
Problem Sheet 6 Solutions
MATH50011

Statistical Modelling 1

Week 6

Lecture 11 (Introduction to Linear Models)
1. Let Yi = β0 + β1xi + εi for i = 1, ... , n where xi = 0, 1 and ε1, ... , εn are iid N(0,σ2) random variables

where σ2 > 0 is known. We can think of the covariate xi as defining two groups receiving a different
treatment, as in a clinical trial.

(a) What is the interpretation of β0, β1 and β0 + β1 in this model?
(b) Based on your answer to part (a), propose estimators β̂0 and β̂1 in terms of particular sample

averages.
(c) What is the distribution of β̂1?
(d) Describe how to construct a 95% confidence interval for β1 using the distribution identified in the

previous question.

Solution.

(a) Since E (Yi) = β0 + β1xi we have that β0 is the mean of Yi when xi = 0 and β1 is the
difference in E (Yi) when xi = 1 and xi = 0.

(b) Let Ȳk = 1
nk

∑
i :xi=k Yi for k = 0, 1 with nk the number of individuals having xi = k . In

particular, Ȳ0 is the sample mean of the Yis having xi = 0 and Ȳ1 is the sample mean of the
Yis having xi = 1. Then β̂0 = Ȳ0 and β̂1 = Ȳ1 − Ȳ0 are reasonable candidate estimators, in
view of part (a).

(c) Since the Yis are independent, so too are Ȳ1 and Ȳ0. Hence β̂1 = Ȳ1 − Ȳ0 has a normal
distribution with mean E (Ȳ1 − Ȳ0) = β1 and variance Var(Ȳ1 − Ȳ0) = σ2(n−10 + n−11 ).

(d) In this case, we know that

Z =
β̂1 − β1√

σ2(n−10 + n−11 )
∼ N(0, 1)

so we can use the familiar confidence interval construction with upper/lower limits given by

β̂1 ± 1.96×
√
σ2(n−10 + n−11 ).
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2. Which of the following matrices is positive definite? positive semidefinite?(
3 0
0 1

) (
1 0
0 0

) (
0 1
1 0

)

Solution. The first matrix is positive definite, the second positive semidefinite. The third matrix
is not positive semidefinite.

3. Show that
Cov(AX ,BY ) = ACov(X ,Y )BT

where A and B are deterministic matrices of suitable dimensions. What does “suitable dimension”
mean in this case?

(a) Show that Cov(X ) is positive semidefinite.
(b) Find an example where Cov(X ) is not positive definite.
(c) Find an example where Cov(X ) is positive definite.

Solution.

(a)

Cov(AX ,BY ) =E [(AX − EAX )(BY − EBY )T ]

=E [(AX − AEX )(BY − BEY )T ]

=AE [(X − EX )(B(Y − EY ))T ]

=AE [(X − EX )(Y − EY )TBT ]

=AE [(X − EX )(Y − EY )T ]BT

=ACov(X ,Y )BT

Suitable dimension means that A must have n columns and B m columns.
(b) For any vector c ∈ Rn,

cTCov(X )c = E [cT (X − EX )(X − EX )Tc] = E [{cT (X − EX )}2] ≥ 0

(note that cT (X − EX ) is one-dimensional)
(c) Let X = c ∈ R, i.e. the one-dimensional random vector that is constant. Then Cov(X ) =

Var(c) = 0. Cov(X ) is not positive definite since e.g. 1 · Cov(X ) · 1 = 0.
(d) Let Y be a random variable with ∞ > VarY > 0. let X = (Y ), i.e. X is a one-dimensional

random vector. Then for any c ∈ R \ {0},

cCov(X )c = cVar(Y )c = c2Var(Y ) > 0.

4. Suppose X ,Y1, ... ,Yn ∼ N(µ,σ2) independent. Let 1 = (1, ... , 1)T ∈ Rn, Y = (Y1, ... ,Yn)T . Let
Z =

√
ρX1 +

√
1− ρY for some ρ ∈ [0, 1].

Find Cov(Z ) using rules for manipulation of Cov .
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Solution.

Cov(Z ) =Cov(
√
ρX1 +

√
1− ρY ,

√
ρX1 +

√
1− ρY )

=Cov(
√
ρX1,

√
ρX1) + 2Cov(

√
ρX1,

√
1− ρY ) + Cov(

√
1− ρY ,

√
1− ρY )

=ρ1Cov(X ,X )1T + 0 + (1− ρ)Cov(Y ,Y )

=ρσ211T + (1− ρ)σ2I

=σ2(ρ11T + (1− ρ)I ) = σ2


1 ρ · · · ρ

ρ
. . . . . . ...

... . . . . . . ρ
ρ · · · ρ 1



Lecture 12 (Linear Models)

5. For a simple linear regression model, Yi = β1 + β2xi + εi for i = 1, ... , n where E (εi) = 0 and
Cov(ε) = σ2In.

(a) Derive the least squares estimators of β1 and β2 based on the above sample.
(b) How do the least squares estimators change if they are computed in terms of Zi = Yi − Ȳ and

wi = xi − x̄ instead?
(c) What is the expected value of the least squares estimators?
(d) Using properties of covariances for random vectors, derive the covariance matrix of the least

squares estimators (β̂1, β̂2)T .

Solution. See the lecture notes for details of this exercise.

6. In a study on childhood development, the following data about the height and weight of 11 children
was collected.

Height 135 146 153 154 139 131 149 137 143 146 141
Weight 26 33 55 50 32 25 44 31 36 35 28

Formulate a linear regression model with response variable height and explanatory variable weight.
Compute the least squares estimates and sketch both the data and the estimated regression curve.

Solution. Model: Yi = β1+xiβ2+εi with εi iid N(0,σ2), where, for the ith individual, Yi =height,
xi=weight.
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Letting X =


1 x1
... ...
1 x10

 we get

β̂ =(XTX )−1XTY =

(
11 395

395 15141

)−1 (
1574

57175

)

=

(
1.438 −0.038
−0.038 0.001

)(
1574

57175

)
=

(
118.5
0.68

)

7. In the Forbes and Mammals data examples in Chapter 9 of the notes, we transform variables by taking
the natural logarithm. This impacts our interpretation of the coefficients in our linear model.

(a) Consider a simple linear model E (Y ) = β0 + β1x . Interpret β1 by comparing two groups that
differ in x by 1 unit.

(b) Consider a simple linear model E (logY ) = β0 + β1x . Interpret β1 by comparing two groups that
differ in x by 1 unit.

(c) Consider a simple linear model E (logY ) = β0 + β1 log x . Interpret β1 by comparing two groups
that differ in x by 1 unit.
(Hint: exp(E (logY )) is called the geometric mean of Y .)

Solution.

(a) We will use the notation E (Y |X = x), though we are not treating the x as realisations of a
random variable at this time. For this model, we have

E (Y |X = x + 1)− E (Y |X = x) = β0 + β1(x + 1)− (β0 + β1x) = β1.

Hence β1 is the difference in the mean of the response Y associated with a unit difference in
the predictor x .

(b) For the log-transformed outcome, we have

E (logY |X = x + 1)− E (logY |X = x) = β0 + β1(x + 1)− (β0 + β1x) = β1.

Hence eE(logY |X=x+1)−E(logY |X=x) = GM(Y |X = x + 1)/GM(Y |X = x) = eβ1 , where
GM(Y |X = x) is the geometric mean of Y for a given value of the predictor x . Hence,
eβ1 denotes the ratio of geometric means associated with a unit difference in the predictor x .

(c) By similar logic to part (b), we see that

GM(Y |X = x + 1) = expE (logY |X = x + 1) = exp(β0 + β1 log(x + 1)) = eβ0(x + 1)β1

GM(Y |X = x) = expE (logY |X = x) = exp(β0 + β1 log x) = eβ0xβ1

The interpretation of β1 for a unit increase in x is not meaningful in this context. However,
if we instead multiply x by e ≡ exp(1), we find that

GM(Y |X = ex)/GM(Y |X = x) = exp(β1)
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so that we can interpret exp(β1) as the ratio in geometric mean outcomes associated with an
e-fold difference in the predictor.

8. Let Yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi for i = 1, 2, 3, 4 and xi = i . Write the above polynomial model

in matrix form such that Y = Xβ + ε.

Solution. We have 
Y1

Y2

Y3

Y4

 =


1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64



β0
β1
β2
β3

+


ε1
ε2
ε3
ε4
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