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1 Rings

1.1 Basic Definitions and Examples
Definition 1.1. A monoid (M,-) a set M and binary op -: M x M — M, with 1)y € M s.t
em-lyy=m=1y-mVme M
e Operation - is associative, x - (y - z) = (z - y) - 2
Definition 1.4. A ring a set (R,+: Rx R — R,-: R x R — R) with elements Or,1gr € R s.t
e (R,+) an abelian group with identity Or
e (R,-) a monoid with identity 1g
e Distributivity: a(b+ c¢) = ab+ ac, (b+ ¢)a = ba + ca
Note: write additive inverse as —r
Definition 1.6. Say R a ring commutative if a-b=1>b-a,Va,b € R
Definition 1.7. For S C R, R a ring. Say S a subring of R if
e Op,1p €S
e +,.- make S into a ring with identities Og, 1g
We write S < R
Proposition 1.12. R a ring, 1 =0 <= R = {0} the trivial ring
Definition 1.13. u € R a unit, if w € R s.tu-v=v-u=1p
R* C R, the set of units in R
Definition 1.14. A division ring a non-trivial ring, s.t every u # Or € R a unit.
R* = R\{0}
A Field a commutative division ring

Proposition 1.17. Subset R* C R a group under multiplication.

1.2 Constructions of rings
Example 1.18. R, S rings = R x S the product ring a ring via
(rys)+ (', sy =(r+r',s+5) (r,s)-(r',s)=(r-1",s-5)
Example 1.21. R a ring, the polynomial ring R[X] a ring
RX|={f=a+a1 X+...a,X" | a; € R}
So for f=3" ;i X', g= Zle b; X, we have ring ops

max{n,m}

fHg:= > (ai+b)X’

r=0

n+k i
[rg:=2 D by | X*

i=0 \ j=0

Note: call mazimal n s.t a, # Og the deg(f)
For f of degree n > 0, if a, =1 say f is monic.

Notation: Write R[X,Y] for (R[X])[Y] polynomial ring in 2 variables, and in general R[Xj,...

(- (RIX][Xe] - )[Xn])

» X



Example 1.23. Laurent polynomials on R the set R[X, X 1]
RIX,X 1 = {f = ZaiXi | only finitely many a; # 0}
i€z

Operations defined similarly to R[X]
We have here the set of monomials { X' :i € Z} form a group under multiplication.

Example 1.24. G a group, R a ring. Define the Group Ring R[G]:

R[G] := Zagg\ageR,|{g€G:ag7é0}\<oo
geG

With addition and multiplication as follows

Z agg | + Z beg | = Z(ag +rbg)g

geG geG geG
Zagg . Zbgg = Z (Z ap ‘R bh—lg>9
geG geG g€G \heaG

We have that R[X, X '] = R[C],Co = (Z,+)
If R commutative ring, then R|G] commutative <= G abelian.

Example 1.25.
M, (R) = set of n x n matrices, R a ring

A ring over the usual addition and multiplication

Example 1.26. Abelian group A
End(A)={f:A— A| f a group homomorphism}

A ring with ops
(f +Enaa) 9)(@) == (@) +a9(x) ([ Enaa) 9)(x) = (fog)(z)
Group of units of End(A) is the automorphism group of A denoted Aut(A)

1.3 Homomorphisms, ideals and quotients

Definition 1.27. R, S rings. ¢ : R — S a ring homomorphism if

1. @(r1 +12) = p(r1) + ¢(r2)

2. ¢(0r) =0g
3. p(r1-r2) = p(r1) + ¢(r2)
4. p(1r) =15

Definition 1.28. An isomorphism, A bijective homomorphism ¢

Definition 1.29. Kernel of homomorphism ¢ : R — S
ker(¢) ={r e R: p(r) =0s}
Definition 1.30. Image of homomorphism ¢ : R — S

im(p) ={s€S:s=¢(r), for somer € R}



Lemma 1.31. Homomorphism ¢ : R — S injective <= ker o = {0g}
Definition 1.32. A ideal I C R an abelian subgroup s.t

ri € I, left ideal

Viel,r€R ) .
irel, right ideal

This the strong closure property.
A two-sided or bi-ideal both a left and right ideal.

Lemma 1.33. ¢ : R — S a homomorphism, then ker(¢) C R a two-sided ideal

Definition 1.35. Proper ideal, an ideal I # R
For every proper ideal I, we have 1 ¢ I = not a subring.
Even more generally, proper ideals do not contain any unit.

if | # R = I C R\R"

Definition 1.38. For element a € R, write the ideal generated by a as,
(@) =Ra={r-a|reR}CR
The ideal generated by aq,...ay
(a1,...,an) = {ria1 +...7pay | r; € R}
Definition 1.39. A C R define ideal generated by A as
(A) = R- A= {sumgcarq-a|r, € R, only finitely many non-zero}

Definition 1.40. Say ideal I principal if I = (a) for some a € R

Definition 1.42. Let I C R a two-sided ideal
Quotient ring R/I ={r+1|r € R} a ring with O + 1,1+ I

(rm+D+(re+D)=(r14+r)+I, (ri+ID) -(re+I)=rro+1
Proposition 1.43. Quotient ring a ring, and function
o:R—R/I,r—r+1
a ring homomorphism.

Proposition 1.47. (Euclidean algorithm for polynomials)
Let F a field, and f,g € F[X] = 3r,q € F[X] s.t

f=g9q+r
with degr < deg g

Theorem 1.49. (First isomorphism theorem,)
Let ¢ : R — S a ring homomorphism, ker(p) C R a 2-sided ideal and

R
ker(p)

Theorem 1.50. (Second isomorphism theorem,)
R < S be subrings, J C S a 2-sided ideal. Then

(i) R+ J={r+j:reR,jeJ} <S asubring
(ii) J C R+ J and JN R C R are both 2-sided ideal
(111) ¥={T+J:T€R}S§S§asubring, and B~ = B+J

Theorem 1.51. (Third isomorphism theorem,)
Let R a ring, I,J C R 2-sided ideals s.t I C J Then J/I C R/I a 2-sided ideal and

(B)=5

=im(p) < S



2 Integral Domains

2.1 Integral domains, maximal and prime ideals

Definition 2.1. R a commutative ring. Element x € R a zero divisor if t 20,3y #0 s.tx-y=0€ R
Definition 2.2. Integral domain (ID) a non-trivial commutative ring without zero divisors
a ring where ifab=0 = a=00rb=0
Lemma 2.6. R a finite ring, and integral domain = R a field.
Lemma 2.7. R an integral domain. Then R[X] an integral domain

Lemma 2.9. A non-trivial commutative ring R a field < its only ideals are {0} and R

Definition 2.10. An ideal I of ring R maximal if I # R and for any ideal J s.t I < J < R either J =1
orJ =R

Lemma 2.11. R a commutative ring. I C R mazimal <= R/I is a field

Definition 2.13. Ideal I C R is prime if | # R and ifa, b€ R sta-bel = aclorbel
Lemma 2.16. R a commutative ring. I C R ideal, prime <= R/I is an integral domain
Corollary 2.17. R commutative ring. Then every mazximal ideal is a prime ideal.

Definition 2.18. R a ring. ¢ : Z — R the unique such map. The characteristic of R the unique non-negative
n s.t ker(t) = nZ

Lemma 2.20. R an integral domain. char(R) =0 or p a prime number.

2.2 Factorisation in Integral domains

Definition 2.21. R a ring. Say for a,b € R a divides b, a | b if Ic € R s.t b = ac. Equivalently (b) C (a)

Definition 2.22. R a ring, say a,b € R associates if a = bc for some ¢ € R* a unit. Equivalently (a) = (b)
oralbandb|a

Definition 2.23. R a ring. a € R irreducible if a # 0, and a ¢ R* and ifa =2y = x € R* ory € R
Definition 2.24. R a ring. a € R prime if a # 0 and a ¢ R* and if alry = alz or aly

Lemma 2.26. A principal ideal (1) prime ideal in R <= r =0 orr prime

Lemma 2.27. If r € R prime, the r irreducible

Definition 2.29. (Euclidean domain)
An integral domain R a Euclidean Domain (ED) if 3 Euclidean function ¢ : R\{0} — Z>q s.t

2. Ifa,be R,b#A0 — Jq,7r € R s.t
a=b-q+r

With either 1 =0 or ¢(r) < ¢(b)

Definition 2.34. (Principal ideal domain)
A ring R, an integral domain, is a principal ideal domain (PID) if every ideal is a principal ideal.

VI C R an ideal = Ja s.t I = (a)

Proposition 2.36. Let R a Fuclidean domain. Then R a principal ideal domain



Definition 2.41. (Unique factorisation domain)
An integral domain a unique factorisation domain (UFD) if

(Ezistence) Fvery non-unit written as product of irreducibles

(Uniqueness) If p1...pn = q1...qm with p;,q; irreducibles, then n = m and they can be reordered s.t p; is an
associate of q;

Theorem 2.42. (PID — UFD)
If R a principal ideal domain, then R a unique factorisation domain.

Lemma 2.43. R a PID, then a principal ideal (r) mazimal <= r irreducible or, if R a field, r =0
Proposition 2.44. R a PID, if r € R irreducible then r prime.
Corollary 2.45. R a PID, Then every non-zero prime ideal is maximal

Definition 2.46. (ACC - Ascending Chain Condition)
A commutative ring satisfies the ACC, if

L CI, CI3C ... ,a chain of ideals
Then AN € N s.t I, = I, + 1 for somen > N

Definition 2.47. (Noetherian Ring)
A commutative ring satisfying the ACC' is Noetherian.

Proposition 2.48. R a PID = R Noetherian

Definition 2.50. (Greatest Common Divisor, ged)

R a ring, d a (gcd) of ay,aq,...,a, if dla;, Vi and if any other d' satisfies d'|a;, Vi then d'|d
Lemma 2.51. R a UFD = (gcd) exists and is unique up to associates.

i.eif d,d are geds of ay,as,...a, then d,d are associates.

The above lemmas and theorems yield the following chain of implications

(zZ) = ED = PID = UFD = ID = Commutative Ring = Ring
—~

isomorphic to Z

(Z) & ED <+« PID <« UFD + ID ¢« Commutative Ring # Ring
~~ ~~ ~~ ~~ ~~ ~~
Q2] g9 Z[X] ZIV=B5] Z/6L Ma(Z)
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2.3 Localisation

Definition 2.54. R an ID, S C (R, ") a multiplicative submonoid. 0 ¢ S. Localisation is set of equivalence
classes
STIR={(r,s)|r € R,s €S, (r,8) ~ (1,5 ifrs' =1's)}

Pair (r,s) denoted * - this is a ring with ops.
(rys) - (r',s") = (rr',s8"), (r,8)+ (r',s") = (rs’ +1's,s5)
Definition 2.55. R =Z,S = R\{0}, Then the rational numbers Q defined as S™'R

Proposition 2.57. R an ID, S a multiplicative submonoid s.t 0 ¢ S Then the map  : R — S™'R is
ingjective
Definition 2.59. R a commutative ring, S C R a submonoid.

Localisation
ST'R={(r,s)|r € R,s€ S, (r,s)~ (r',s) if It € S, t(rs' —r's) =0}

Note we have t in this definition when we move away from R being an integral domain.



Definition 2.64. If R an integral domain S = R\{0}, we have S™'R field. Define the field of fractions of
R, Frac(R) := S7'R

Proposition 2.67. (Universal property of localisation)
If A a commutative ring, and ¢ : R — A a ring homomorphism, s.t ¢(S) C A* then, ¢ factors through the
homomorphism 1 : R — S 'Rie3g:ST'R— Astp=10p

R—2 4 P ()
L > &((r,1))
SR (r,1)

Definition 2.68. R a commutative ring, S C R a multiplicative submonoid.
Localisation, ST'R the unique ring R’ s.t LR — R’ s.t

1. 1(S) C (R~
2. For all commutative rings A and maps p : R — A with o(S) CA*, A ¢: R > Astpo=go.

Corollary 2.70. R an ID, F a field, ¢ : R — F an injective ring homomorphism. Then ¢ factors through
the map from R to Frac(R): ¢ =10y forv: R — Frac(R) with @ injective

Corollary 2.71. F a field, charm(F) = 0. F has subfield isomorphic to Q
If char(F) = p contains subfield isomorphic to F),

Lemma 2.72. F a field, F < R a subring = R a vector space over F
Corollary 2.73. Every field a vector space over Fy, or Q

Example 2.74. R a commutative ring. I C R a prime ideal, S = R\I also a multiplicative submonoid.
Denote ST'R as Ry

Proposition 2.77. R a commutative ring, I C R a prime ideal. Then Ry has a unique mazimal ideal given
by I ={(r,s):rel,se€ R\I}

Definition 2.78. A local ring a ring which has a unique mazimal ideal

Definition 2.80. Set S7'I := {{ | s € S,i € I} an ideal in ST'R call this the image of I under the
localisation

Proposition 2.81. Every ideal I C ST 'R of form S=.J for some J C R an ideal.

3 Polynomial Rings

3.1 Factorisation in polynomial rings and Gauss’ Lemma

Definition 3.1. R a UFD, f=ay+ a1 X +...a,X™ € R[X]. The content is
o(f) = ged (ag,...,an) € R

Equivalently define content as the ideal (ged (ao, e ,an))

Definition 3.2. A polynomial is primitive if ¢(f) € R*, the a; are coprime
Or as an ideal we have ¢(f) = R[X]



Lemma 3.3. R a UFD, if f € R[X] then f =c(f) - f1 for some fi € R[X] primitive
Lemma 3.4. Let R A UFD. If f,g € R[X] primitive then fg primitive.
Corollary 3.5. Let R a UFD. f,g € R[X] we have c(fg) is an associate of c(f)c(g)

Lemma 3.6. (Gauss’ Lemma,)
Let R a UFD and f € R[X] a primitive polynomial. Then f irreducible in R[X]| <= f irreducible F[X]
where F' = Frac(R)

Theorem 3.8. (Polynomial rings over UFDs)
If R a UFD, then R[X]a UFD.
Further if R o UFD then R[X1,...,X,] a UFD

Proposition 3.10. (Eisenstein’s Criterion)
R a UFD, We let
f=a+auX+...+a,X" € R[X]

be primitive with a, # 0. Let p € R irreducible s.t
1. ptan
2.pla; V0O<i<n
3. p*tao
Then f drreducible in R[X] and hence in Frac(R)[X]

3.2 Algebraic Integers
Definition 3.13. « € C an algebraic integer if
3 monic f € Z[X] s.t f(a) =0

Definition 3.14. « algebraic integer, write Z[a] < C for smallest subring containing o
Construct Z|a] by taking it as image of ¢ : Z[X]| — C given by g — g(a) with ¢ inducing an isomorphism

ZIX))I =2 Za), I=kerg

Proposition 3.15. o € C an algebraic integer and let ¢ : Z[X] — C the ring homomorphism given by
f = f(a) Then ideal
I = ker(¢)

is principal with I = (f,) for some irreducible monic f,

Definition 3.16. Let o € C an algebraic integer. Then minimal polynomial a polynomial f,, is the irreducible
monic s.t I = ker(¢) = (fa)

Lemma 3.18. Let a € Q be an algebraic integer. Then o € Z

3.3 Noetherian rings and Hilbert’s basis theorem
Definition 3.20. A commutative ring Noetherian if it satisfies the ACC (see Def. 2.46)
Definition 3.24. Ideal I finitely generated if can be written as I = (7‘1, e ,rn) for somery,...,rn €ER

Proposition 3.25. A commutative ring is Noetherian <= every ideal is finitely generated.
Note: PID trivially satisfy this.

Proposition 3.26. R Noetherian, and I C R an ideal = R/I Noetherian.

Theorem 3.27. (Hilbert’s basis theorem,)
R a Noetherian ring, = R[X] also Noetherian.



4 Modules

4.1 Basic definitions and examples

Definition 4.1. R a ring. A left R-module (M ,+: M x M — M,-: Rx M — M) with Oy € M s.t

set addition mult

o (M,+) an abelian group with identity 0ps
And we have - satisfying the following
(i) (ri+r2)-m=(ry-m)+ (r2-m)
(ii) r-(my+mg) = (r-mq) + (r-ms)
(iti) 1 - (ro-m) = (ry-ra3)-m
(iv) 1p -m=m
Right-module is the same but we have now (- : M x R — M) with (iii) now as (m-71) 7o = m - (ry - r3)
Definition 4.4. R a ring.

R-module an abelian group M, equipped with ring homomorphism

v:R— End(M)
———
{f:M—M|f a group hom.}

Such that
< RxM-—M

(r;m) — (r)(m)

4.2 Constructions of modules

Definition 4.11. Let My, Mo, ..., My be R—modules. Direct sum is also an R—module
Mi®Myd...o M,
Which is the set My x ... X My with addition given by
(ma,...,m) + (mh,...,m}) = (my+mi,....mp +m})

And R—action given by
T- (ml,...,mk) = (’I“ml,...,ka)

Definition 4.12. Let M an R—module. A subset N C M an R—submodule if it is a subgroup of (M, +,0xs)
and ifne Nyor€e R = rm & N. Write N <M

Definition 4.15. Let N < M be an R—submodule. The quotient module M /N the set of N—cosets in
(M, 4,0 with R—action given by
r-(m+N)=(r-m)+ N

Definition 4.17. Function f : M — N between R—modules an R—module homomorphism if it is a homo-
morphism of abelian groups and satisfies

fer-m)=7r-f(m), VreRmeM

An isomorphism, is a bijective homomorphism.
Say 2 R—modules are isomorphic if there exists isomorphism between them.

Definition 4.19. If Ry, Ry rings, My an Ry-module and My an Ry-module, then (My x M) is a (Ry X Ra)-
module with action
(7"1,7”2) : (m17m2) = (r1m2,r2m2)



Definition 4.20. R a commutative ring, S C R a multiplicative submonoid, M an R—module.
Localisation of M by S,

S™TIM = {(m,s) |me€ M,s € S,(m,s) ~ (m',s") if 3t € S s.t t(ms' —m's) =0}
This an S~'R-module, with natural structure of abelian group, and S™'R action given by
(r,t) - (m,s) := (rm,ts) (r,t) € ST'R, (m,s) € ST'M
Given ideal I C R localisation S™'I C ST'R as an ideal is isomorphism as an S~ R-module to the localisa-
tion of I as a module.
4.3 Basic theory of modules
THEOREM NUMBERS AND DEFS TO BE AMENDED

Theorem 4.21. (1st isomorphism theorem)
Let f: M — N an R—module homomorphism, Then we have

o ker(f)={meM: f(m)=0} <M (is an R-submodule)
o im(f)={f(m): me M} <N (is an R-submodule)
Then M/ ker(f) = im(f)
Definition 4.22. Let f: M — N a map of R-modules. We define the cokernel of f as
coker(f) = N/im(f)
Remark 4.23. For submodules, Aq,..., A,
A+ ...+ A, ={a1+-+an:a;, € 4;} <M (an R-submodule)

Theorem 4.24. (2nd isomorphism theorem,)
Let M an R-module, let A, B < M then

e A+ B:={a+b:acAbec B}
e ANB<M
Then
A+BE B
A — ANB

Theorem 4.25. (3rd isomorphism theorem)
Let M an R-module, and N < L < M, Then:

e L/N<M/N

o M/L= T
Definition 4.26. M an R-module, m € M, submodule generated by m is

Rm:={r-m:reR} <M
Definition 4.27. M an R-module, m € M, the annihilator of m is
Ann(m) :={re R:r-m =0}
Since Ann(m) = ker(p) for the homomorphism
p:R—M,r—r-m

by 1st isomorphism theorem, we have Ann(m) < R, Rm = R/ Ann(m)

10



Example 4.28. R a PID, let I C R an ideal. Then
I=R
as R-modules.
Definition 4.29. R-module, M is finitely generated if Imq,...,my s.t

M = Rmq+ Rms+ ...+ Rm,

={rim+...4+rymy:ry,...,7, € R}

Lemma 4.30. M an R-module, then M 1is finitely generated <= 3 surjective R-module homomorphism
f: R — M for somen

Corollary 4.31. Let N < M be R-modules, if M finitely generated, then M /N is finitely generated.

4.4 Free and projective modules

Definition 4.34. Given set S define the free module over S to be R—module

R = @R = {(x;)ics € H R:x; =0 for all but finitely many i}
€S ses

with coordinate wise addition and R-action.
An R-module M is free if M = RS) for some S

Proposition 4.35. The free module R'S) is finitely generated <= S finite
Proposition 4.36. F' a field.If M an F—module, then M «a free F—module
Definition 4.37. S C M generates M freely if
1. S generates M as an R-module, i.e. R-S =M
2. Any set function ¢ : S — N, N a R—module, extends to an R—module map 6 : M — N

Definition 4.38. R—module M is free, if it is freely generated by some subset S C M. A set S with this
property called a basis for M

Proposition 4.39. The two definitions of free module are equivalent

Lemma 4.40. Suppose M, N are R—modules, s.t M freely generated by S C M and N freely generated by
TCN.
If 3 bijection, S =T then M = N as R—modules

Definition 4.42. Let ml,...,m, € M = {ma,...,my} is linearly independent if

n
E rim; = 0
i=1

= ri=ro=...=71,=0
Proposition 4.43. For a subset S = {ml,...,m,} C M, following are equivalent;
(i) S generates M freely, equivalent to M = R"
(ii) S generates M and S is linearly independent
(iii) Every element of M is uniquely expressible as
rimi +rome + ..My,

for some r; € R

11



Definition 4.47. M a finitely generated R-module. We have show that 3p : R™ — M a surjective R-module
homomorphism, for some n.
Call the R-submodule ker(yp) < R™ the relation module for those generators

Definition 4.48. A finitely generated R-module M 1is finitely presented if there exists a surjective homo-
morphism f : R™ — M such that ker(f) a finitely generated R-module

Proposition 4.49. Let p: R™ — R™ an R-module homomorphism

Letey,...,e,, € R™ and vy,...,v, € R" the standard basis elements

Let p(ej) = >0 | A;je; for some A;; € R and let A = (A;j) € My,xn(R) the corresponding n x m matriz
Then o(r)=A-r

Definition 4.50. Say a ring R has the invariant basis number property (IBN) if R™ = R™ are isomorphic
as R-modules <= n=m

Proposition 4.51. Non-trivial commutative rings have the invariant basis number property
Definition 4.52. An R-module M is stably free if there exists n such that M & R™ is a free module
An R-module M is projective if there exists an R-module N such that M & N is a free R-module

4.5 Noetherian modules

Theorem 4.56. An R-module M is Noetherian <= every R-submodule of M is finitely generated.
Corollary 4.57. R a PID = R is Noetherian

Theorem 4.58. Any finitely generated module over a Noetherian ring is Noetherian

Proposition 4.59. M a Noetherian R-module, then ¥ submodules N < M, both N and M /N are Noetherian

Proposition 4.60. Let M an R-module, let N a Noetherian submodule of M, and suppose that M /N is
Noetherian. Then Mis Noetherian

Corollary 4.61. If M, N are Noetherian R-modules, then so is M & N
Corollary 4.62. If R is Noetherian, then any free R-module of finite rank is Noetherian

Corollary 4.63. Let R a Noetherian ring. Then every finitely generated R-module is finitely presented

4.6 Modules over principal ideal domains

Theorem 4.64. (Classification of finitely generated modules over a PID)
Let R a PID. If M finitely generated R-module, then In,r > 0 and elements dy,...,d,. € R such that

M=R'®R/(d)D...®R/(d,)

We can assume that dy | da | ... | d,
Can be shown that is we choose the d; to satisfy these conditions, then the n and d; are unique.
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