
Problem Sheet 7 Solutions
MATH50011

Statistical Modelling 1

Week 8

Lecture 13: Properties of Least Squares
1. Consider an “error in the variables” model in which there is a true relationship between Y and w given

by Yi = β1 + β2wi + εi with E (εi) = 0 and Var(εi) = σ2 independent for i = 1, ... , n. Suppose that
rather than observe wi , we have Xi , an imprecise measurement given by Xi = α1 + α2wi + δi with
E (δi) = 0 and Var(δi) = τ 2 which are independent and independent of the εis. The parameters α1

and α2 are unknown.
We fit a regression model based on E (Yi |Xi) = γ1 + γ2Xi . Show that the least squares estimator γ̂ is
biased for estimating β, even when α1 = 0 and α2 = 1.

Solution. We have that E (γ̂|X ) = (XTX )−1XTE (Y ) = (XTX )−1XTWβ where X and W are
the respective design matrices. Hence, γ is unbiased if (XTX )−1XTW = I . This can only happen
if XTW = XTX . However,

XTW =

(
n

∑n
i=1 xi∑n

i=1 wi
∑n

i=1 xiwi

)
=

(
n

∑n
i=1(α1 + α2wi + δi)∑n

i=1 wi
∑n

i=1 wi(α1 + α2wi + δi)

)
6=
(

n
∑n

i=1 xi∑n
i=1 xi

∑n
i=1 x

2
i

)

except in very unusual situations where sums involving δi equal zero, even if α1 = 0 and α2 = 1.

2. Consider a linear model with a p-dimensional parameter vector β. For a deterministic vector c ∈ Rp

we know that cT β̂, where β̂ is the least squares estimator, is a linear unbiased estimator for cTβ.
In linear models of your choice and for vectors c of your choice, give examples for other unbiased linear
estimators for cTβ. Quantify the loss in precision (measured by increase in MSE) of some of those
estimators (what assumptions do you need to make for this?).
(Hint: if you are not sure where to start, consider the Week 6 unseen problems.)

Solution. In the week 6 problems for the tutorial, we considered simple linear regression E (Y ) =
β0 + β1x based on (Yi , xi) for i = 1, ... , n and saw that the slopes

Yi − Yj

xi − xj
, i 6= j

are linear unbiased estimators of β̂1. We can compare the variance of these to the least squares
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estimator β̂1. Assuming the errors in the linear model are uncorrelated with variance σ2:

Var

(
Yi − Yj

xi − xj

)
=

2σ2

(xi − xj)2

The Gauss-Markov theorem tells us that this variance will be at least σ2/
∑n

i=1(xi − x̄)2.
Many variations on this theme are possible. Consider, e.g., dropping a single observation i from
the data and computing the least squares estimator based on the remaining n − 1 samples.

3. (a) Compute the projection matrix onto span((1, 1, 1, 1)T , (0, 0, 1, 1)T ) in R4.
(b) Compute the projection matrix onto span((1, 0, 0)T , (1, 1, 1)T , (0, 0, 2)T ) in R3.
(c) Compute the projection matrix onto span((1, ... , 1)T ) in Rn.
(d) Compute the projection matrix onto span((0, ... , 0)T ) in Rn.
What is the rank of these matrices? What are their eigenvalues (including their multiplicities)?

Solution. (This is not the full solution, only a sketch.) Using results and methods from the
lectures, one obtains the following solutions:

(a) 
1
2

1
2

0 0
1
2

1
2

0 0
0 0 1

2
1
2

0 0 1
2

1
2


(b) The 3× 3 identity matrix.
(c) The n × n matrix with all elements equal to 1

n
.

(d) The n × n matrix with all elements equal to 0.

The rank of these matrices is equal to their trace.
Alternatively, one could determine the space these matrices project onto to get the rank.
The eigenvalues are also immediate (1 (twice) and 0 (twice), 1 (three times), 1 (once) and 0 (n-1
times), 0 (n times)).

Lecture 14: Fitted Values, Residuals

4. Suppose we are interested in the relationship between the height Y of tomato plants one month after
being potted in soil a, b, or c .
Plants 1, ... , n are potted in soil a. Plants n + 1, ... , 2n are potted in soil b. Plants 2n + 1, ... , 3n are
potted in soil c .

(a) Write a linear model for this setting of the form

E (Yi) = β0 + β1xi1 + β2xi2

where xi1 and xi2 are binary variables taking on the values 0 and 1.
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(b) Express the parameter vector for your model in terms of the mean heights for a tomato plant
grown in soil a and/or b and/or c .

(c) Find the least squares estimate of β for your model.
(d) Express the fitted values for your model in terms of appropriate sample means based on the Yi .

(Harder: how many solutions are there to (a)? How do the fitted values change in each case?)

Solution.

(a) Let xi1 = 1 for i = 1, ... , n and xi1 = 0 otherwise. Similarly, let xi2 = 1 for i = n + 1, ... , 2n.
Hence, xi1 is an indicator that the ith plant was potted in soil a and xi2 is an indicator that
the ith plant was potted in soil b. If xi1 = xi2 = 0, as is the case for i = 2n + 1, ... , 3n, then
the ith plant was potted in soil c .
This can be expressed in matrix form as

E (Y ) = Xβ =


~1n

~1n
~0n

~1n
~0n

~1n

~1n
~0n

~0n


β0β1
β2


where ~0n is a vector of n 0s and ~1n is a vector of n 1s.

(b) We have µa = E (Y |soil a) = β0 + β1, µb = E (Y |soil b) = β0 + β2, and µc = E (Y |soil c) =
β0.

(c) Evaluating (XTX )−1XTY , we find β̂ = (Ŷc , Ŷa − Ŷc , Ŷb − Ŷc) where notation such as Ŷa

denotes the respective group mean. These calculations can be simplified by changing to a
parametrisation in terms of

~1n
~0n

~0n

~0n
~1n

~0n

~0n
~0n

~1n


µa

µb

µc

 = X

0 0 1
1 0 −1
0 1 −1


1 1 0

1 0 1
1 0 0

 β = (XH)(H−1β) = Xβ.

See the argument below (d) for details.
(d) The fitted values of the model are a vector of n copies of Ȳa, followed by n copies of Ȳb, and

n copies of Ȳc .

Note that soil a or soil b could have been made to correspond to xi1 = xi2 = 0, and so on. In
all instances, we can relate these reparametrisations by considering Xβ = (XH)(H−1β) = W γ for
some nonsingular H . Then

γ̂ = (W TW )−1W TY = H−1(XTX )−1XTY = H−1β̂

and hence the fitted values are equal:

W (W TW )−1W TY = X (XTX )−1XTY .

To summarise, regardless of parametrisation, we wind up projecting Y onto the same space and
the projection is unique. This leads to equality of the fitted values (and, indeed, the projection
matrices).
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5. Consider a simple linear regression model, EYi = β1+β2xi (i = 1, ... , n), where β1 and β2 are unknown,
the second order assumptions hold and Var(Yi) = σ2 > 0. Suppose moreover that at least two of the
xi are distinct. Let e = (e1, ... , en)T be the vector of residuals. Compute Cov(e).

Solution.

Cov(e) = Cov((I − P)Y ) = (I − P)Cov(Y )(I − P)T = (I − P)σ2I (I − P)T

= (I − P)2σ2 = (I − P)σ2

Hence it suffices to derive P .

P = (1, x)
(

(1, x)T (1, x)
)−1

(1, x)T

= (1, x)

(
n

∑
xi∑

xi
∑

x2i

)−1

(1, x)T

= (1, x)
1

n
∑

x2i − (
∑

xi)2

( ∑
x2i −∑ xi

−∑ xi n

)
(1, x)T

Note that Sxx =
∑

x2i − 1
n

(
∑

xi)
2. Hence,

P =
1

nSxx
(1, x)

(∑
x2i − xj

∑
xi

−∑ xi + xjn

)T

j=1...,n

=
1

nSxx

∑ x2i −xj
∑

xi + (−
∑

xi + xjn)xµ︸ ︷︷ ︸
=−(

∑
xi−xjn)(xµ−

∑
xi/n)+(

∑
xi )2/n


µ,j=1...,n

=

(
1

n
+

(xj − x̄)(xµ − x̄)

Sxx

)
µ,j=1...,n

6. In a linear model satisfying the second order assumptions, E (Y ) = β1x1 + · · ·+ βpxp, where x1, ... , xp
are the p columns of the design matrix. For each of the two statements below, state whether it is true
or false, justifying your answer in each case.

(a) If the vectors x1, ... , xp are mutually orthogonal, then the residuals are uncorrelated.
(b) If a is a constant vector which is orthogonal to each xi , then a is orthogonal to the vector of

residuals.

Solution.

(a) False. Consider a simple linear regression problem in which ∑ xi = 0. The 2 columns of the
design matrix are orthogonal but

Cov(Ri ,Rj) = −σ2

(
1

n
+

xixj∑
k x

2
k

)

which in general is non-zero.
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(b) False. aTR = aT (Y − X β̂) = aTY because aTX = 0. In general, aTY 6= 0.

7. In a study of the effect of thermal pollution on fish, the proportion of a certain variety of sunfish
surviving a fixed level of thermal pollution was determined by Matis and Wehrly (1979) for various
exposure times. The following paired data were reported on scaled time (x) versus proportion surviving
(y).
x 0.10 0.15 0.2 0.25 0.30 0.35 0.40 0.45 0.5 0.55
y 1.00 0.95 0.95 0.9 0.85 0.7 0.65 0.60 0.55 0.40

(a) Plot the paired data as points in an x-y coordinate system.
(b) Assuming a straight line regression compute the least squares estimates of β0 (the intercept) and

β1 (the slope).
(c) Estimate E (Y ) = β0 + β1x if the exposure time is x = 0.325 units.
(d) Compute the residual sum of squares and give an unbiased estimate of σ2 = Var(Y ).

Solution.
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There seems to be a linear relationship.
(b) Using the equations given in class we find

β̂0 = 1.1824 and β̂1 = −1.3152

(c) Ŷ = β̂0 + β̂1 × 0.325 = 0.755.
(d) The residual sum of squares are given by 0.015515 and an unbiased estimate of σ2 is

σ̂2 =
0.015515

10− 2
= 0.001939
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