Imperial College London

Problem Sheet 7

MATH50011 Statistical Modelling 1

Week 8

Lecture 13: Properties of Least Squares

1. Consider an "error in the variables" model in which there is a true relationship between Y and w given by $Y_i = \beta_1 + \beta_2 w_i + \epsilon_i$ with $E(\epsilon_i) = 0$ and $Var(\epsilon_i) = \sigma^2$ independent for i = 1, ..., n. Suppose that rather than observe w_i , we have X_i , an imprecise measurement given by $X_i = \alpha_1 + \alpha_2 w_i + \delta_i$ with $E(\delta_i) = 0$ and $Var(\delta_i) = \tau^2$ which are independent and independent of the ϵ_i s. The parameters α_1 and α_2 are unknown.

We fit a regression model based on $E(Y_i|X_i) = \gamma_1 + \gamma_2 X_i$. Show that the least squares estimator $\hat{\gamma}$ is biased for estimating β , even when $\alpha_0 = 0$ and $\alpha = 1$.

2. Consider a linear model with a *p*-dimensional parameter vector β . For a deterministic vector $c \in \mathbb{R}^p$ we know that $c^T \hat{\beta}$, where $\hat{\beta}$ is the least squares estimator, is a linear unbiased estimator for $c^T \beta$.

In linear models of your choice and for vectors c of your choice, give examples for other unbiased linear estimators for $c^{T}\beta$. Quantify the loss in precision (measured by increase in MSE) of some of those estimators (what assumptions do you need to make for this?).

(Hint: if you are not sure where to start, consider the Week 6 unseen problems.)

- 3. (a) Compute the projection matrix onto $span((1, 1, 1, 1)^T, (0, 0, 1, 1)^T)$ in \mathbb{R}^4 .
 - (b) Compute the projection matrix onto $span((1,0,0)^T, (1,1,1)^T, (0,0,2)^T)$ in \mathbb{R}^3 .
 - (c) Compute the projection matrix onto $span((1, ..., 1)^T)$ in \mathbb{R}^n .

(d) Compute the projection matrix onto $span((0, ..., 0)^T)$ in \mathbb{R}^n .

What is the rank of these matrices? What are their eigenvalues (including their multiplicities)?

Lecture 14: Fitted Values, Residuals

4. Suppose we are interested in the relationship between the height Y of tomato plants one month after being potted in soil a, b, or c.

Plants 1, ..., *n* are potted in soil *a*. Plants n + 1, ..., 2n are potted in soil *b*. Plants 2n + 1, ..., 3n are potted in soil *c*.

(a) Write a linear model for this setting of the form

$$E(Y_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}$$

where x_{i1} and x_{i2} are binary variables taking on the values 0 and 1.

- (b) Express the parameter vector for your model in terms of the mean heights for a tomato plant grown in soil *a* and/or *b* and/or *c*.
- (c) Find the least squares estimate of β for your model.
- (d) Express the fitted values for your model in terms of appropriate sample means based on the Y_i.

(Harder: how many solutions are there to (a)? How do the fitted values change in each case?)

- Consider a simple linear regression model, EY_i = β₁ + β₂x_i (i = 1, ..., n), where β₁ and β₂ are unknown, the second order assumptions hold and Var(Y_i) = σ² > 0. Suppose moreover that at least two of the x_i are distinct. Let e = (e₁, ..., e_n)^T be the vector of residuals. Compute Cov(e).
- 6. In a linear model satisfying the second order assumptions, E(Y) = β₁x₁+···+β_px_p, where x₁,..., x_p are the p columns of the design matrix. For each of the two statements below, state whether it is true or false, justifying your answer in each case.
 - (a) If the vectors $x_1, ..., x_p$ are mutually orthogonal, then the residuals are uncorrelated.

- (b) If a is a constant vector which is orthogonal to each x_i , then a is orthogonal to the vector of residuals.
- 7. In a study of the effect of thermal pollution on fish, the proportion of a certain variety of sunfish surviving a fixed level of thermal pollution was determined by Matis and Wehrly (1979) for various exposure times. The following paired data were reported on scaled time (x) versus proportion surviving (y).

		0.15								
у	1.00	0.95	0.95	0.9	0.85	0.7	0.65	0.60	0.55	0.40

- (a) Plot the paired data as points in an x-y coordinate system.
- (b) Assuming a straight line regression compute the least squares estimates of β_0 (the intercept) and β_1 (the slope).
- (c) Estimate $E(Y) = \beta_0 + \beta_1 x$ if the exposure time is x = 0.325 units.
- (d) Compute the residual sum of squares and give an unbiased estimate of $\sigma^2 = Var(Y)$.