1 - \Phi\left(c_{\alpha} + \frac{\theta_0 - \theta_0 - \sigma}{\sigma/\sqrt{n}}\right) = 1 - \Phi(c_{\alpha} - \sqrt{n}) \equiv b
$$

Solving for *n* yields

$$
n=(c_{\alpha}-\Phi^{-1}(1-b))^2=(z_{1-\alpha}-z_{1-b})^2
$$

which can be interpreted as squaring the difference between the $1 - \alpha$ and $1 - b$ quantiles of the $N(0, 1)$ distribution.

6. Binomial data gathered from more than one population are often presented in a contingency table. For the case of two populations, the table might look like this:

where Population 1 is Binomial(n_1, p_1), with S_1 successes and F_1 failures, Population 2 is Binomial(n_2, p_2), with S_2 successes and F_2 failures, and S_1 and S_2 are independent.

We consider testing the hypothesis that H_0 : $p_1 = p_2$ against $H_1 : p_1 \neq p_2$.

(a) Consider the statistic

$$
W=\frac{(\hat{p}_1-\hat{p}_2)^2}{\left(\frac{1}{n_1}+\frac{1}{n_2}\right)\hat{p}\left(1-\hat{p}\right)}
$$

where $\hat{p}_k = S_k / n_k$ for $k = 1, 2$ and $\hat{p} = S / n$.

Show that $W\to_d \chi_1^2$ as n_1 , $n_2\to\infty$. Explain how an approximate level α test can be constructed based on W.

Solution. Note $\hat{p}(1 - \hat{p}) \rightarrow_{p} p(1 - p)$ where $p = p_1 = p_2$ is the common value under H_0 . By the central limit theorem we have that both

$$
\frac{\sqrt{n_1}(\hat{p}_1-p)}{\sqrt{p(1-p)}} \rightarrow_d N(0,1) \quad \text{and} \quad \frac{\sqrt{n_2}(\hat{p}_2-p)}{\sqrt{p(1-p)}} \rightarrow_d N(0,1).
$$

Now, considering the statistic of interest, we will write $W = T^2$ with

$$
\begin{aligned} \mathcal{T} &= \frac{\hat{\rho}_1 - \rho}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\hat{\rho}\left(1 - \hat{\rho}\right)}} - \frac{\hat{\rho}_2 - \rho}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\hat{\rho}\left(1 - \hat{\rho}\right)}} \\ &= \frac{\sqrt{n_1}(\hat{\rho}_1 - \rho)}{\sqrt{\left(1 + \frac{n_1}{n_2}\right)\hat{\rho}\left(1 - \hat{\rho}\right)}} - \frac{\sqrt{n_2}(\hat{\rho}_2 - \rho)}{\sqrt{\left(\frac{n_2}{n_1} + 1\right)\hat{\rho}\left(1 - \hat{\rho}\right)}} \\ &= \frac{\sqrt{(1 + \gamma)\rho(1 - \rho)}}{\sqrt{\left(1 + \frac{n_1}{n_2}\right)\hat{\rho}\left(1 - \hat{\rho}\right)}} \frac{\sqrt{n_1}(\hat{\rho}_1 - \rho)}{\sqrt{n_1}(\hat{\rho}_1 - \rho)} - \frac{\sqrt{(1 + \gamma^{-1})\rho(1 - \rho)}}{\sqrt{\left(1 + \frac{n_2}{n_1}\right)\hat{\rho}\left(1 - \hat{\rho}\right)}} \frac{\sqrt{n_2}(\hat{\rho}_2 - \rho)}{\sqrt{\left(1 + \gamma^{-1}\right)\rho(1 - \rho)}} \\ &\to_d 1 \cdot \frac{1}{\sqrt{1 + \gamma}} Z_1 + 1 \cdot \frac{1}{\sqrt{1 + \gamma^{-1}}} Z_2 = N(0, 1) \end{aligned}
$$

where Z_1 and Z_2 are independent $N(0, 1)$ random variables. This convergence follows by Slutsky's lemma where $n_1/n_2 \rightarrow \gamma$, so that the variance in the last equality is indeed

$$
\frac{1}{1+\gamma}+\frac{1}{1+\gamma^{-1}}=1.
$$

Since $T \rightarrow_d N(0, 1)$ we have $T^2 \rightarrow \chi_1^2$ as $n \rightarrow \infty$, as claimed.

(b) We may alternatively measure the departure from H_0 in terms of the difference between the observed frequencies S_1 , S_2 , F_1 , F_2 and the expected frequencies:

Consider the statistic

$$
W^* = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}
$$

where the sum is taken across all 4 cells of the tables.

Show that $W^* = W$ so that W^* is also asymptotically chi squared.

(This is the most common form of the chi squared test of independence.)

Solution. Substituting \hat{p}_i s for S_i s and F_i s gives

$$
W^* = \frac{n_1^2(\hat{p}_1 - \hat{p})^2}{n_1\hat{p}} + \frac{n_n^2(\hat{p}_2 - \hat{p})^2}{n^2\hat{p}}
$$

$$
= \frac{n_1^2[(1 - \hat{p}_1) - (1 - \hat{p})]^2}{n_1(1 - \hat{p})} + \frac{n_2^2[(1 - \hat{p}_2) - (1 - \hat{p})]^2}{n_2\hat{p}}
$$

$$
= \frac{n_1(\hat{p}_1 - \hat{p})^2}{\hat{p}(1 - \hat{p})} + \frac{n_2(\hat{p}_2 - \hat{p})^2}{\hat{p}(1 - \hat{p})}
$$

Now, write $\hat{p} = (n_1\hat{p}_1+n_2\hat{p}_2)/(n_1+n_2)$. Substitute this into the numerator, and some algebra yields

$$
n_1(\hat{p}_1 - \hat{p})^2 + n_2(\hat{p}_2 - \hat{p})^2 = \frac{(\hat{p}_1 - \hat{p}_2)^2}{\frac{1}{n_1} + \frac{1}{n_2}}
$$

so that $W^* = W$, as desired.

7. A famous medical experiment was conducted by Joseph Lister in the late 1800s. In his experiment, Lister tested whether carbolic acid (a disinfectant) could reduce the risk of mortality following surgery. Data based on 75 amputations with and without the use of carbolic acid are presented in the following table:

Carbolic acid used? Yes No Patient lived? Yes ³⁴ ¹⁹ No 6 16

Use these data and the test you derived in the previous exercise to test whether the use of carbolic acid is associated with patient mortality.

You may use the R function prop.test() to check your by-hand solution.

Solution. Here $\hat{p}_1 = 34/40$, $\hat{p}_2 = 19/35$, and $\hat{p} = 53/75$ with $n_1 = 40$ and $n_2 = 35$. Computing, e.g., W we find

$$
w = \frac{(19/35 - 53/75)^2}{\left(\frac{1}{40} + \frac{1}{35}\right)53/75(22/75)} \approx 8.49516
$$

Noting that $P(\chi^2_1>8.5)\approx 0.00356$, we would likely decide to reject the null hypothesis that $p_1 = p_2$ in this case.

In R, we reproduce these calculations exactly using the command

prop.test(x=c(34,19),n=c(40,35),correct=F)

- 8. Suppose that X_1,\dots,X_m and Y_1,\dots,Y_n are random samples and X_i is independent of Y_j for all i and j . Suppose further that $X_i\sim N(\mu_x,\sigma_x^2)$ and $Y_j\sim N(\mu_y,\sigma_y^2)$ for all i and j . We consider testing $H_0:\theta=0$ against H_1 : $\theta \neq 0$ for $\theta = \mu_x - \mu_y$.
	- (a) Assume that $\sigma_{\sf x}^2=\sigma_{\sf y}^2=\sigma^2$. Derive the LRT for testing the hypotheses given above. Show that the LRT can be based on the statistic

$$
\mathcal{T} = \frac{\bar{X} - \bar{Y}}{\sqrt{S_P^2 \left(\frac{1}{m} + \frac{1}{n}\right)}}
$$

where

$$
S_P^2 = \frac{1}{m+n-2}\left(\sum_{i=1}^m (X_i-\bar{X})^2+\sum_{j=1}^n (Y_i-\bar{Y})^2\right).
$$

The quantity S_P^2 is called the *pooled variance estimator*.

Solution. Let the likelihood ratio for this test be given by

$$
\lambda(x,y) = \frac{\sup L(\mu_x, \mu_y, \sigma^2 | x, y)}{\sup_{H_0} L(\mu_x, \mu_y, \sigma^2 | x, y)} = \frac{L(\hat{\mu}_x, \hat{\mu}_y, \hat{\sigma}^2 | x, y)}{L(\hat{\mu}, \hat{\sigma}_0^2 | x, y)}
$$

Under H₀, the X_is and Y_is are one sample of size $m + n$ from a $N(\mu, \sigma^2)$ population, where $\mu = \mu_{\rm x} = \mu_{\rm y}$. Hence,

$$
\hat{\mu} = \frac{\sum_{i} X_i + \sum Y_i}{m+n} = \frac{m\bar{x} + n\bar{y}}{m+n}
$$

and

$$
\hat{\sigma}_0^2 = \frac{\sum_i (X_i - \hat{\mu})^2 + \sum_i (Y_i - \hat{\mu})^2}{m+n}.
$$

For the unrestricted MLEs we use the likelihood

$$
L(\mu_x, \mu_y, \sigma^2 | x, y) = (2\pi\sigma^2)^{-(n+m)/2} \exp\{-\left[\sum_i (X_i - \mu_x)^2 + \sum_i (Y_i - \mu_y)^2\right]/2\sigma^2\}.
$$

By inspection, maximizing over μ_x does not depend on μ_y and vice versa so that $\hat{\mu}_x = \bar{x}$ and $\hat{\mu}_{\mathsf{v}}=\bar{\mathsf{y}}$. Then,

$$
\frac{\partial \log L}{\partial \sigma^2} = -\frac{n+m}{2} \frac{1}{\sigma^2} + \frac{1}{2} \left[\sum_i (x_i - \hat{\mu}_x)^2 + \sum_i (y_i - \hat{\mu}_y)^2 \right] \frac{1}{\sigma^4} \equiv 0
$$

implies

$$
\hat{\sigma}^2 = \left[\sum_i(x_i-\bar{x})^2 + \sum_i(y_i-\bar{y})^2\right]\frac{1}{n+m}.
$$

One can verify the maximum by checking the second derivative. Now, we have

$$
\lambda(x,y) = \frac{(2\pi\hat{\sigma}^2)^{-\frac{n+m}{2}}}{(2\pi\hat{\sigma}_0^2)^{-\frac{n+m}{2}}} \frac{\exp\left\{\frac{-1}{2\hat{\sigma}^2} \left[\sum_i (x_i - \bar{x})^2 + \sum_i (y_i - \bar{y})^2\right]\right\}}{\exp\left\{\frac{-1}{2\hat{\sigma}_0^2} \left[\sum_i (x_i - \hat{\mu})^2 + \sum_i (y_i - \hat{\mu})^2\right]\right\}}
$$

$$
= \left(\frac{\hat{\sigma}_0^2}{\hat{\sigma}^2}\right)^{\frac{n+m}{2}}.
$$

It suffices to consider the ratio $\frac{\hat{\sigma}_0^2}{\hat{\sigma}^2}$ since the exponent is not random. Now, in the numerator we use $\hat{\mu} = (m\bar{x} + n\bar{y})/(n+m)$ to write

$$
\sum_{i=1}^n \left(x_i - \frac{m\bar{x} + n\bar{y}}{m+n} \right)^2 = \sum_{i=1}^n \left((x_i - \bar{x}) + \left(\bar{x} - \frac{m\bar{x} + n\bar{y}}{m+n} \right) \right)^2 = \sum_{i=1}^m (x_i \bar{x})^2 + \frac{n^2 m}{(n+m)^2} (\bar{x} - \bar{y})^2.
$$

A similar calculation for the Y sum gives

$$
\frac{\hat{\sigma}_0^2}{\hat{\sigma}^2}=\frac{\sum(x_i-\bar{x})^2+\sum(y_i-\bar{y})^2+\frac{nm}{n+m}(\bar{x}-\bar{y})^2}{\hat{\sigma}^2}=n+m+\frac{nm}{n+m}\frac{(\bar{x}-\bar{y})^2}{\hat{\sigma}^2}.
$$

Since $\hat{\sigma}^2 = \frac{n+m-2}{n+m}$ $\frac{+m-2}{n+m} S_p^2$, we have that large values of $\frac{\hat{\sigma}_0^2}{\hat{\sigma}^2}$ are equivalent to large values of $(\bar{x}-\bar{y})^2/S_{\rho}^2$ which yields the desired result.

(b) Show that, under H_0 , $T \sim t_{n+m-2}$. This yields the *two-sample t-test*.

Solution. Under H_0 , $\bar{X} - \bar{Y}$ has a $N(0, (m^{-1} + n^{-1})\sigma^2)$ distribution and $(n+m-2)S_p^2/\sigma^2 =$ $(m-1)S_X^2/\sigma^2+(n-1)S_Y^2/\sigma^2$ has a χ^2_{n+m-2} distribution (by independence). Hence, ${\cal T}\sim$ t_{n+m-2} .

(c) Samples of wood were obtained from the core and periphery of a certain Byzantine church. The date of the wood was determined, giving the following data.

core <- c(1294, 1279, 1274, 1264, 1263, 1254, 1251, 1251, 1248, 1240, 1232, 1220, 1218, 1210) periphery <- c(1284, 1272, 1256, 1254, 1242, 1274, 1264, 1256, 1250)

Use the two-sample t-test to determine if the mean age of the core is the same as the mean age of the periphery.

You should complete this exercise by computing the relevant quantities (you may use a calculator). The command $\text{ttest}(x, y)$ function in R can be used to check your answer.

```
Solution. You should find that
> t.test(x = core, y = periphery, var.equal = T)
Two Sample t-test
data: core and periphery
t = -1.2907, df = 21, p-value =
0.2109
```
alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -29.967604 7.015223 sample estimates: mean of x mean of y 1249.857 1261.333

So that we do not reject the null hypothesis that the mean age of the core is the same as the mean age of the periphery.

9. Let $Y_1,\ldots,$ Y_n be i.i.d. Geometric (ρ) for unknown $\rho\in(0,1)$. Then the pmf for each $\,Y_i$ is

$$
P(Y_i = k) = p(1-p)^{k-1}, \quad k = 1, 2, ...
$$

(a) Find the maximum likelihood estimator for p .

Solution. The likelihood is

$$
L(p) = \prod_{i=1}^n p(1-p)^{y_i-1}.
$$

The corresponding log-likelihood is

$$
\log L(p) = \sum_{i=1}^{n} (\log p + (y_i - 1) \log(1 - p)) = n \log p + \left(-n + \sum_{i=1}^{n} y_i \right) \log(1 - p)
$$

with derivative

$$
\frac{\partial}{\partial p}\log L(p)=\frac{n}{p}-\left(-n+\sum_{i=1}^n y_i\right)\frac{1}{1-p}.
$$

The maximum likelihood estimator \hat{p} must satisfy $\frac{\partial}{\partial p} \log L(p)|_{p=\hat{p}} = 0.$ Thus

$$
0=\frac{n}{\hat{p}}-\left(-n+\sum_{i=1}^n y_i\right)\frac{1}{1-\hat{p}}.
$$

This leads to $\hat{p}(-n+\sum_{i=1}^n y_i)=n(1-\hat{p})$. Collecting terms gives $\hat{p}=\frac{n}{\sum_{i=1}^n y_i}$. To check that this indeed a maximizer:

$$
\left(\frac{\partial}{\partial p}\right)^2 \log L(p) = -\frac{n}{p^2} - \underbrace{\left(-n + \sum_{i=1}^n y_i\right)}_{\geq 0} \frac{1}{(1-p)^2} < 0.
$$

(b) Construct the likelihood ratio test statistic t for testing H_0 : $p = 0.5$ against H_0 : $p \neq$ 0.5.

Solution.
$$
L(0.5) = 0.5 \sum_{i=1}^{n} y_i
$$
, thus
\n
$$
t = \frac{\sup_{p \in (0,1)} L(p)}{L(0.5)} = \frac{L(\hat{p})}{L(0.5)} = \left(\frac{n}{\sum_{i=1}^{n} y_i}\right)^n \left(\prod_{i=1}^{n} (1 - \frac{n}{\sum_{j=1}^{n} y_j})^{y_i - 1}\right) 0.5^{-\sum_{i=1}^{n} y_i}.
$$

(c) Under H₀, state the asymptotic distribution of t as $n \to \infty$. You do not need to verify regularity conditions.

 ${\sf Solution.} \ \ \mathsf{As} \ \ n\to\infty, \ \mathsf{we} \ \mathsf{have} \ 2 \log t \stackrel{d}{\to} \chi_1^2$

(d) Describe how to use t to construct an asymptotic level α test.

Solution. We reject H_0 if 2 log $t > c$ where c is such that $P(X > c) = \alpha$ for $X \sim \chi_1^2$.

- 10. Let X_1, \ldots, X_n be a random sample from a parametric model with marginal density function $f_\theta(x)$. Assume below that regularity conditions hold.
	- (a) Let $\hat{\theta}_n$ be the MLE of θ_0 . Show that if $\theta=\theta_0$, the *Wald statistic* defined as $W=(\hat{\theta}_n-\theta_0)^2/\text{SE}(\hat{\theta}_n)^2$ is asymptotically χ^2_1 .

Explain how this can be used to construct an approximate level α test of H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$.

 ${\sf Solution.}$ The $\mathsf{SE}(\hat{\theta}_n)^2 = I_1(\hat{\theta}_n)^{-1}/n$ so we have

$$
W = \frac{\left[\sqrt{n}(\hat{\theta}_n - \theta_0)\right]^2}{I_1(\hat{\theta}_n)^{-1}} \to_d N(0, 1)^2 = \chi_1^2.
$$

Here we have used asymptotic normality of the MLE, Slutsky's lemma and continuous mapping to arrive at the asymptotic chi-squared distribution.

(b) How would you expect the results of the Wald test in part (a) to compare to the results of a likelihood ratio test for large sample sizes? Explain.

 ${\bf Solution.}$ Both test statistics converge in distribution to χ_1^2 in this case, so in large samples we would reach the same decisions for either test.

(c) Sketch a graph of a log-likelihood function and label the MLE $\hat{\theta}_n$ and θ_0 on the horizontal axis. Indicate on your graph the quantities used to calculate the Wald test statistic and likelihood ratio test statistic.

Solution. The differences in the log-likelihood are compared for the LRT and the differences in the parameter values themselves are compared for the Wald test. See sketch below:

