Imperial College London

Problem Sheet 8

MATH50011 Statistical Modelling 1

Week 9

Lecture 15: Multivariate Normal Distributions

- 1. Let X and B be independent random variables such that $X \sim N(0, 1)$ and $B \in \{-1, 1\}$ with $P(B = 1) = P(B = -1) = \frac{1}{2}$. Let Z = XB.
 - (a) Find Cov(X, Z).
 - (b) Show that $Z \sim N(0, 1)$.
 - (c) Are X and Z independent?
- 2. Suppose $X \sim N\left(\begin{pmatrix} 2\\ 3 \end{pmatrix}, \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}\right)$.

(a) What is the distribution of
$$Z = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} X + \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix}$$
?

(b) Are any of the components of Z independent?

(c) Let
$$Y \sim N\left(\begin{pmatrix} 2\\3\\2 \end{pmatrix}, \begin{pmatrix} 2&1&0\\1&2&0\\0&0&9 \end{pmatrix}\right)$$
. What components of Y are independent?

3. Let

$$\begin{pmatrix} \mathbf{Y} \\ \mathbf{X} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \mu_{\mathbf{Y}} \\ \mu_{\mathbf{X}} \end{pmatrix}, \begin{pmatrix} \sigma_{\mathbf{Y}}^2 & \rho\sigma_{\mathbf{Y}}\sigma_{\mathbf{X}} \\ \rho\sigma_{\mathbf{Y}}\sigma_{\mathbf{X}} & \sigma_{\mathbf{X}}^2 \end{pmatrix}\right).$$

(a) Find the conditional distribution of Y|X = x (it will be a univariate normal distribution).

(b) Express the conditional mean E(Y|X = x) as a linear function $\beta_0 + \beta_1 x$. What are β_0 and β_1 in terms of the parameters of the bivariate normal distribution?

Lecture 16: Distributions and Independence Results

4. In the lecture we had the following definition:

Let $Z \sim N(\mu, I_n)$, where $\mu \in \mathbb{R}^n$. $U = Z^T Z$ is said to have a *non-central* χ^2 -distribution with *n* degrees of freedom (d.f.) and non-centrality parameter $\delta = \sqrt{\mu^T \mu}$. Notation: $U \sim \chi_n^2(\delta)$.

- (a) Show that the $\chi_n^2(\delta)$ -distribution depends on μ only through δ .
- (b) Show that $E(U) = n + \delta^2$ and $Var(U) = 2n + 4\delta^2$.
- (c) Show that if $U_i \sim \chi^2_{n_i}(\delta_i)$, i = 1, ..., k, and $U_1, ..., U_k$ are independent then $\sum_{i=1}^k U_i \sim \chi^2_{\sum_i n_i}(\sqrt{\sum \delta_i^2})$.

Hint: Use moment-generating functions.

- 5. In the lectures, we showed that for a sequence $T_n \sim t_n(0)$, $T \rightarrow_d N(0, 1)$. Similar results can be derived for the χ^2_n and $F_{m,n}$ distributions.
 - (a) Let $Z_1, ..., Z_n$ be iid N(0, 1) and define $U_n = \sum_i Z_i^2$. Use large sample properties of U_n to derive a normal approximation to the χ_n^2 distribution.
 - (b) For *m* fixed and $n \to \infty$, show that $F_n \sim F_{m,n}$ converges in distribution to a χ^2_m random variable.
- 6. Revise the proofs of Lemmas 15-19 and the Fisher-Cochran theorem.