
Problem Sheet 8 Solutions
MATH50011

Statistical Modelling 1

Week 9

Lecture 16: Multivariate Normal Distributions
1. Let X and B be independent random variables such that X ∼ N(0, 1) and B ∈ {−1, 1} with P(B =

1) = P(B = −1) = 1
2
. Let Z = XB .

(a) Find Cov(X ,Z ).
(b) Show that Z ∼ N(0, 1).
(c) Are X and Z independent?

Solution. E (XZ ) = E (X 2)E (B) = 0, E (X )E (Z ) = 0.
Hence, Cov(X ,Z ) = E (XZ )− E (X )E (Z ) = 0.
Z ∼ N(0, 1). Indeed,

P(Z ≤ t) = P(X ≤ t|B = 1)P(B = 1) + P(−X ≤ t|B = −1)P(B = −1)

= P(X ≤ t)
1

2
+ P(−X ≤ t)

1

2
=

1

2
(Φ(t) + 1− Φ(−t)) = Φ(t),

where Φ is the cdf of a standard normal r.v.
Applying continuous functions to independent random variables preserves independence. If X and
Z were independent then so would |X | and |Z |.
However, |X | = |Z | and they are not constant - showing that |X | and |Z | are not independent.

2. Suppose X ∼ N

((
2
3

)
,

(
1 0
0 1

))
.

(a) What is the distribution of Z =

1 1
0 1
1 0

X +

−1
−3
2

?
(b) Are any of the components of Z independent?

(c) Let Y ∼ N


2

3
2

 ,

2 1 0
1 2 0
0 0 9


. What components of Y are independent?
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Solution. E (Z ) =

5
3
2

+

−1
−3
2

 =

4
0
4

 Cov(Z ) =

1 1
0 1
1 0

(1 0 1
1 1 0

)
=

2 1 1
1 1 0
1 0 1


Thus,

N


4

0
4

 ,

2 1 1
1 1 0
1 0 1




Z2 and Z3 are independent, as(
Z2

Z3

)
=

(
0 1 0
0 0 1

)
Z ∼ N

((
0
4

)
,

(
1 0
0 1

))

(Y1,Y2) and Y3 are independent.

3. Let (
Y
X

)
∼ N

((
µY

µX

)
,

(
σ2
Y ρσYσX

ρσYσX σ2
X

))
.

(a) Find the conditional distribution of Y |X = x (it will be a univariate normal distribution).
(b) Express the conditional mean E (Y |X = x) as a linear function β0 + β1x . What are β0 and β1 in

terms of the parameters of the bivariate normal distribution?

Solution.

(a) Using the formula fy |x(y |x) = fx ,y (x , y)/fx(x), we find that

Y |X = x ∼ N(µY + ρ(σY /σX )(x − µx),σ2
Y (1− ρ))

(b) The conditional expectation is

E (Y |X = x) = µY + ρ(σY /σX )(x − µx) = β0 + β1x

for β1 = ρ(σY /σX ) and β0 = µY − β1µX . Hence, the conditional distributions for a bivariate
normal distribution induce a linear model for E (Y |X = x).

Lecture 17: Distributions and Independence Results

4. In the lecture we had the following definition:
Let Z ∼ N(µ, In), where µ ∈ Rn. U = ZTZ is said to have a non-central χ2-distribution with n

degrees of freedom (d.f.) and non-centrality parameter δ =
√
µTµ. Notation: U ∼ χ2

n(δ).

(a) Show that the χ2
n(δ)-distribution depends on µ only through δ.

(b) Show that E (U) = n + δ2 and Var(U) = 2n + 4δ2.

(c) Show that if Ui ∼ χ2
ni

(δi), i = 1, ... , k , and U1, ... ,Uk are independent then
∑k

i=1 Ui ∼ χ2∑
ni

(
√∑

δ2i ).
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Hint: Use moment-generating functions.

Solution.

(a) Will show that the mgf of U equals

MU(t) =
1

(1− 2t)n/2
exp

(
tδ2

1− 2t

)

Indeed, MU(t) = E (et
∑

i
Z2
i ) =

∏
i E (etZ

2
i ) (independence)

Furthermore,

E (etZ
2
i ) =

∫
etz

2 1√
2π

exp

(
−(z − µi)

2

2

)∫
z

=
∫ 1√

2π
exp

(
− 1

2
( (z − µi)

2 − 2tz2︸ ︷︷ ︸
=(1−2t)(z2−2 µi

1−2t
z+

µ2
i

1−2t
)

=(1−2t)(z− µi
1−2t

)2−
µ2
i

1−2t
+µ2i

=(1−2t)(z− µi
1−2t

)2−2
tµ2

i
1−2t

)

)∫
z (compl. the square)

= exp(
µ2
i t

1− 2t
)

1√
1− 2t

∫
(normal pdf)dz︸ ︷︷ ︸

=1

(b) Directly using rules for E , Var or quicker from the MGF.
(c) Is immediate by considering the MGFs of the Ui (which we have computed in the first part

of this question).

5. In the lectures, we showed that for a sequence Tn ∼ tn(0), T →d N(0, 1). Similar results can be
derived for the χ2

n and Fm,n distributions.

(a) Let Z1, ... ,Zn be iid N(0, 1) and define Un =
∑

i Z
2
i . Use large sample properties of Un to derive

a normal approximation to the χ2
n distribution.

(b) For m fixed and n→∞, show that Fn ∼ Fm,n converges in distribution to a χ2
m random variable.

Solution.

(a) We see that Z̄ 2 = n−1Un so that, by the central limit theorem
√
n(Z̄ 2 − E (Z 2

1 ))→d N(0,Var(Z 2
1 )).

Since Z 2
1 ∼ χ2

1, we have E (Z 2
1 ) = 1 and Var(Z 2

1 ) = 2 (see question 1(b)). Putting this
together, we have √

n(Z̄ 2 − 1)→d N(0, 2)

and, approximately,
Z̄ 2 = n−1Un ∼ N(1, 2/n).

Using linearity properties of the normal distribution, we arrive at the approximation Un ∼
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N(n, 2n). Since Un ∼ χ2
n, we observe that the approximation is exactly

Un ∼ N(E (Un),Var(Un)).

(b) The result as stated holds for m = 1. Let Um ∼ χ2
m be independent of Vn ∼ χ2

n. Then

Fn =
Um/m

Vn/n
∼ Fm,n.

However, Vn/n has the same distribution as Vn/n = n−1
∑n

i=1Wi where the Wis are iid χ2
1.

By the weak law of large numbers, Vn/n→p 1. Hence, by Slutsky’s lemma

Fn =
Um/m

Vn/n
=

1

Vn/n

Um/m

1
→p Um/m

which is proportional to a χ2
m random variable.

6. Revise the proofs of Lemmas 16-20 and the Fisher-Cochran theorem.

Solution. See notes.
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