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1 Rings

1.1 Basic Definitions and Examples

Definition 1.1. A monoid (M, ·) a set M and binary op · : M ×M →M , with 1M ∈M s.t

� m · 1M = m = 1M ·m∀m ∈M

� Operation · is associative, x · (y · z) = (x · y) · z

Definition 1.4. A ring a set (R,+ : R×R→ R, · : R×R→ R) with elements 0R, 1R ∈ R s.t

� (R,+) an abelian group with identity 0R

� (R, ·) a monoid with identity 1R

� Distributivity: a(b+ c) = ab+ ac, (b+ c)a = ba+ ca

Note: write additive inverse as −r

Definition 1.6. Say R a ring commutative if a · b = b · a,∀a, b ∈ R

Definition 1.7. For S ⊂ R , R a ring. Say S a subring of R if

� 0R, 1R ∈ S

� +, · make S into a ring with identities 0R, 1R

We write S ≤ R

Proposition 1.12. R a ring, 1R = 0R ⇐⇒ R = {0} the trivial ring

Definition 1.13. u ∈ R a unit, if ∃v ∈ R s.t u · v = v · u = 1R

R× ⊆ R, the set of units in R

Definition 1.14. A division ring a non-trivial ring, s.t every u ̸= 0R ∈ R a unit.

R× = R\{0}

A Field a commutative division ring

Proposition 1.17. Subset R× ⊂ R a group under multiplication.

1.2 Constructions of rings

Example 1.18. R,S rings =⇒ R× S the product ring a ring via

(r, s) + (r′, s′) = (r + r′, s+ s′) (r, s) · (r′, s′) = (r · r′, s · s′)

Example 1.21. R a ring, the polynomial ring R[X] a ring

R[X] = {f = a0 + a1X + . . . anX
n | ai ∈ R}

So for f =
∑n

i=1 aiX
i, g =

∑k
i=1 biX

i, we have ring ops

f + g :=

max{n,m}∑
r=0

(ai + bi)X
i

f · g :=

n+k∑
i=0

 i∑
j=0

ajbi−j

Xi

Note: call maximal n s.t an ̸= 0R the deg(f)
For f of degree n ≥ 0, if an = 1 say f is monic.
Notation: Write R[X,Y ] for (R[X])[Y ] polynomial ring in 2 variables, and in general R[X1, . . . , Xn] =
(. . . ((R[X1])[X2] . . .)[Xn])
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Example 1.23. Laurent polynomials on R the set R[X,X−1]

R[X,X−1] =

{
f =

∑
i∈Z

aiX
i | only finitely many ai ̸= 0

}

Operations defined similarly to R[X]
We have here the set of monomials {Xi : i ∈ Z} form a group under multiplication.

Example 1.24. G a group, R a ring. Define the Group Ring R[G]:

R[G] :=

∑
g∈G

agg | ag ∈ R, |{g ∈ G : ag ̸= 0}| <∞


With addition and multiplication as follows∑

g∈G

agg

+

∑
g∈G

bgg

 =
∑
g∈G

(ag +R bg)g

∑
g∈G

agg

 ·

∑
g∈G

bgg

 =
∑
g∈G

(∑
h∈G

ah ·R bh−1g

)
g

We have that R[X,X−1] ∼= R[C∞], C∞ = (Z,+)
If R commutative ring, then R[G] commutative ⇐⇒ G abelian.

Example 1.25.
Mn(R) = set of n× n matrices, R a ring

A ring over the usual addition and multiplication

Example 1.26. Abelian group A

End(A) = {f : A→ A | f a group homomorphism}

A ring with ops
(f +End(A) g)(x) := f(x) +A g(x) (f ·End(A) g)(x) := (f ◦ g)(x)

Group of units of End(A) is the automorphism group of A denoted Aut(A)

1.3 Homomorphisms, ideals and quotients

Definition 1.27. R,S rings. φ : R→ S a ring homomorphism if

1. φ(r1 + r2) = φ(r1) + φ(r2)

2. φ(0R) = 0S

3. φ(r1 · r2) = φ(r1) + φ(r2)

4. φ(1R) = 1S

Definition 1.28. An isomorphism, A bijective homomorphism φ

Definition 1.29. Kernel of homomorphism φ : R→ S

ker(φ) = {r ∈ R : φ(r) = 0S}

Definition 1.30. Image of homomorphism φ : R→ S

im(φ) = {s ∈ S : s = φ(r), for some r ∈ R}
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Lemma 1.31. Homomorphism φ : R→ S injective ⇐⇒ ker φ = {0R}
Definition 1.32. A ideal I ⊂ R an abelian subgroup s.t

∀i ∈ I, r ∈ R

{
ri ∈ I, left ideal

ir ∈ I, right ideal

This the strong closure property.
A two-sided or bi-ideal both a left and right ideal.

Lemma 1.33. φ : R→ S a homomorphism, then ker(φ) ⊂ R a two-sided ideal

Definition 1.35. Proper ideal, an ideal I ̸= R
For every proper ideal I, we have 1 /∈ I =⇒ not a subring.
Even more generally, proper ideals do not contain any unit.

if I ̸= R =⇒ I ⊂ R\R×

Definition 1.38. For element a ∈ R, write the ideal generated by a as,

(a) = Ra = {r · a | r ∈ R} ⊂ R

The ideal generated by a1, . . . an (
a1, . . . , an

)
= {r1a1 + . . . rkak | ri ∈ R}

Definition 1.39. A ⊂ R define ideal generated by A as

(A) = R ·A = {suma∈Ara · a | ra ∈ R, only finitely many non-zero}

Definition 1.40. Say ideal I principal if I = (a) for some a ∈ R

Definition 1.42. Let I ⊂ R a two-sided ideal
Quotient ring R/I = {r + I | r ∈ R} a ring with 0R + I, 1R + I

(r1 + I) + (r2 + I) = (r1 + r2) + I, (r1 + I) · (r2 + I) = r1r2 + I

Proposition 1.43. Quotient ring a ring, and function

φ : R→ R/I, r 7→ r + I

a ring homomorphism.

Proposition 1.47. (Euclidean algorithm for polynomials)
Let F a field, and f, g ∈ F [X] =⇒ ∃r, q ∈ F [X] s.t

f = gq + r

with deg r < deg g

Theorem 1.49. (First isomorphism theorem)
Let φ : R→ S a ring homomorphism, ker(φ) ⊆ R a 2-sided ideal and

R

ker(φ)
∼= im(φ) ≤ S

Theorem 1.50. (Second isomorphism theorem)
R ≤ S be subrings, J ⊆ S a 2-sided ideal. Then

(i) R+ J = {r + j : r ∈ R, j ∈ J} ≤ S a subring

(ii) J ⊆ R+ J and J ∩R ⊆ R are both 2-sided ideal

(iii) R+J
J = {r + J : r ∈ R} ≤ S

J ≤ S
J a subring, and R

R∩J
∼= R+J

J

Theorem 1.51. (Third isomorphism theorem)
Let R a ring, I, J ⊆ R 2-sided ideals s.t I ⊆ J Then J/I ⊆ R/I a 2-sided ideal and(

R

I

)
/

(
J

I

)
∼=
R

J
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2 Integral Domains

2.1 Integral domains, maximal and prime ideals

Definition 2.1. R a commutative ring. Element x ∈ R a zero divisor if x ̸= 0,∃y ̸= 0 s.t x · y = 0 ∈ R

Definition 2.2. Integral domain (ID) a non-trivial commutative ring without zero divisors

a ring where if ab = 0 =⇒ a = 0 or b = 0

Lemma 2.6. R a finite ring, and integral domain =⇒ R a field.

Lemma 2.7. R an integral domain. Then R[X] an integral domain

Lemma 2.9. A non-trivial commutative ring R a field ⇐⇒ its only ideals are {0} and R

Definition 2.10. An ideal I of ring R maximal if I ̸= R and for any ideal J s.t I ≤ J ≤ R either J = I
or J = R

Lemma 2.11. R a commutative ring. I ⊆ R maximal ⇐⇒ R/I is a field

Definition 2.13. Ideal I ⊆ R is prime if I ̸= R and if a, b ∈ R s.t a · b ∈ I =⇒ a ∈ I or b ∈ I

Lemma 2.16. R a commutative ring. I ⊆ R ideal, prime ⇐⇒ R/I is an integral domain

Corollary 2.17. R commutative ring. Then every maximal ideal is a prime ideal.

Definition 2.18. R a ring. ι : Z → R the unique such map. The characteristic of R the unique non-negative
n s.t ker(ι) = nZ

Lemma 2.20. R an integral domain. char(R) = 0 or p a prime number.

2.2 Factorisation in Integral domains

Definition 2.21. R a ring. Say for a, b ∈ R a divides b, a | b if ∃c ∈ R s.t b = ac. Equivalently (b) ⊆ (a)

Definition 2.22. R a ring, say a, b ∈ R associates if a = bc for some c ∈ R× a unit. Equivalently (a) = (b)
or a | b and b | a

Definition 2.23. R a ring. a ∈ R irreducible if a ̸= 0, and a /∈ R× and if a = xy =⇒ x ∈ R× or y ∈ R×

Definition 2.24. R a ring. a ∈ R prime if a ̸= 0 and a /∈ R× and if a|xy =⇒ a|x or a|y

Lemma 2.26. A principal ideal (r) prime ideal in R ⇐⇒ r = 0 or r prime

Lemma 2.27. If r ∈ R prime, the r irreducible

Definition 2.29. (Euclidean domain)
An integral domain R a Euclidean Domain (ED) if ∃ Euclidean function ϕ : R\{0} → Z≥0 s.t

1. ϕ(a · b) ≥ ϕ(b),∀a, b ̸= 0

2. If a, b ∈ R, b ̸= 0 =⇒ ∃q, r ∈ R s.t
a = b · q + r

With either r = 0 or ϕ(r) < ϕ(b)

Definition 2.34. (Principal ideal domain)
A ring R, an integral domain, is a principal ideal domain (PID) if every ideal is a principal ideal.

∀I ⊆ R an ideal =⇒ ∃a s.t I = (a)

Proposition 2.36. Let R a Euclidean domain. Then R a principal ideal domain
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Definition 2.41. (Unique factorisation domain)
An integral domain a unique factorisation domain (UFD) if

(Existence) Every non-unit written as product of irreducibles

(Uniqueness) If p1 . . . pn = q1 . . . qm with pi, qj irreducibles, then n = m and they can be reordered s.t pi is an
associate of qi

Theorem 2.42. (PID =⇒ UFD)
If R a principal ideal domain, then R a unique factorisation domain.

Lemma 2.43. R a PID, then a principal ideal (r) maximal ⇐⇒ r irreducible or, if R a field, r = 0

Proposition 2.44. R a PID, if r ∈ R irreducible then r prime.

Corollary 2.45. R a PID, Then every non-zero prime ideal is maximal

Definition 2.46. (ACC - Ascending Chain Condition)
A commutative ring satisfies the ACC, if

I1 ⊆ I2 ⊆ I3 ⊆ . . . ,a chain of ideals

Then ∃N ∈ N s.t In = In + 1 for some n ≥ N

Definition 2.47. (Noetherian Ring)
A commutative ring satisfying the ACC is Noetherian.

Proposition 2.48. R a PID =⇒ R Noetherian

Definition 2.50. (Greatest Common Divisor, gcd)
R a ring, d a (gcd) of a1, a2, . . . , an if d|ai,∀i and if any other d′ satisfies d′|ai,∀i then d′|d

Lemma 2.51. R a UFD =⇒ (gcd) exists and is unique up to associates.
i.e if d, d′ are gcds of a1, a2, . . . an then d, d′ are associates.

The above lemmas and theorems yield the following chain of implications

(Z)︸︷︷︸
isomorphic to Z

=⇒ ED =⇒ PID =⇒ UFD =⇒ ID =⇒ Commutative Ring =⇒ Ring

(Z) ̸⇐︸︷︷︸
Q,Z[i]

ED ̸⇐︸︷︷︸
Z[ 1+

√
−19

2 ]

PID ̸⇐︸︷︷︸
Z[X]

UFD ̸⇐︸︷︷︸
Z[
√
−5]

ID ̸⇐︸︷︷︸
Z/6Z

Commutative Ring ̸⇐︸︷︷︸
M2(Z)

Ring

2.3 Localisation

Definition 2.54. R an ID, S ⊆ (R, ·) a multiplicative submonoid. 0 /∈ S. Localisation is set of equivalence
classes

S−1R = {(r, s) | r ∈ R, s ∈ S, (r, s) ∼ (r′, s′) if rs′ = r′s)}
Pair (r, s) denoted r

s - this is a ring with ops.

(r, s) · (r′, s′) := (rr′, ss′), (r, s) + (r′, s′) = (rs′ + r′s, ss′)

Definition 2.55. R = Z, S = R\{0}, Then the rational numbers Q defined as S−1R

Proposition 2.57. R an ID, S a multiplicative submonoid s.t 0 /∈ S Then the map ι : R → S−1R is
injective

Definition 2.59. R a commutative ring, S ⊆ R a submonoid.
Localisation

S−1R = {(r, s) | r ∈ R, s ∈ S, (r, s) ∼ (r′, s′) if ∃t ∈ S, t(rs′ − r′s) = 0}
Note we have t in this definition when we move away from R being an integral domain.
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Definition 2.64. If R an integral domain S = R\{0}, we have S−1R field. Define the field of fractions of
R, Frac(R) := S−1R

Proposition 2.67. (Universal property of localisation)
If A a commutative ring, and φ : R → A a ring homomorphism, s.t φ(S) ⊂ A× then, φ factors through the
homomorphism ι : R→ S−1R i.e ∃!φ̃ : S−1R→ A s.t φ = ι ◦ φ̃

Definition 2.68. R a commutative ring, S ⊆ R a multiplicative submonoid.
Localisation, S−1R the unique ring R′ s.t ∃ιR→ R′ s.t

1. ι(S) ⊆ (R′)×

2. For all commutative rings A and maps φ : R→ A with φ(S) ⊆ A×, ∃! φ̃ : R′ → A s.t φ = φ̃ ◦ ι

Corollary 2.70. R an ID, F a field, φ : R → F an injective ring homomorphism. Then φ factors through
the map from R to Frac(R): φ = ι ◦ φ̃ for ι : R→ Frac(R) with φ̃ injective

Corollary 2.71. F a field, charm(F ) = 0. F has subfield isomorphic to Q
If char(F ) = p contains subfield isomorphic to Fp

Lemma 2.72. F a field, F ≤ R a subring =⇒ R a vector space over F

Corollary 2.73. Every field a vector space over Fp or Q

Example 2.74. R a commutative ring. I ⊂ R a prime ideal, S = R\I also a multiplicative submonoid.
Denote S−1R as RI

Proposition 2.77. R a commutative ring, I ⊆ R a prime ideal. Then RI has a unique maximal ideal given
by I = {(r, s) : r ∈ I, s ∈ R\I}

Definition 2.78. A local ring a ring which has a unique maximal ideal

Definition 2.80. Set S−1I := { i
s | s ∈ S, i ∈ I} an ideal in S−1R call this the image of I under the

localisation

Proposition 2.81. Every ideal I ⊆ S−1R of form S−1J for some J ⊆ R an ideal.

3 Polynomial Rings

3.1 Factorisation in polynomial rings and Gauss’ Lemma

Definition 3.1. R a UFD, f = a0 + a1X + . . . anX
n ∈ R[X]. The content is

c(f) = gcd
(
a0, . . . , an

)
∈ R

Equivalently define content as the ideal (gcd
(
a0, . . . , an

)
)

Definition 3.2. A polynomial is primitive if c(f) ∈ R×, the ai are coprime
Or as an ideal we have c(f) = R[X]
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Lemma 3.3. R a UFD, if f ∈ R[X] then f = c(f) · f1 for some f1 ∈ R[X] primitive

Lemma 3.4. Let R A UFD. If f, g ∈ R[X] primitive then fg primitive.

Corollary 3.5. Let R a UFD. f, g ∈ R[X] we have c(fg) is an associate of c(f)c(g)

Lemma 3.6. (Gauss’ Lemma)
Let R a UFD and f ∈ R[X] a primitive polynomial. Then f irreducible in R[X] ⇐⇒ f irreducible F [X]
where F = Frac(R)

Theorem 3.8. (Polynomial rings over UFDs)
If R a UFD, then R[X]a UFD.
Further if R a UFD then R[X1, . . . , Xn] a UFD

Proposition 3.10. (Eisenstein’s Criterion)
R a UFD, We let

f = a0 + a1X + . . .+ anX
n ∈ R[X]

be primitive with an ̸= 0. Let p ∈ R irreducible s.t

1. p ∤ an

2. p | ai ∀0 ≤ i ≤ n

3. p2 ∤ a0

Then f irreducible in R[X] and hence in Frac(R)[X]

3.2 Algebraic Integers

Definition 3.13. α ∈ C an algebraic integer if

∃ monic f ∈ Z[X] s.t f(α) = 0

Definition 3.14. α algebraic integer, write Z[α] ≤ C for smallest subring containing α
Construct Z[α] by taking it as image of ϕ : Z[X] → C given by g 7→ g(α) with ϕ inducing an isomorphism

Z[X]/I ∼= Z[α], I = ker ϕ

Proposition 3.15. α ∈ C an algebraic integer and let ϕ : Z[X] → C the ring homomorphism given by
f 7→ f(α) Then ideal

I = ker(ϕ)

is principal with I = (fα) for some irreducible monic fα

Definition 3.16. Let α ∈ C an algebraic integer. Then minimal polynomial a polynomial fα is the irreducible
monic s.t I = ker(ϕ) = (fα)

Lemma 3.18. Let α ∈ Q be an algebraic integer. Then α ∈ Z

3.3 Noetherian rings and Hilbert’s basis theorem

Definition 3.20. A commutative ring Noetherian if it satisfies the ACC (see Def. 2.46)

Definition 3.24. Ideal I finitely generated if can be written as I =
(
r1, . . . , rn

)
for some r1, . . . , rn ∈ R

Proposition 3.25. A commutative ring is Noetherian ⇐⇒ every ideal is finitely generated.
Note: PID trivially satisfy this.

Proposition 3.26. R Noetherian, and I ⊆ R an ideal =⇒ R/I Noetherian.

Theorem 3.27. (Hilbert’s basis theorem)
R a Noetherian ring, =⇒ R[X] also Noetherian.
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4 Modules

4.1 Basic definitions and examples

Definition 4.1. R a ring. A left R-module ( M︸︷︷︸
set

,+ :M ×M →M︸ ︷︷ ︸
addition

, · : R×M →M︸ ︷︷ ︸
mult

) with 0M ∈M s.t

� (M,+) an abelian group with identity 0M

And we have · satisfying the following

(i) (r1 + r2) ·m = (r1 ·m) + (r2 ·m)

(ii) r · (m1 +m2) = (r ·m1) + (r ·m2)

(iii) r1 · (r2 ·m) = (r1 · r2) ·m

(iv) 1R ·m = m

Right-module is the same but we have now (· :M ×R→M) with (iii) now as (m · r1) · r2 = m · (r1 · r2)

Definition 4.4. R a ring.
R-module an abelian group M, equipped with ring homomorphism

φ : R −→ End(M)︸ ︷︷ ︸
{f :M→M |f a group hom.}

Such that
· : R×M −→M

(r,m) 7−→ φ(r)(m)

4.2 Constructions of modules

Definition 4.11. Let M1,M2, . . . ,Mk be R−modules. Direct sum is also an R−module

M1 ⊕M2 ⊕ . . .⊕Mk

Which is the set M1 × . . .×Mk with addition given by(
m1, . . . ,mk

)
+
(
m′

1, . . . ,m
′
k

)
=
(
m1 +m′

1, . . . ,mk +m′
k

)
And R−action given by

r ·
(
m1, . . . ,mk

)
=
(
rm1, . . . , rmk

)
Definition 4.12. Let M an R−module. A subset N ⊆M an R−submodule if it is a subgroup of (M,+, 0M )
and if n ∈ N, r ∈ R =⇒ rn ∈ N . Write N ≤M

Definition 4.15. Let N ≤ M be an R−submodule. The quotient module M/N the set of N−cosets in
(M,+, 0M with R−action given by

r · (m+N) = (r ·m) +N

Definition 4.17. Function f : M → N between R−modules an R−module homomorphism if it is a homo-
morphism of abelian groups and satisfies

f(r ·m) = r · f(m), ∀r ∈ R,m ∈M

An isomorphism, is a bijective homomorphism.
Say 2 R−modules are isomorphic if there exists isomorphism between them.

Definition 4.19. If R1, R2 rings, M1 an R1-module and M2 an R2-module, then (M1×M2) is a (R1×R2)-
module with action

(r1, r2) · (m1,m2) := (r1m2, r2m2)

9



Definition 4.20. R a commutative ring, S ⊆ R a multiplicative submonoid, M an R−module.
Localisation of M by S,

S−1M = {(m, s) | m ∈M, s ∈ S, (m, s) ∼ (m′, s′) if ∃t ∈ S s.t t(ms′ −m′s) = 0}

This an S−1R-module, with natural structure of abelian group, and S−1R action given by

(r, t) · (m, s) := (rm, ts) (r, t) ∈ S−1R, (m, s) ∈ S−1M

Given ideal I ⊆ R localisation S−1I ⊂ S−1R as an ideal is isomorphism as an S−1R-module to the localisa-
tion of I as a module.

4.3 Basic theory of modules

THEOREM NUMBERS AND DEFS TO BE AMENDED

Theorem 4.21. (1st isomorphism theorem)
Let f :M → N an R−module homomorphism, Then we have

� ker(f) = {m ∈M : f(m) = 0} ≤M (is an R-submodule)

� im(f) = {f(m) : m ∈M} ≤ N (is an R-submodule)

Then M/ker(f) ∼= im(f)

Definition 4.22. Let f :M → N a map of R-modules. We define the cokernel of f as

coker(f) = N/ im(f)

Remark 4.23. For submodules, A1, . . . , An

A1 + . . .+An = {a1 + · · ·+ an : ai ∈ Ai} ≤M (an R-submodule)

Theorem 4.24. (2nd isomorphism theorem)
Let M an R-module, let A,B ≤M then

� A+B := {a+ b : a ∈ A, b ∈ B}

� A ∩B ≤M

Then
A+B

A
∼=

B

A ∩B
Theorem 4.25. (3rd isomorphism theorem)
Let M an R-module, and N ≤ L ≤M , Then:

� L/N ≤M/N

� M/L ∼= M/N
L/N

Definition 4.26. M an R-module, m ∈M , submodule generated by m is

Rm := {r ·m : r ∈ R} ≤M

Definition 4.27. M an R-module, m ∈M , the annihilator of m is

Ann(m) := {r ∈ R : r ·m = 0}

Since Ann(m) = ker(φ) for the homomorphism

φ : R→M, r 7→ r ·m

by 1st isomorphism theorem, we have Ann(m) ≤ R,Rm ∼= R/Ann(m)
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Example 4.28. R a PID, let I ⊆ R an ideal. Then

I ∼= R

as R-modules.

Definition 4.29. R-module, M is finitely generated if ∃m1, . . . ,mn s.t

M = Rm1 +Rm2 + . . .+Rmn

= {r1m1 + . . .+ rnmn : r1, . . . , rn ∈ R}

Lemma 4.30. M an R-module, then M is finitely generated ⇐⇒ ∃ surjective R-module homomorphism
f : Rn →M for some n

Corollary 4.31. Let N ≤M be R-modules, if M finitely generated, then M/N is finitely generated.

4.4 Free and projective modules

Definition 4.34. Given set S define the free module over S to be R−module

R(S) =
⊕
i∈S

R = {(xi)i∈S ∈
∏
s∈S

R : xi = 0 for all but finitely many i}

with coordinate wise addition and R-action.
An R-module M is free if M ∼= R(S) for some S

Proposition 4.35. The free module R(S) is finitely generated ⇐⇒ S finite

Proposition 4.36. F a field.If M an F−module, then M a free F−module

Definition 4.37. S ⊆M generates M freely if

1. S generates M as an R-module, i.e. R · S =M

2. Any set function ψ : S → N , N a R−module, extends to an R−module map θ :M → N

Definition 4.38. R−module M is free, if it is freely generated by some subset S ⊆ M . A set S with this
property called a basis for M

Proposition 4.39. The two definitions of free module are equivalent

Lemma 4.40. Suppose M,N are R−modules, s.t M freely generated by S ⊆ M and N freely generated by
T ⊆ N .
If ∃ bijection, S ∼= T then M ∼= N as R−modules

Definition 4.42. Let m1, . . . ,mn ∈M =⇒ {m1, . . . ,mn} is linearly independent if

n∑
i=1

rimi = 0

=⇒ r1 = r2 = . . . = rn = 0

Proposition 4.43. For a subset S = {m1, . . . ,mn} ⊆M , following are equivalent;

(i) S generates M freely, equivalent to M ∼= Rn

(ii) S generates M and S is linearly independent

(iii) Every element of M is uniquely expressible as

r1m1 + r2m2 + . . . rnmn

for some ri ∈ R

11



Definition 4.47. M a finitely generated R-module. We have show that ∃φ : Rn →M a surjective R-module
homomorphism, for some n.
Call the R-submodule ker(φ) ≤ Rn the relation module for those generators

Definition 4.48. A finitely generated R-module M is finitely presented if there exists a surjective homo-
morphism f : Rn →M such that ker(f) a finitely generated R-module

Proposition 4.49. Let φ : Rm → Rn an R-module homomorphism
Let e1, . . . , em ∈ Rm and v1, . . . , vn ∈ Rn the standard basis elements
Let φ(ej) =

∑n
i=1Aijei for some Aij ∈ R and let A = (Aij) ∈Mm×n(R) the corresponding n×m matrix

Then φ(r) = A · r

Definition 4.50. Say a ring R has the invariant basis number property (IBN) if Rn ∼= Rm are isomorphic
as R-modules ⇐⇒ n = m

Proposition 4.51. Non-trivial commutative rings have the invariant basis number property

Definition 4.52. An R-module M is stably free if there exists n such that M ⊕Rn is a free module
An R-module M is projective if there exists an R-module N such that M ⊕N is a free R-module

4.5 Noetherian modules

Theorem 4.56. An R-module M is Noetherian ⇐⇒ every R-submodule of M is finitely generated.

Corollary 4.57. R a PID =⇒ R is Noetherian

Theorem 4.58. Any finitely generated module over a Noetherian ring is Noetherian

Proposition 4.59. M a Noetherian R-module, then ∀ submodules N ≤M , both N andM/N are Noetherian

Proposition 4.60. Let M an R-module, let N a Noetherian submodule of M , and suppose that M/N is
Noetherian. Then M is Noetherian

Corollary 4.61. If M,N are Noetherian R-modules, then so is M ⊕N

Corollary 4.62. If R is Noetherian, then any free R-module of finite rank is Noetherian

Corollary 4.63. Let R a Noetherian ring. Then every finitely generated R-module is finitely presented

4.6 Modules over principal ideal domains

Theorem 4.64. (Classification of finitely generated modules over a PID)
Let R a PID. If M finitely generated R-module, then ∃n, r ≥ 0 and elements d1, . . . , dr ∈ R such that

M ∼= Rn ⊕R/(d1)⊕ . . .⊕R/(dr)

We can assume that d1 | d2 | . . . | dr
Can be shown that is we choose the di to satisfy these conditions, then the n and di are unique.
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