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MATH50011

Statistical Modelling 1

Week 10

Lecture 17: Inference with Normal Theory Assumptions
1. Consider the simple linear model

Yi = β0 + β1xi + εi , i = 1, ... , n.

Assume that the full rank and normal theory assumptions hold.

(a) Describe how to test H0 : β1 = 0 against H1 : β1 6= 0 at level α using (i) a t-test; and
(ii) an F-test.

(b) Show that the p-values for the tests in (a) are equal.
(c) Derive a (1−α)× 100% confidence interval for E (Y |x0), where x0 is a fixed value of

the covariate.

Solution.

(a) Part (i) amounts to applying Lemma 22 using results for the simple linear model
studied in Example 52. We use the test statistic

t =
β̂1√

σ̂2/
∑n

i=1(xi − x̄)2
∼ tn−2

where σ̂2 = RSS/(n − 2). If P(|tn−2| > |t|) < α, then we reject H0 at level α.
In part (ii), we instead use the statistic

F =
RSS0 − RSS

RSS/(n − 2)
∼ F1,n−2

obtained by applying Lemma 23 with r = 2 and s = 1. Noting that RSS0 =∑n
i=1(Yi − Ȳ )2 and RSS =

∑n
i=1(Yi − β̂0 − β̂1xi)

2, some algebra yields

F =
β̂2

1

∑n
i=1(xi − x̄)2

σ̂2
.
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If P(F1,n−2 > F ) ≤ α, then we reject H0 at the α level.
(b) To see that the p-values for the tests in (a) are equal, we note that

t2 = F

and hence that the p-values satisfy P(|tn−2| > |t|) = P(t2
n−2 > t2) = P(F1,n−2 > F ).

(c) We will apply Lemma 22 with c = (1, x0)T . Note that, making use of results from
Example 52, we have

cT (XTX )−1c =
1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

.

From Lemma 22, we have that

β̂0 + β̂1x0 − E (Y |x0)√
σ̂2

(
1
n

+ (x0−x̄)2∑n

i=1
(xi−x̄)2

) ∼ tn−2.

Let τ be the value such that P(−τ < tn−2 < τ) = 1− α. Using standard rearrange-
ments for pivotal statistics, we have that

β̂0 + β̂1x0 ± τ

√√√√σ̂2

(
1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

)

is a (1− α)× 100% confidence interval for E (Y |x0).

2. Suppose we believe that the distribution of Y depends on covariates x1 and x2, and that
the relationship between Y and x1 depends on the value of x2. That is, we assume there
is an interaction between x1 and x2.
To allow for the interaction, we use the following linear model:

Yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi .

The term β3x1x2 is called an interaction term.
Now, assuming that the full rank and normal theory assumptions hold:

(a) Derive expressions for E (Yi |xi1 = x , xi2 = 0) and E (Yi |xi1 = x , xi2 = 1).

Solution. We have

E (Yi |xi1 = x , xi2 = 0) = β0 + β1xi1

E (Yi |xi1 = x , xi2 = 1) = β0 + β1xi1 + β2 + β3xi1 = β0 + β2 + (β1 + β3)xi1

which illustrates how, depending on the value of xi2, we obtain different lines of the
form a + bxi1 to describe the relationship between Y and x1.

(b) State a hypothesis in terms of the parameter vector that could be used to test for
the presence of an interaction between x1 and x2. Construct a level α test of your
hypothesis, clearly identifying the form of the test statistic and its distribution under
the null hypothesis.
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Solution. The null hypothesis is H0 : β3 = 0. A t-test based on Lemma 22 can be
used with test statistic

t =
β̂3√

V̂ar(β̂3)
∼ tn−4

where V̂ar(β̂3) = cT (XTX )−1cRSS/(n−4) for c = (0, 0, 0, 1)T , X the design matrix,
and RSS the residual sum of squares.

(c) State a hypothesis in terms of the parameter vector that could be used to test for the
presence of any effect of x1 on the distribution of Y . Construct a level α test of your
hypothesis, clearly identifying the form of the test statistic and its distribution under
the null hypothesis.

Solution. Now, the null hypothesis is H0 : β1 = β3 = 0. An F-test based on Lemma
23 can be used with statistic

F =
RSS0 − RSS

RSS

n − 4

2
∼ F2,n−4

where RSS0 is the residual sum of squares based on the design matrix X0 =
(

1 x2

)
and RSS is the residual sum of squares based on the full model.

Lecture 18: Outliers, Under- and Over-fitting, WLS

3. Let Y = Xβ + ε and assume that E (ε) = 0 and Cov(ε) = σ2I . Moreover, assume that X
is an n× p matrix with full column rank. Let β̂ = (XTX )−1XTY denote the least squares
estimator of β under E (Y ) = Xβ).

(a) Suppose that you fit the model in which E (Y ) = Xβ when the true model is such
that E (Y ) = Xβ + Zγ. That is, the model is under fitted.
i. Show that β̂ is typically a biased estimator of β.
ii. Under which conditions on Z we have that β̂ is an unbiased estimator of β,
iii. Compute Cov(β̂).

Solution. Using properties of expectations, we find that

E (β̂) = E [(XTX )−1XTY ] = (XTX )−1XTE (Y )

= (XTX )−1XT (Xβ + Zγ)

= β + (XTX )−1XTZγ.

Because E (β̂) 6= β, we conclude that β̂ is typically a biased estimator of β. However,
if the columns of X are orthogonal to the columns of Z we have XTZ = 0. Thus, in
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this case, the estimator would be unbiased. (Also, if γ = 0, the larger model reduces
to E (Y ) = Xβ.)
Moreover, using properties of covariance,

Cov(β̂) = (XTX )−1XTCov(Y )X (XTX )−1 = σ2(XTX )−1.

(b) Let X = (X1,X2), where X1 denotes the matrix with the first k columns of X . Suppose
that you fit the model E (Y ) = Xβ when the true model is E (Y ) = X1β. That is,
the model is over fitted.
i. Show that the fitted model provides an unbiased estimator of the true model.
ii. Show that the elements of β̂ have in general higher variance than would result

from fitting the true (reduced) model.
iii. Under which conditions on X the elements of β̂ do have higher variance than

would result from fitting the true (reduced) model.

Solution. Using properties of expectations

E (β̂) = (XTX )−1XTE (Y )

= (XTX )−1XTX1β1

= (XTX )−1XT (X1,X2)

(
β1

0

)

=

(
β1

0

)
.

This implies that E (X β̂) = X1β1 as claimed.
Furthermore, we have

Cov(β̂) = σ2(XTX )−1

= σ2

(
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

)−1

= σ2

(
(XT

1 X1)−1 + FE−1FT −FE−1

−E−1FT E−1

)

where F = (XT
1 X1)−1XT

1 X2, and

E = XT
2 X2 − XT

2 X1(XT
1 X1)−1XT

1 X2 = XT
2 (I − Pspan(X1))X2.

Therefore, Cov(β̂) = σ2[(XT
1 X1)−1 + FE−1FT ], compared with σ2(XT

1 X1)−1

which would result from fitting the true model E (Y ) = X1β1. using the fact that
FE−1FT is positive definite unless XT

1 X2 = 0, this implies that the variance of
individual components of β̂1 will be inflated by overfitting unless the unnecessary
fitted terms are orthogonal to the other terms in the model. The lesson is that
over fitting does not introduce bias into regression coefficient estimates, but it
does inflate their variances.
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R lab: Hypothesis testing in linear models

4. The file psa.csv is a comma-separated file containing data on 28 men having hormonally
treated prostate cancer. The first line of the file contains the following variable names.
Each successive line contains data pertinent to one of the 28 patients.

nadirpsa = lowest PSA value attained post therapy (ng/ml)
grade = tumor grade (1= least aggressive, 3= most)
age = patient’s age (years)

obstime = time in remission (months)

(a) Define a linear model for E (logYi) where Yi is the time spent in remission by the ith
patient. In your model, include nadirpsa, age, as well as grade (treated as a 3-level
categorical variable). How many parameters are in your model?

Solution. There are several correct solutions with different parametrizations (espe-
cially for grade). One option is to define

E (logYi) = β0 + β1nadirpsai + β2agei + β3grade2i + β4grade3i

where grade2i = 1 if the ith individual has a grade 2 tumor and is 0 otherwise and
grade3i = 1 if the ith individual has a grade 3 tumor and is 0 otherwise.
There are p = 5 parameters in the linear model.

(b) Using the software of your choice, obtain the least squares estimates corresponding
to the linear model you specified in part (a).

Solution. We can use R to fit the above model by running the commands

psa <- read.csv("psa.csv")
fit <- lm(log(obstime)~nadirpsa+age+factor(grade), data=psa)
summary(fit)

We find the following estimates
β̂0 β̂1 β̂2 β̂3 β̂4

3.149 -0.020 0.005 -0.752 -0.424
(c) Is there evidence that nadirpsa is associated with time in remission? Implement a

hypothesis test to justify your conclusion.

Solution. We will test the hypothesis that H0 : β1 = 0 against H1 : β 6= 0 at level
α = 0.05. This can be read directly from the summary(fit) output, where we see
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.148707 2.116496 1.488 0.1504
nadirpsa -0.020094 0.003673 -5.470 1.46e-05 ***
age 0.004545 0.033651 0.135 0.8937
factor(grade)2 -0.751607 0.386583 -1.944 0.0642 .
factor(grade)3 -0.423992 0.397401 -1.067 0.2971

The last column of the row for nadirpsa in the output provides the p-value from
the test we are interested in. Since 1.46 × 10−5 is less than 0.05, we reject the null
hypothesis.

(d) Modify the linear model in (a) to allow for an interaction between tumor grade and
age. How many parameters are in your model?

Solution. There are several correct solutions with different parametrizations (espe-
cially for grade). One option is to define

E (logYi) = β0+β1nadirpsai+β2agei+β3grade2i+β4grade3i+β5ageigrade2i+β6ageigrade3i

where grade2i = 1 if the ith individual has a grade 2 tumor and is 0 otherwise and
grade3i = 1 if the ith individual has a grade 3 tumor and is 0 otherwise.
There are p = 7 parameters in the linear model.

(e) Using the software of your choice, obtain the least squares estimates corresponding
to the linear model you specified in part (d).

Solution. We can use R to fit the above model by running the commands

psa <- read.csv("psa.csv")
fit <- lm(log(obstime)~nadirpsa+age*factor(grade), data=psa)
summary(fit)

We find the following estimates
β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

6.913 -0.019 -0.056 -4.584 -6.570 0.061 0.095
(f) Is there evidence of an interaction between tumor grade and age? Implement a

hypothesis test to justify your conclusion.

Solution. We will test the hypothesis that H0 : β5 = β6 at level α = 0.05. We can
do this in R using the commands

psa <- read.csv("psa.csv")
fit <- lm(log(obstime)~nadirpsa+age*factor(grade), data=psa)
fit0 <- lm(log(obstime)~nadirpsa+age+factor(grade), data=psa)

# "by hand" based on Lemma 23 with n=28, r=7, s=5
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RSS <- sum(fit$residuals^2)
RSS0 <- sum(fit0$residuals^2)
F.stat <- ((RSS0-RSS)/2) / (RSS/21)
p.value <- pf(F.stat, df1 = 2, df2 = 21, lower=FALSE)

# with built-in functions only
anova(fit0,fit)

Whether we use the "by hand" or built-in implementation, the resulting p-value is 0.64
means that the estimates we obtained (or more extreme estimates) are fairly common
under H0. We do not reject the null hypothesis.
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