Imperial College London

Problem Sheet 5

MATH50011 Statistical Modelling 1

Week 5

Lecture 9 (Hypothesis Testing)

- A clinical trial is conducted to establish whether treatment A has a different effect on systolic blood pressure than treatment B. The treatment effect will be measured by comparing the mean of a group receiving A and a group receiving B. Write a few sentences suitable for a non-statistician (better yet, a non-mathematician!) explaining what is meant by the terms *type I error* and *type II error* in this context.
- 2. In the results of a study, you read the following sentence:

"Since p < 0.05, there is a less than 5% chance that the null hypothesis is true."

Write an explanation of why this statement is false. Give a correct interpretation of a p-value suitable for a non-statistician.

- The mean level of prothrombin in the general population is known to be 22.0 mg/100 ml of plasma. A sample of 30 patients showing vitamin K deficiency has a mean prothrombin level of 19.5 mg/100ml and standard deviation 4 mg/100ml of plasma.
 - (a) Is the mean prothrombin level in patients with vitamin K deficiency different from that in the general population? Set up a null and alternative hypothesis that addresses this question.
 - (b) Find the critical values for the sample mean to test the hypotheses in (a) using $\alpha = .05$. Use these critical values to test the hypotheses in (a); state

your statistical and scientific conclusions. Clearly state the test statistic and distribution you are using.

- (c) Compute the p-value and use that to test the hypotheses in (a) using $\alpha = .05$. State both your statistical and scientific conclusions.
- 4. Suppose that, in the general population, birth weights are approximately normally distributed with a mean weight of 3200g and a standard deviation of 400g. A sample of 25 babies born to teenage mothers has an average birth weight of 2980g.
 - (a) You would like to use this sample to determine if the average birth weight of babies born to teenage mothers is different from the general population. Set up a null and alternative hypothesis that addresses this question and carry out a hypothesis test using $\alpha = .05$. Be sure to state both your statistical and scientific conclusions.
 - (b) Give a 95% confidence interval for the mean weight of babies born to teenage mothers.
 - (c) Describe how you could use the confidence interval from (d) to test the hypotheses in (a).
- 5. In this exercise, we consider a typical *sample size calculation*. These types of methods are common during the planning of a study.

Let $X_1, ..., X_n$ be a random sample from a $N(\theta, \sigma^2)$ population with σ^2 known. We consider testing H_0 : $\theta \leq \theta_0$ against H_1 : $\theta > \theta_0$. We will reject H_0 if $(\bar{X} - \theta_0)/(\sigma/\sqrt{n}) > c$.

- (a) Find the power function β(θ) of the test. Express your answer in terms of the standard normal cdf Φ(z);
- (b) Define the value c_{α} of c such that the test has level α ;
- (c) Find values c and n such that the test has level α and $\beta(\theta) \ge b$ for all $\theta \ge \theta_0 + \sigma$.

6. Binomial data gathered from more than one population are often presented in a *contingency table*. For the case of two populations, the table might look like this:

	Popu	lation	
	1	2	Total
Successes	S_1	S_2	$S = S_1 + S_2$
Failures	F_1	F_2	$F = F_1 + F_2$
Total	n_1	<i>n</i> ₂	$n = n_1 + n_2$

where Population 1 is Binomial (n_1, p_1) , with S_1 successes and F_1 failures, Population 2 is Binomial (n_2, p_2) , with S_2 successes and F_2 failures, and S_1 and S_2 are independent.

We consider testing the hypothesis that $H_0: p_1 = p_2$ against $H_1: p_1 \neq p_2$.

(a) Consider the statistic

$$W = rac{(\hat{
ho}_1 - \hat{
ho}_2)^2}{\left(rac{1}{n_1} + rac{1}{n_2}
ight)\hat{
ho}\,(1-\hat{
ho})}$$

where $\hat{p}_k = S_k/n_k$ for k = 1, 2 and $\hat{p} = S/n$. Show that $W \to_d \chi_1^2$ as $n_1, n_2 \to \infty$. Explain how an approximate level α test can be constructed based on W.

(b) We may alternatively measure the departure from H_0 in terms of the difference between the observed frequencies S_1 , S_2 , F_1 , F_2 and the *expected frequencies*:

	Expected F	requencies	
	1	2	Total
Successes	n_1S/n	n_2S/n	$S = S_1 + S_2$
Failures	n_1F/n	n_2F/n	$ F = F_1 + F_2$
Total	<i>n</i> ₁	<i>n</i> ₂	$n = n_1 + n_2$

Consider the statistic

$$W^* = \sum rac{(ext{observed} - ext{expected})^2}{ ext{expected}}$$

where the sum is taken across all 4 cells of the tables. Show that $W^* = W$ so that W^* is also asymptotically chi squared. (This is the most common form of the *chi squared test of independence.*) 7. A famous medical experiment was conducted by Joseph Lister in the late 1800s. In his experiment, Lister tested whether carbolic acid (a disinfectant) could reduce the risk of mortality following surgery. Data based on 75 amputations with and without the use of carbolic acid are presented in the following table:

	Carbolic acid used?				
		Yes	No		
Patient lived?	Yes	34	19		
	No	6	16		

Use these data and the test you derived in the previous exercise to test whether the use of carbolic acid is associated with patient mortality.

You may use the R function prop.test() to check your by-hand solution.

Lecture 10 (Likelihood Ratio Tests)

- 8. Suppose that $X_1, ..., X_m$ and $Y_1, ..., Y_n$ are random samples and X_i is independent of Y_j for all *i* and *j*. Suppose further that $X_i \sim N(\mu_x, \sigma_x^2)$ and $Y_j \sim N(\mu_y, \sigma_y^2)$ for all *i* and *j*. We consider testing $H_0: \theta = 0$ against $H_1: \theta \neq 0$ for $\theta = \mu_x - \mu_y$.
 - (a) Assume that $\sigma_x^2 = \sigma_y^2 = \sigma^2$. Derive the LRT for testing the hypotheses given above. Show that the LRT can be based on the statistic

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{S_P^2 \left(\frac{1}{m} + \frac{1}{n}\right)}}$$

where

$$S_P^2 = rac{1}{m+n-2} \left(\sum_{i=1}^m (X_i - \bar{X})^2 + \sum_{j=1}^n (Y_i - \bar{Y})^2
ight) \, .$$

The quantity S_P^2 is called the *pooled variance estimator*.

- (b) Show that, under H_0 , $T \sim t_{n+m-2}$. This yields the *two-sample t-test*.
- (c) Samples of wood were obtained from the core and periphery of a certain Byzantine church. The date of the wood was determined, giving the following data.

Use the two-sample t-test to determine if the mean age of the core is the same as the mean age of the periphery.

You should complete this exercise by computing the relevant quantities (you may use a calculator). The command ttest(x,y) function in R can be used to check your answer.

9. Let $Y_1, ..., Y_n$ be i.i.d. Geometric(p) for unknown $p \in (0, 1)$. Then the pmf for each Y_i is

$$P(Y_i = k) = p(1-p)^{k-1}, \quad k = 1, 2, ...$$

- (a) Find the maximum likelihood estimator for *p*.
- (b) Construct the likelihood ratio test statistic t for testing H_0 : p = 0.5 against H_0 : $p \neq 0.5$.

- (c) Under H_0 , state the asymptotic distribution of t as $n \to \infty$. You do not need to verify regularity conditions.
- (d) Describe how to use t to construct an asymptotic level α test.
- 10. Let $X_1, ..., X_n$ be a random sample from a parametric model with marginal density function $f_{\theta}(x)$. Assume below that regularity conditions hold.
 - (a) Let θ̂_n be the MLE of θ₀. Show that if θ = θ₀, the Wald statistic defined as W = (θ̂_n θ₀)²/SE(θ̂_n)² is asymptotically χ₁². Explain how this can be used to construct an approximate level α test of H₀: θ = θ₀ against H₁: θ ≠ θ₀.
 - (b) How would you expect the results of the *Wald test* in part (a) to compare to the results of a likelihood ratio test for large sample sizes? Explain.
 - (c) Sketch a graph of a log-likelihood function and label the MLE $\hat{\theta}_n$ and θ_0 on the horizontal axis. Indicate on your graph the quantities used to calculate the Wald test statistic and likelihood ratio test statistic.

R lab: none this week