Problem Sheet 8 Solutions

MATH50011 Statistical Modelling 1

Week 9

Lecture 16: Multivariate Normal Distributions

- 1. Let X and B be independent random variables such that $X \sim N(0, 1)$ and $B \in \{-1, 1\}$ with $P(B = 1)$ $1) = P(B = -1) = \frac{1}{2}$. Let $Z = XB$.
	- (a) Find $Cov(X, Z)$.
	- (b) Show that $Z \sim N(0, 1)$.
	- (c) Are X and Z independent?

Solution. $E(XZ) = E(X^2)E(B) = 0$, $E(X)E(Z) = 0$. Hence, $Cov(X, Z) = E(XZ) - E(X)E(Z) = 0$. $Z \sim N(0, 1)$. Indeed,

$$
P(Z \le t) = P(X \le t | B = 1)P(B = 1) + P(-X \le t | B = -1)P(B = -1)
$$

= $P(X \le t) \frac{1}{2} + P(-X \le t) \frac{1}{2} = \frac{1}{2}(\Phi(t) + 1 - \Phi(-t)) = \Phi(t),$

where Φ is the cdf of a standard normal r.v.

Applying continuous functions to independent random variables preserves independence. If X and Z were independent then so would $|X|$ and $|Z|$.

However, $|X| = |Z|$ and they are not constant - showing that $|X|$ and $|Z|$ are not independent.

- 2. Suppose $X \sim N \left(\frac{2}{3} \right)$ 3 \setminus , $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
	- (a) What is the distribution of $Z=$ $\sqrt{ }$ $\overline{ }$ 1 1 0 1 1 0 \setminus $X +$ $\sqrt{ }$ $\overline{ }$ −1 −3 2 \setminus \int ?
	- (b) Are any of the components of Z independent?
	- (c) Let $Y\sim N$ $\sqrt{ }$ $\overline{}$ $\sqrt{ }$ $\overline{}$ 2 3 2 \setminus $\vert \cdot$ $\sqrt{ }$ $\overline{ }$ 2 1 0 1 2 0 0 0 9 \setminus $\Big\}$ \setminus . What components of ^Y are independent?

Solution.
$$
E(Z) = \begin{pmatrix} 5 \ 3 \ 2 \end{pmatrix} + \begin{pmatrix} -1 \ -3 \ 2 \end{pmatrix} = \begin{pmatrix} 4 \ 0 \ 4 \end{pmatrix}
$$
 $Cov(Z) = \begin{pmatrix} 1 & 1 \ 0 & 1 \ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 0 \ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \ 1 & 1 & 0 \ 1 & 0 & 1 \end{pmatrix}$
Thus,

$$
N\left(\begin{pmatrix} 4 \ 0 \ 4 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 1 \ 1 & 1 & 0 \ 1 & 0 & 1 \end{pmatrix}\right)
$$
 Z_2 and Z_3 are independent, as

 Z_2 and Z_3 are independent, as

$$
\begin{pmatrix} Z_2 \\ Z_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} Z \sim N \left(\begin{pmatrix} 0 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)
$$

 (Y_1, Y_2) and Y_3 are independent.

$$
3. \ \mathsf{Let}
$$

$$
\begin{pmatrix} Y \\ X \end{pmatrix} \sim N \left(\begin{pmatrix} \mu_Y \\ \mu_X \end{pmatrix}, \begin{pmatrix} \sigma_Y^2 & \rho \sigma_Y \sigma_X \\ \rho \sigma_Y \sigma_X & \sigma_X^2 \end{pmatrix} \right).
$$

- (a) Find the conditional distribution of $Y|X=x$ (it will be a univariate normal distribution).
- (b) Express the conditional mean $E(Y|X=x)$ as a linear function $\beta_0 + \beta_1x$. What are β_0 and β_1 in terms of the parameters of the bivariate normal distribution?

Solution.

(a) Using the formula $f_{y|x}(y|x) = f_{x,y}(x, y)/f_{x}(x)$, we find that

$$
Y|X = x \sim N(\mu_Y + \rho(\sigma_Y/\sigma_X)(x - \mu_X), \sigma_Y^2(1 - \rho))
$$

(b) The conditional expectation is

$$
E(Y|X = x) = \mu_Y + \rho(\sigma_Y/\sigma_X)(x - \mu_X) = \beta_0 + \beta_1 x
$$

for $\beta_1 = \rho(\sigma_Y/\sigma_X)$ and $\beta_0 = \mu_Y - \beta_1\mu_X$. Hence, the conditional distributions for a bivariate normal distribution induce a linear model for $E(Y|X=x)$.

Lecture 17: Distributions and Independence Results

4. In the lecture we had the following definition:

Let $Z \sim N(\mu, I_n)$, where $\mu \in \mathbb{R}^n$. $U = Z^T Z$ is said to have a *non-central* χ^2 -distribution with n degrees of freedom (d.f.) and non-centrality parameter $\delta = \sqrt{\mu^T \mu}$. Notation: $U \sim \chi_n^2(\delta)$.

- (a) Show that the $\chi^2_n(\delta)$ -distribution depends on μ only through δ .
- (b) Show that $E(U) = n + \delta^2$ and $Var(U) = 2n + 4\delta^2$.
- (c) Show that if $U_i\sim \chi^2_{n_i}(\delta_i)$, $i=1,...$, k , and $U_1,...$, U_k are independent then $\sum_{i=1}^k U_i\sim \chi^2_{\sum n_i}(\sqrt{\sum \delta_i^2})$.

Solution.

(a) Will show that the mgf of U equals

$$
M_U(t) = \frac{1}{(1-2t)^{n/2}} \exp\left(\frac{t\delta^2}{1-2t}\right)
$$

Indeed, $M_U(t)=E(e^{t\sum_i Z_i^2})=\prod_i E(e^{tZ_i^2})$ (independence) Furthermore,

$$
E(e^{tZ_i^2}) = \int e^{tz^2} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-(z-\mu_i)^2}{2}\right) \int z
$$

=
$$
\int \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{(z-\mu_i)^2 - 2tz^2}{(z-\mu_i)^2 - \frac{\mu_i^2}{1-2t}}\right)\right) \int z
$$
 (compl. the square)
=
$$
\frac{(-1-2t)(z^2 - 2\frac{\mu_i}{1-2t}z + \frac{\mu_i^2}{1-2t})}{z^2 - \frac{\mu_i^2}{1-2t}z + \frac{\mu_i^2}{1-2t}}
$$

=
$$
\exp\left(\frac{\mu_i^2 t}{1-2t}\right) \frac{1}{\sqrt{1-2t}} \underbrace{\int (\text{normal pdf}) dz}_{=1}
$$

- (b) Directly using rules for E , Var or quicker from the MGF.
- (c) Is immediate by considering the MGFs of the U_i (which we have computed in the first part of this question).
- 5. In the lectures, we showed that for a sequence $T_n \sim t_n(0)$, $T \to d$ $N(0, 1)$. Similar results can be derived for the χ^2_n and $F_{m,n}$ distributions.
	- (a) Let Z_1,\ldots,Z_n be iid $N(0,1)$ and define $U_n=\sum_iZ_i^2.$ Use large sample properties of U_n to derive a normal approximation to the χ^2_n distribution.
	- (b) For m fixed and $n \to \infty$, show that $F_n \sim F_{m,n}$ converges in distribution to a χ^2_m random variable.

Solution.

(a) We see that $\bar{Z}^2 = n^{-1} U_n$ so that, by the central limit theorem

$$
\sqrt{n}(\bar{Z}^2 - E(Z_1^2)) \rightarrow_d N(0, Var(Z_1^2)).
$$

Since $Z_1^2 \sim \chi_1^2$, we have $E(Z_1^2)=1$ and $Var(Z_1^2)=2$ (see question 1(b)). Putting this together, we have √

$$
\sqrt{n}(\bar{Z}^2-1)\to_d N(0,2)
$$

and, approximately,

$$
\bar{Z}^2 = n^{-1} U_n \sim N(1, 2/n).
$$

Using linearity properties of the normal distribution, we arrive at the approximation $U_n \sim$

 $N(n, 2n)$. Since $U_n \sim \chi^2_n$, we observe that the approximation is exactly

$$
U_n \sim N(E(U_n), \text{Var}(U_n)).
$$

(b) The result as stated holds for $m = 1$. Let $U_m \sim \chi_m^2$ be independent of $V_n \sim \chi_n^2$. Then

$$
F_n=\frac{U_m/m}{V_n/n}\sim F_{m,n}.
$$

However, V_n/n has the same distribution as $V_n/n = n^{-1} \sum_{i=1}^n W_i$ where the W_i s are iid χ_1^2 . By the weak law of large numbers, $\left| {{V_n}/n} \right\rangle _p$ 1. Hence, by Slutsky's lemma

$$
\digamma_n = \frac{U_m/m}{V_n/n} = \frac{1}{V_n/n} \frac{U_m/m}{1} \rightarrow_P U_m/m
$$

which is proportional to a χ^2_m random variable.

6. Revise the proofs of Lemmas 16-20 and the Fisher-Cochran theorem.

Solution. See notes.