Problem Sheet 8 Solutions

MATH50011 Statistical Modelling 1

Week 9

Lecture 16: Multivariate Normal Distributions

- 1. Let X and B be independent random variables such that $X \sim N(0, 1)$ and $B \in \{-1, 1\}$ with $P(B = 1) = P(B = -1) = \frac{1}{2}$. Let Z = XB.
 - (a) Find Cov(X, Z).
 - (b) Show that $Z \sim N(0, 1)$.
 - (c) Are X and Z independent?

Solution. $E(XZ) = E(X^2)E(B) = 0$, E(X)E(Z) = 0. Hence, Cov(X, Z) = E(XZ) - E(X)E(Z) = 0. $Z \sim N(0, 1)$. Indeed,

$$egin{aligned} \mathsf{P}(Z \leq t) &= \mathsf{P}(X \leq t | B = 1) \mathsf{P}(B = 1) + \mathsf{P}(-X \leq t | B = -1) \mathsf{P}(B = -1) \ &= \mathsf{P}(X \leq t) rac{1}{2} + \mathsf{P}(-X \leq t) rac{1}{2} = rac{1}{2} (\Phi(t) + 1 - \Phi(-t)) = \Phi(t), \end{aligned}$$

where Φ is the cdf of a standard normal r.v.

Applying continuous functions to independent random variables preserves independence. If X and Z were independent then so would |X| and |Z|.

However, |X| = |Z| and they are not constant - showing that |X| and |Z| are not independent.

- 2. Suppose $X \sim N\left(\begin{pmatrix} 2\\ 3 \end{pmatrix}, \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}\right)$.
 - (a) What is the distribution of $Z = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} X + \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix}$?
 - (b) Are any of the components of Z independent?
 - (c) Let $Y \sim N\left(\begin{pmatrix} 2\\3\\2 \end{pmatrix}, \begin{pmatrix} 2&1&0\\1&2&0\\0&0&9 \end{pmatrix}\right)$. What components of Y are independent?

Solution.
$$E(Z) = \begin{pmatrix} 5\\3\\2 \end{pmatrix} + \begin{pmatrix} -1\\-3\\2 \end{pmatrix} = \begin{pmatrix} 4\\0\\4 \end{pmatrix} Cov(Z) = \begin{pmatrix} 1 & 1\\0 & 1\\1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1\\1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1\\1 & 1 & 0\\1 & 0 & 1 \end{pmatrix}$$

Thus,
 $N\left(\begin{pmatrix} 4\\0\\4 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 1\\1 & 1 & 0\\1 & 0 & 1 \end{pmatrix}\right)$
Zo and Zo are independent, as

 Z_2 and Z_3 are independent, as

$$\begin{pmatrix} Z_2 \\ Z_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} Z \sim N\left(\begin{pmatrix} 0 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

 (Y_1, Y_2) and Y_3 are independent.

$$\begin{pmatrix} \mathbf{Y} \\ \mathbf{X} \end{pmatrix} \sim \mathbf{N} \left(\begin{pmatrix} \mu_{\mathbf{Y}} \\ \mu_{\mathbf{X}} \end{pmatrix}, \begin{pmatrix} \sigma_{\mathbf{Y}}^2 & \rho \sigma_{\mathbf{Y}} \sigma_{\mathbf{X}} \\ \rho \sigma_{\mathbf{Y}} \sigma_{\mathbf{X}} & \sigma_{\mathbf{X}}^2 \end{pmatrix} \right).$$

- (a) Find the conditional distribution of Y|X = x (it will be a univariate normal distribution).
- (b) Express the conditional mean E(Y|X = x) as a linear function $\beta_0 + \beta_1 x$. What are β_0 and β_1 in terms of the parameters of the bivariate normal distribution?

Solution.

(a) Using the formula $f_{y|x}(y|x) = f_{x,y}(x, y)/f_x(x)$, we find that

$$Y|X = x \sim \mathcal{N}(\mu_Y + \rho(\sigma_Y/\sigma_X)(x - \mu_x), \sigma_Y^2(1 - \rho))$$

(b) The conditional expectation is

$$E(Y|X=x) = \mu_Y + \rho(\sigma_Y/\sigma_X)(x-\mu_x) = \beta_0 + \beta_1 x$$

for $\beta_1 = \rho(\sigma_Y / \sigma_X)$ and $\beta_0 = \mu_Y - \beta_1 \mu_X$. Hence, the conditional distributions for a bivariate normal distribution induce a linear model for E(Y|X = x).

Lecture 17: Distributions and Independence Results

4. In the lecture we had the following definition:

Let $Z \sim N(\mu, I_n)$, where $\mu \in \mathbb{R}^n$. $U = Z^T Z$ is said to have a *non-central* χ^2 -distribution with n degrees of freedom (d.f.) and non-centrality parameter $\delta = \sqrt{\mu^T \mu}$. Notation: $U \sim \chi_n^2(\delta)$.

- (a) Show that the $\chi_n^2(\delta)$ -distribution depends on μ only through δ .
- (b) Show that $E(U) = n + \delta^2$ and $Var(U) = 2n + 4\delta^2$.
- (c) Show that if $U_i \sim \chi^2_{n_i}(\delta_i)$, i = 1, ..., k, and $U_1, ..., U_k$ are independent then $\sum_{i=1}^k U_i \sim \chi^2_{\sum_i n_i}(\sqrt{\sum \delta_i^2})$.

Solution.

(a) Will show that the mgf of U equals

$$M_U(t) = \frac{1}{(1-2t)^{n/2}} \exp\left(\frac{t\delta^2}{1-2t}\right)$$

Indeed, $M_U(t) = E(e^{t\sum_i Z_i^2}) = \prod_i E(e^{tZ_i^2})$ (independence) Furthermore,

$$E(e^{tZ_i^2}) = \int e^{tz^2} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(z-\mu_i)^2}{2}\right) \int z$$

= $\int \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\underbrace{(z-\mu_i)^2 - 2tz^2}_{1-2t}z^2\right)\right) \int z$ (compl. the square)
= $(1-2t)(z^2 - 2\frac{\mu_i}{1-2t}z + \frac{\mu_i^2}{1-2t})$
= $(1-2t)(z - \frac{\mu_i}{1-2t})^2 - \frac{\mu_i^2}{1-2t} + \mu_i^2$
= $(1-2t)(z - \frac{\mu_i}{1-2t})^2 - 2\frac{t\mu_i^2}{1-2t}$
= $\exp\left(\frac{\mu_i^2 t}{1-2t}\right) \frac{1}{\sqrt{1-2t}} \underbrace{\int (\text{normal pdf}) dz}_{=1}$

- (b) Directly using rules for *E*, *Var* or quicker from the MGF.
- (c) Is immediate by considering the MGFs of the U_i (which we have computed in the first part of this question).
- 5. In the lectures, we showed that for a sequence $T_n \sim t_n(0)$, $T \rightarrow_d N(0, 1)$. Similar results can be derived for the χ^2_n and $F_{m,n}$ distributions.
 - (a) Let $Z_1, ..., Z_n$ be iid N(0, 1) and define $U_n = \sum_i Z_i^2$. Use large sample properties of U_n to derive a normal approximation to the χ_n^2 distribution.
 - (b) For *m* fixed and $n \to \infty$, show that $F_n \sim F_{m,n}$ converges in distribution to a χ^2_m random variable.

Solution.

(a) We see that $\bar{Z^2} = n^{-1}U_n$ so that, by the central limit theorem

$$\sqrt{n}(Z^2 - E(Z_1^2))
ightarrow_d N(0, Var(Z_1^2)).$$

Since $Z_1^2 \sim \chi_1^2$, we have $E(Z_1^2) = 1$ and $Var(Z_1^2) = 2$ (see question 1(b)). Putting this together, we have

$$\sqrt{n}(Z^2-1) \rightarrow_d N(0,2)$$

and, approximately,

$$\bar{Z^2} = n^{-1}U_n \sim N(1, 2/n)$$

Using linearity properties of the normal distribution, we arrive at the approximation $U_n \sim$

N(n,2n). Since $U_n \sim \chi^2_n$, we observe that the approximation is exactly

$$U_n \sim N(E(U_n), Var(U_n)).$$

(b) The result as stated holds for m=1. Let $U_m\sim \chi^2_m$ be independent of $V_n\sim \chi^2_n$. Then

$$F_n = \frac{U_m/m}{V_n/n} \sim F_{m,n}$$

However, V_n/n has the same distribution as $V_n/n = n^{-1} \sum_{i=1}^n W_i$ where the W_i s are iid χ_1^2 . By the weak law of large numbers, $V_n/n \rightarrow_p 1$. Hence, by Slutsky's lemma

$$F_n = rac{U_m/m}{V_n/n} = rac{1}{V_n/n} rac{U_m/m}{1}
ightarrow_p U_m/m$$

which is proportional to a $\chi^2_{\it m}$ random variable.

6. Revise the proofs of Lemmas 16-20 and the Fisher-Cochran theorem.

Solution. See notes.