Algebra 3 - Rings & Modules Concise Notes

MATH60035

Arnav Singh

Content from prior years assumed to be known.

Mathematics Imperial College London United Kingdom January 9, 2023

Contents

1 Rings

1.1 Basic Definitions and Examples

Definition 1.1. A monoid (M, \cdot) a set M and binary op $\cdot: M \times M \rightarrow M$, with $1_M \in M$ s.t

- $m \cdot 1_M = m = 1_M \cdot m \forall m \in M$
- Operation · is associative, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

Definition 1.4. A ring a set $(R_1 + : R \times R \to R, \cdot : R \times R \to R)$ with elements $0_R, 1_R \in R$ s.t

- \bullet $(R, +)$ an abelian group with identity 0_R
- (R, \cdot) a monoid with identity 1_R
- Distributivity: $a(b + c) = ab + ac$, $(b + c)a = ba + ca$

Note: write additive inverse as $-r$

Definition 1.6. Say R a ring commutative if $a \cdot b = b \cdot a, \forall a, b \in R$

Definition 1.7. For $S \subset R$, R a ring. Say S a subring of R if

- $0, 1_R \in S$
- $\bullet +$, \cdot make S into a ring with identities 0_R , 1_R

We write $S \leq R$

Proposition 1.12. R a ring, $1_R = 0_R \iff R = \{0\}$ the trivial ring

Definition 1.13. $u \in R$ a unit, if $\exists v \in R$ s.t $u \cdot v = v \cdot u = 1_R$

 $R^{\times} \subseteq R$, the set of units in R

Definition 1.14. A division ring a non-trivial ring, s.t every $u \neq 0_R \in R$ a unit.

 $R^{\times} = R \backslash \{0\}$

A Field a commutative division ring

Proposition 1.17. Subset $R^{\times} \subset R$ a group under multiplication.

1.2 Constructions of rings

Example 1.18. R, S rings \implies R \times S the product ring a ring via

$$
(r,s) + (r',s') = (r + r', s + s') \quad (r,s) \cdot (r',s') = (r \cdot r', s \cdot s')
$$

Example 1.21. R a ring, the **polynomial ring** $R[X]$ a ring

$$
R[X] = \{ f = a_0 + a_1 X + \dots a_n X^n \mid a_i \in R \}
$$

So for $f = \sum_{i=1}^n a_i X^i$, $g = \sum_{i=1}^k b_i X^i$, we have ring ops

$$
f + g := \sum_{r=0}^{\max\{n,m\}} (a_i + b_i) X^i
$$

$$
f \cdot g := \sum_{i=0}^{n+k} \left(\sum_{j=0}^i a_j b_{i-j}\right) X^i
$$

Note: call maximal n s.t $a_n \neq 0_R$ the deg(f)

For f of degree $n \geq 0$, if $a_n = 1$ say f is monic.

Notation: Write $R[X, Y]$ for $(R[X])[Y]$ polynomial ring in 2 variables, and in general $R[X_1, \ldots, X_n] =$ $(...((R[X_1])[X_2]...)[X_n])$

Example 1.23. Laurent polynomials on R the set $R[X, X^{-1}]$

$$
R[X, X^{-1}] = \left\{ f = \sum_{i \in \mathbb{Z}} a_i X^i \mid \text{ only finitely many } a_i \neq 0 \right\}
$$

Operations defined similarly to $R[X]$

We have here the set of monomials $\{X^i : i \in \mathbb{Z}\}\$ form a group under multiplication.

Example 1.24. G a group, R a ring. Define the Group Ring $R[G]$:

$$
R[G] := \left\{ \sum_{g \in G} a_g g \mid a_g \in R, |\{ g \in G : a_g \neq 0\}| < \infty \right\}
$$

With addition and multiplication as follows

$$
\left(\sum_{g \in G} a_g g\right) + \left(\sum_{g \in G} b_g g\right) = \sum_{g \in G} (a_g +_R b_g) g
$$

$$
\left(\sum_{g \in G} a_g g\right) \cdot \left(\sum_{g \in G} b_g g\right) = \sum_{g \in G} \left(\sum_{h \in G} a_h \cdot_R b_{h^{-1}g}\right) g
$$

We have that $R[X, X^{-1}] \cong R[C_{\infty}], C_{\infty} = (\mathbb{Z}, +)$ If R commutative ring, then $R[G]$ commutative $\iff G$ abelian.

Example 1.25.

 $M_n(R) = set of n \times n$ matrices, R a ring

A ring over the usual addition and multiplication

Example 1.26. Abelian group A

 $End(A) = \{f : A \rightarrow A \mid f \text{ a group homomorphism}\}$

A ring with ops

$$
(f +_{End(A)} g)(x) := f(x) +_{A} g(x) \quad (f \cdot_{End(A)} g)(x) := (f \circ g)(x)
$$

Group of units of $End(A)$ is the automorphism group of A denoted $Aut(A)$

1.3 Homomorphisms, ideals and quotients

Definition 1.27. R, S rings. $\varphi : R \to S$ a ring homomorphism if

1.
$$
\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)
$$

\n2. $\varphi(0_R) = 0_S$
\n3. $\varphi(r_1 \cdot r_2) = \varphi(r_1) + \varphi(r_2)$
\n4. $\varphi(1_R) = 1_S$

Definition 1.28. An isomorphism, A bijective homomorphism φ

Definition 1.29. Kernel of homomorphism $\varphi : R \to S$

$$
ker(\varphi) = \{r \in R : \varphi(r) = 0_S\}
$$

Definition 1.30. Image of homomorphism $\varphi : R \to S$

$$
im(\varphi) = \{ s \in S : s = \varphi(r), \text{ for some } r \in R \}
$$

Lemma 1.31. Homomorphism $\varphi : R \to S$ injective \iff ker $\varphi = \{0_R\}$ Definition 1.32. A ideal $I \subset R$ an abelian subgroup s.t.

$$
\forall i \in I, r \in R \begin{cases} ri \in I, & left \ ideal \\ ir \in I, & right \ ideal \end{cases}
$$

This the strong closure property.

A two-sided or bi-ideal both a left and right ideal.

Lemma 1.33. $\varphi : R \to S$ a homomorphism, then ker(φ) $\subset R$ a two-sided ideal

Definition 1.35. Proper ideal, an ideal $I \neq R$ For every proper ideal I, we have $1 \notin I \implies not \text{ a subring.}$ Even more generally, proper ideals do not contain any unit.

$$
if I \neq R \implies I \subset R \backslash R^{\times}
$$

Definition 1.38. For element $a \in R$, write the ideal generated by a as,

$$
(a) = Ra = \{r \cdot a \mid r \in R\} \subset R
$$

The ideal generated by $a_1, \ldots a_n$

$$
(a_1,\ldots,a_n)=\{r_1a_1+\ldots r_ka_k\mid r_i\in R\}
$$

Definition 1.39. $A ⊂ R$ define ideal generated by A as

$$
(A) = R \cdot A = \{ sum_{a \in A} r_a \cdot a \mid r_a \in R, \ only \ finitely \ many \ non-zero \}
$$

Definition 1.40. Say ideal I principal if $I = (a)$ for some $a \in R$

Definition 1.42. Let $I \subset R$ a two-sided ideal Quotient ring $R/I = \{r + I \mid r \in R\}$ a ring with $0_R + I$, $1_R + I$

$$
(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I, \quad (r_1 + I) \cdot (r_2 + I) = r_1 r_2 + I
$$

Proposition 1.43. Quotient ring a ring, and function

$$
\varphi \colon R \to R/I, r \mapsto r + I
$$

a ring homomorphism.

Proposition 1.47. (Euclidean algorithm for polynomials) Let F a field, and $f, g \in F[X] \implies \exists r, q \in F[X] \text{ s.t.}$

$$
f = gq + r
$$

with $\deg r < \deg g$

Theorem 1.49. (First isomorphism theorem) Let $\varphi: R \to S$ a ring homomorphism, $\ker(\varphi) \subseteq R$ a 2-sided ideal and

$$
\frac{R}{ker(\varphi)} \cong im(\varphi) \le S
$$

Theorem 1.50. (Second isomorphism theorem) $R \leq S$ be subrings, $J \subseteq S$ a 2-sided ideal. Then

- (i) $R + J = \{r + j : r \in R, j \in J\} \leq S$ a subring
- (ii) $J \subseteq R + J$ and $J \cap R \subseteq R$ are both 2-sided ideal

$$
(iii) \ \ \frac{R+J}{J}=\{r+J: r\in R\}\leq \tfrac{S}{J}\leq \tfrac{S}{J} \ a \ \textit{subring,} \ \textit{and} \ \tfrac{R}{R\cap J}\cong \tfrac{R+J}{J}
$$

Theorem 1.51. (Third isomorphism theorem) Let R a ring, $I, J \subseteq R$ 2-sided ideals s.t $I \subseteq J$ Then $J/I \subseteq R/I$ a 2-sided ideal and

$$
\left(\frac{R}{I}\right) / \left(\frac{J}{I}\right) \cong \frac{R}{J}
$$

2 Integral Domains

2.1 Integral domains, maximal and prime ideals

Definition 2.1. R a commutative ring. Element $x \in R$ a zero divisor if $x \neq 0, \exists y \neq 0$ s.t $x \cdot y = 0 \in R$

Definition 2.2. Integral domain (ID) a non-trivial commutative ring without zero divisors

a ring where if $ab = 0 \implies a = 0$ or $b = 0$

Lemma 2.6. R a finite ring, and integral domain \implies R a field.

Lemma 2.7. R an integral domain. Then $R[X]$ an integral domain

Lemma 2.9. A non-trivial commutative ring R a field \iff its only ideals are $\{0\}$ and R

Definition 2.10. An ideal I of ring R **maximal** if $I \neq R$ and for any ideal J s.t $I \leq J \leq R$ either $J = I$ $or J = R$

Lemma 2.11. R a commutative ring. $I \subseteq R$ maximal $\iff R/I$ is a field

Definition 2.13. Ideal $I \subseteq R$ is prime if $I \neq R$ and if $a, b \in R$ s.t $a \cdot b \in I \implies a \in I$ or $b \in I$

Lemma 2.16. R a commutative ring. $I \subseteq R$ ideal, prime $\iff R/I$ is an integral domain

Corollary 2.17. R commutative ring. Then every maximal ideal is a prime ideal.

Definition 2.18. R a ring. $\iota : \mathbb{Z} \to R$ the unique such map. The characteristic of R the unique non-negative $n \text{ s.t } \ker(\iota) = n\mathbb{Z}$

Lemma 2.20. R an integral domain. char(R) = 0 or p a prime number.

2.2 Factorisation in Integral domains

Definition 2.21. R a ring. Say for $a, b \in R$ a divides b, $a \mid b$ if $\exists c \in R$ s.t $b = ac$. Equivalently $(b) \subseteq (a)$

Definition 2.22. R a ring, say $a, b \in R$ associates if $a = bc$ for some $c \in R^{\times}$ a unit. Equivalently $(a) = (b)$ or $a \mid b$ and $b \mid a$

Definition 2.23. R a ring. $a \in R$ irreducible if $a \neq 0$, and $a \notin R^{\times}$ and if $a = xy \implies x \in R^{\times}$ or $y \in R^{\times}$

Definition 2.24. R a ring. $a \in R$ prime if $a \neq 0$ and $a \notin R^{\times}$ and if $a|xy \implies a|x$ or $a|y$

Lemma 2.26. A principal ideal (r) prime ideal in $R \iff r = 0$ or r prime

Lemma 2.27. If $r \in R$ prime, the r irreducible

Definition 2.29. (Euclidean domain) An integral domain R a Euclidean Domain (ED) if \exists Euclidean function $\phi: R\setminus\{0\} \to \mathbb{Z}_{\geq 0}$ s.t

- 1. $\phi(a \cdot b) \geq \phi(b), \forall a, b \neq 0$
- 2. If $a, b \in R$, $b \neq 0 \implies \exists q, r \in R$ s.t

 $a = b \cdot a + r$

With either $r = 0$ or $\phi(r) < \phi(b)$

Definition 2.34. (Principal ideal domain) A ring R, an integral domain, is a principal ideal domain (PID) if every ideal is a principal ideal.

 $\forall I \subseteq R$ an ideal $\implies \exists a \ s.t \ I = (a)$

Proposition 2.36. Let R a Euclidean domain. Then R a principal ideal domain

Definition 2.41. (Unique factorisation domain) An integral domain a unique factorisation domain (UFD) if

(Existence) Every non-unit written as product of irreducibles

(Uniqueness) If $p_1 \ldots p_n = q_1 \ldots q_m$ with p_i, q_j irreducibles, then $n = m$ and they can be reordered s.t p_i is an associate of qⁱ

Theorem 2.42. $(PID \implies UFD)$

If R a principal ideal domain, then R a unique factorisation domain.

Lemma 2.43. R a PID, then a principal ideal (r) maximal \iff r irreducible or, if R a field, $r = 0$

Proposition 2.44. R a PID, if $r \in R$ irreducible then r prime.

Corollary 2.45. R a PID, Then every non-zero prime ideal is maximal

Definition 2.46. (ACC - Ascending Chain Condition) A commutative ring satisfies the ACC, if

 $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$, a chain of ideals

Then $\exists N \in \mathbb{N}$ s.t $I_n = I_n + 1$ for some $n \geq N$

Definition 2.47. (Noetherian Ring) A commutative ring satisfying the ACC is Noetherian.

Proposition 2.48. R a PID \implies R Noetherian

Definition 2.50. (Greatest Common Divisor, gcd) R a ring, d a (gcd) of a_1, a_2, \ldots, a_n if $d|a_i, \forall i$ and if any other d' satisfies $d'|a_i, \forall i$ then $d'|d$

Lemma 2.51. R a UFD \implies (gcd) exists and is unique up to associates. i.e if d, d' are gcds of $a_1, a_2, \ldots a_n$ then d, d' are associates.

The above lemmas and theorems yield the following chain of implications

(Z) isomorphic to Z \Rightarrow ED \Rightarrow PID \Rightarrow UFD \Rightarrow ID \Rightarrow Commutative Ring \Rightarrow Ring

$$
(\mathbb{Z}) \underset{\mathbb{Q}, \mathbb{Z}[i]}{\underset{\#}{\neq}} ED \underset{\mathbb{Z}[\frac{1+\sqrt{-19}}{2}]}{\underset{\#}{\neq}} PID \underset{\mathbb{Z}[X]}{\underset{\#}{\neq}} UFD \underset{\mathbb{Z}[\sqrt{-5}]}{\neq} ID \underset{\mathbb{Z}/6\mathbb{Z}}{\neq} Commutative Ring \underset{M_2(\mathbb{Z})}{\neq} Ring
$$

2.3 Localisation

Definition 2.54. R an ID, $S \subseteq (R, \cdot)$ a multiplicative submonoid. $0 \notin S$. **Localisation** is set of equivalence classes

$$
S^{-1}R = \{(r, s) \mid r \in R, s \in S, (r, s) \sim (r', s') \text{ if } rs' = r's) \}
$$

Pair (r, s) denoted $\frac{r}{s}$ - this is a ring with ops.

$$
(r,s)\cdot (r',s'):=(rr',ss'),\quad (r,s)+(r',s')=(rs'+r's,ss')
$$

Definition 2.55. $R = \mathbb{Z}, S = R \setminus \{0\}$, Then the rational numbers Q defined as $S^{-1}R$

Proposition 2.57. R an ID, S a multiplicative submonoid s.t $0 \notin S$ Then the map $\iota : R \to S^{-1}R$ is injective

Definition 2.59. R a commutative ring, $S \subseteq R$ a submonoid.

$$
\qquad \qquad Localisation
$$

 $S^{-1}R = \{(r, s) \mid r \in R, s \in S, (r, s) \sim (r', s') \text{ if } \exists t \in S, t(rs' - r's) = 0\}$

Note we have t in this definition when we move away from R being an integral domain.

Definition 2.64. If R an integral domain $S = R \setminus \{0\}$, we have $S^{-1}R$ field. Define the field of fractions of $R, Frac(R) := S^{-1}R$

Proposition 2.67. (Universal property of localisation)

If A a commutative ring, and $\varphi : R \to A$ a ring homomorphism, s.t $\varphi(S) \subset A^{\times}$ then, φ factors through the homomorphism $\iota: R \to S^{-1}R$ i.e $\exists! \widetilde{\varphi}: S^{-1}R \to A$ s.t $\varphi = \iota \circ \widetilde{\varphi}$

Definition 2.68. R a commutative ring, $S \subseteq R$ a multiplicative submonoid. Localisation, $S^{-1}R$ the unique ring R' s.t $\exists \iota R \to R'$ s.t

1. $\iota(S) \subseteq (R')^{\times}$

2. For all commutative rings A and maps $\varphi : R \to A$ with $\varphi(S) \subseteq A^{\times}$, $\exists ! \tilde{\varphi} : R' \to A$ s.t $\varphi = \tilde{\varphi} \circ \iota$

Corollary 2.70. R an ID, F a field, $\varphi : R \to F$ an injective ring homomorphism. Then φ factors through the map from R to $Frac(R): \varphi = \iota \circ \widetilde{\varphi}$ for $\iota: R \to Frac(R)$ with $\widetilde{\varphi}$ injective

Corollary 2.71. F a field, charm(F) = 0. F has subfield isomorphic to \mathbb{Q} If $char(F) = p$ contains subfield isomorphic to \mathbb{F}_p

Lemma 2.72. F a field, $F \leq R$ a subring $\implies R$ a vector space over F

Corollary 2.73. Every field a vector space over \mathbb{F}_p or \mathbb{Q}

Example 2.74. R a commutative ring. $I \subset R$ a prime ideal, $S = R \setminus I$ also a multiplicative submonoid. Denote $S^{-1}R$ as R_I

Proposition 2.77. R a commutative ring, $I \subseteq R$ a prime ideal. Then R_I has a unique maximal ideal given $by \overline{I} = \{(r, s) : r \in I, s \in R\backslash I\}$

Definition 2.78. A local ring a ring which has a unique maximal ideal

Definition 2.80. Set $S^{-1}I := \{\frac{i}{s} \mid s \in S, i \in I\}$ an ideal in $S^{-1}R$ call this the image of I under the localisation

Proposition 2.81. Every ideal $I \subseteq S^{-1}R$ of form $S^{-1}J$ for some $J \subseteq R$ an ideal.

3 Polynomial Rings

3.1 Factorisation in polynomial rings and Gauss' Lemma

Definition 3.1. R a UFD, $f = a_0 + a_1X + \ldots + a_nX^n \in R[X]$. The content is

$$
c(f)=\gcd\big(a_0,\ldots,a_n\big)\in R
$$

Equivalently define content as the ideal $(\gcd(a_0, \ldots, a_n))$

Definition 3.2. A polynomial is primitive if $c(f) \in R^{\times}$, the a_i are coprime Or as an ideal we have $c(f) = R[X]$

Lemma 3.3. R a UFD, if $f \in R[X]$ then $f = c(f) \cdot f_1$ for some $f_1 \in R[X]$ primitive

Lemma 3.4. Let R A UFD. If $f, g \in R[X]$ primitive then fg primitive.

Corollary 3.5. Let R a UFD. $f, g \in R[X]$ we have $c(fg)$ is an associate of $c(f)c(g)$

Lemma 3.6. (Gauss' Lemma) Let R a UFD and $f \in R[X]$ a primitive polynomial. Then f irreducible in $R[X] \iff f$ irreducible $F[X]$ where $F = Frac(R)$

Theorem 3.8. (Polynomial rings over UFDs) If R a UFD, then $R[X]$ a UFD. Further if R a UFD then $R[X_1, \ldots, X_n]$ a UFD

Proposition 3.10. (Eisenstein's Criterion) R a UFD, We let

 $f = a_0 + a_1X + \ldots + a_nX^n \in R[X]$

be primitive with $a_n \neq 0$. Let $p \in R$ irreducible s.t

1. $p \nmid a_n$

2.
$$
p \mid a_i \; \forall 0 \leq i \leq n
$$

3.
$$
p^2 \nmid a_0
$$

Then f irreducible in $R[X]$ and hence in $Frac(R)[X]$

3.2 Algebraic Integers

Definition 3.13. $\alpha \in \mathbb{C}$ an algebraic integer if

$$
\exists \ monic \ f \in \mathbb{Z}[X] \ s.t \ f(\alpha) = 0
$$

Definition 3.14. α algebraic integer, write $\mathbb{Z}[\alpha] \leq \mathbb{C}$ for smallest subring containing α Construct $\mathbb{Z}[\alpha]$ by taking it as image of $\phi : \mathbb{Z}[X] \to \mathbb{C}$ given by $g \mapsto g(\alpha)$ with ϕ inducing an isomorphism

$$
\mathbb{Z}[X]/I \cong \mathbb{Z}[\alpha], \quad I = \ker \phi
$$

Proposition 3.15. $\alpha \in \mathbb{C}$ an algebraic integer and let $\phi : \mathbb{Z}[X] \to \mathbb{C}$ the ring homomorphism given by $f \mapsto f(\alpha)$ Then ideal

 $I = ker(\phi)$

is principal with $I = (f_{\alpha})$ for some irreducible monic f_{α}

Definition 3.16. Let $\alpha \in \mathbb{C}$ an algebraic integer. Then minimal polynomial a polynomial f_{α} is the irreducible monic s.t $I = \ker(\phi) = (f_{\alpha})$

Lemma 3.18. Let $\alpha \in \mathbb{Q}$ be an algebraic integer. Then $\alpha \in \mathbb{Z}$

3.3 Noetherian rings and Hilbert's basis theorem

Definition 3.20. A commutative ring Noetherian if it satisfies the ACC (see Def. 2.46)

Definition 3.24. Ideal I finitely generated if can be written as $I = (r_1, \ldots, r_n)$ for some $r_1, \ldots, r_n \in R$

Proposition 3.25. A commutative ring is Noetherian \iff every ideal is finitely generated. Note: PID trivially satisfy this.

Proposition 3.26. R Noetherian, and $I \subseteq R$ an ideal $\implies R/I$ Noetherian.

Theorem 3.27. (Hilbert's basis theorem) R a Noetherian ring, $\implies R[X]$ also Noetherian.

4 Modules

4.1 Basic definitions and examples

Definition 4.1. R a ring. A left R-module
$$
(\underbrace{M}_{set}, \underbrace{+: M \times M \to M}_{addition}, \underbrace{:: R \times M \to M}_{mult})
$$
 with $0_M \in M$ s.t

 \bullet $(M, +)$ an abelian group with identity 0_M

And we have \cdot satisfying the following

(i) $(r_1 + r_2) \cdot m = (r_1 \cdot m) + (r_2 \cdot m)$

- (ii) $r \cdot (m_1 + m_2) = (r \cdot m_1) + (r \cdot m_2)$
- (iii) $r_1 \cdot (r_2 \cdot m) = (r_1 \cdot r_2) \cdot m$

$$
(iv) 1_R \cdot m = m
$$

Right-module is the same but we have now $(\cdot : M \times R \to M)$ with (iii) now as $(m \cdot r_1) \cdot r_2 = m \cdot (r_1 \cdot r_2)$

Definition 4.4. R a ring.

R-module an abelian group M, equipped with ring homomorphism

$$
\varphi: R \longrightarrow \underline{End(M)}\n{f:M \rightarrow M | f \text{ a group hom.}\n}
$$

Such that

$$
\cdot: R \times M \longrightarrow M
$$

$$
(r, m) \longmapsto \varphi(r)(m)
$$

4.2 Constructions of modules

Definition 4.11. Let M_1, M_2, \ldots, M_k be R-modules. Direct sum is also an R-module

$$
M_1\oplus M_2\oplus\ldots\oplus M_k
$$

Which is the set $M_1 \times \ldots \times M_k$ with addition given by

$$
(m_1, \ldots, m_k) + (m'_1, \ldots, m'_k) = (m_1 + m'_1, \ldots, m_k + m'_k)
$$

And R−action given by

$$
r\cdot (m_1,\ldots,m_k)=(rm_1,\ldots,rm_k)
$$

Definition 4.12. Let M an R-module. A subset $N \subseteq M$ an R-submodule if it is a subgroup of $(M, +, 0_M)$ and if $n \in N$, $r \in R \implies rn \in N$. Write $N \leq M$

Definition 4.15. Let $N \leq M$ be an R-submodule. The quotient module M/N the set of N-cosets in $(M, +, 0_M$ with R-action given by

$$
r \cdot (m + N) = (r \cdot m) + N
$$

Definition 4.17. Function $f : M \to N$ between R-modules an R-module homomorphism if it is a homomorphism of abelian groups and satisfies

$$
f(r \cdot m) = r \cdot f(m), \quad \forall r \in R, m \in M
$$

An isomorphism, is a bijective homomorphism.

Say 2 R-modules are isomorphic if there exists isomorphism between them.

Definition 4.19. If R_1, R_2 rings, M_1 an R_1 -module and M_2 an R_2 -module, then $(M_1 \times M_2)$ is a $(R_1 \times R_2)$ module with action

$$
(r_1, r_2) \cdot (m_1, m_2) := (r_1 m_2, r_2 m_2)
$$

Definition 4.20. R a commutative ring, $S ⊂ R$ a multiplicative submonoid, M an R-module. **Localisation** of M by S ,

$$
S^{-1}M = \{(m, s) \mid m \in M, s \in S, (m, s) \sim (m', s') \text{ if } \exists t \in S \text{ s.t } t(ms' - m's) = 0\}
$$

This an $S^{-1}R$ -module, with natural structure of abelian group, and $S^{-1}R$ action given by

$$
(r,t) \cdot (m,s) := (rm, ts) \ (r,t) \in S^{-1}R, (m, s) \in S^{-1}M
$$

Given ideal $I \subseteq R$ localisation $S^{-1}I \subset S^{-1}R$ as an ideal is isomorphism as an $S^{-1}R$ -module to the localisation of I as a module.

4.3 Basic theory of modules

THEOREM NUMBERS AND DEFS TO BE AMENDED

Theorem 4.21. (1st isomorphism theorem) Let $f : M \to N$ an R-module homomorphism, Then we have

- $ker(f) = \{m \in M : f(m) = 0\} \leq M$ (is an R-submodule)
- $im(f) = \{f(m) : m \in M\} \leq N$ (is an R-submodule)

Then $M/\text{ker}(f) \cong im(f)$

Definition 4.22. Let $f : M \to N$ a map of R-modules. We define the cokernel of f as

$$
coker(f) = N / im(f)
$$

Remark 4.23. For submodules, A_1, \ldots, A_n

$$
A_1 + \ldots + A_n = \{a_1 + \cdots + a_n : a_i \in A_i\} \le M \ (an \ R\text{-submodule})
$$

Theorem 4.24. (2nd isomorphism theorem) Let M an R-module, let $A, B \leq M$ then

- $A + B := \{a + b : a \in A, b \in B\}$
- $A \cap B \leq M$

Then

$$
\frac{A+B}{A}\cong\frac{B}{A\cap B}
$$

Theorem 4.25. (3rd isomorphism theorem) Let M an R-module, and $N \le L \le M$, Then:

- $L/N \leq M/N$
- $M/L \cong \frac{M/N}{L/N}$ L/N

Definition 4.26. M an R-module, $m \in M$, submodule generated by m is

$$
Rm := \{r \cdot m : r \in R\} \le M
$$

Definition 4.27. M an R-module, $m \in M$, the annihilator of m is

$$
Ann(m) := \{r \in R : r \cdot m = 0\}
$$

Since $Ann(m) = ker(\varphi)$ for the homomorphism

$$
\varphi \colon R \to M, r \mapsto r \cdot m
$$

by 1st isomorphism theorem, we have $Ann(m) \leq R$, $Rm \cong R/Ann(m)$

Example 4.28. R a PID, let $I \subseteq R$ an ideal. Then

 $I \cong R$

as R-modules.

Definition 4.29. R-module, M is finitely generated if $\exists m_1, \ldots, m_n$ s.t

$$
M = Rm_1 + Rm_2 + \dots + Rm_n
$$

= { $r_1m_1 + \dots + r_nm_n : r_1, \dots, r_n \in R$ }

Lemma 4.30. M an R-module, then M is finitely generated $\iff \exists$ surjective R-module homomorphism $f: R^n \to M$ for some n

Corollary 4.31. Let $N \leq M$ be R-modules, if M finitely generated, then M/N is finitely generated.

4.4 Free and projective modules

Definition 4.34. Given set S define the free module over S to be R−module

$$
R^{(S)} = \bigoplus_{i \in S} R = \{(x_i)_{i \in S} \in \prod_{s \in S} R : x_i = 0 \text{ for all but finitely many } i\}
$$

with coordinate wise addition and R-action. An R-module M is free if $M \cong R^{(S)}$ for some S

Proposition 4.35. The free module $R^{(S)}$ is finitely generated $\iff S$ finite

Proposition 4.36. F a field.If M an F-module, then M a free F-module

Definition 4.37. $S \subseteq M$ generates M freely if

1. S generates M as an R-module, i.e. $R \cdot S = M$

2. Any set function $\psi : S \to N$, N a R-module, extends to an R-module map $\theta : M \to N$

Definition 4.38. R−module M is free, if it is freely generated by some subset $S \subseteq M$. A set S with this property called a basis for M

Proposition 4.39. The two definitions of free module are equivalent

Lemma 4.40. Suppose M, N are R-modules, s.t M freely generated by $S \subseteq M$ and N freely generated by $T \subseteq N$.

If $∃$ *bijection,* $S \cong T$ *then* $M \cong N$ *as* R *-modules*

Definition 4.42. Let $m_1, \ldots, m_n \in M \implies \{m_1, \ldots, m_n\}$ is linearly independent if

$$
\sum_{i=1}^{n} r_i m_i = 0
$$

 $\implies r_1 = r_2 = \ldots = r_n = 0$

Proposition 4.43. For a subset $S = \{m1, \ldots, m_n\} \subseteq M$, following are equivalent;

- (i) S generates M freely, equivalent to $M \cong \mathbb{R}^n$
- (ii) S generates M and S is linearly independent
- (iii) Every element of M is uniquely expressible as

$$
r_1m_1+r_2m_2+\ldots r_nm_n
$$

for some $r_i \in R$

Definition 4.47. M a finitely generated R-module. We have show that $\exists \varphi : R^n \to M$ a surjective R-module homomorphism, for some n. Call the R-submodule $ker(\varphi) \leq R^n$ the relation module for those generators

Definition 4.48. A finitely generated R-module M is finitely presented if there exists a surjective homomorphism $f: \mathbb{R}^n \to M$ such that $\ker(f)$ a finitely generated R-module

Proposition 4.49. Let $\varphi : R^m \to R^n$ an R-module homomorphism Let $e_1, \ldots, e_m \in R^m$ and $v_1, \ldots, v_n \in R^n$ the standard basis elements Let $\varphi(e_j) = \sum_{i=1}^n A_{ij} e_i$ for some $A_{ij} \in R$ and let $A = (A_{ij}) \in M_{m \times n}(R)$ the corresponding $n \times m$ matrix Then $\varphi(r) = A \cdot r$

Definition 4.50. Say a ring R has the invariant basis number property (IBN) if $R^n ≅ R^m$ are isomorphic as R-modules \iff n = m

Proposition 4.51. Non-trivial commutative rings have the invariant basis number property

Definition 4.52. An R-module M is stably free if there exists n such that $M \oplus R^n$ is a free module An R-module M is projective if there exists an R-module N such that $M \oplus N$ is a free R-module

4.5 Noetherian modules

Theorem 4.56. An R-module M is Noetherian \iff every R-submodule of M is finitely generated.

Corollary 4.57. R a PID \implies R is Noetherian

Theorem 4.58. Any finitely generated module over a Noetherian ring is Noetherian

Proposition 4.59. M a Noetherian R-module, then \forall submodules $N \leq M$, both N and M/N are Noetherian

Proposition 4.60. Let M an R-module, let N a Noetherian submodule of M, and suppose that M/N is Noetherian. Then Mis Noetherian

Corollary 4.61. If M, N are Noetherian R-modules, then so is $M \oplus N$

Corollary 4.62. If R is Noetherian, then any free R-module of finite rank is Noetherian

Corollary 4.63. Let R a Noetherian ring. Then every finitely generated R-module is finitely presented

4.6 Modules over principal ideal domains

Theorem 4.64. (Classification of finitely generated modules over a PID) Let R a PID. If M finitely generated R-module, then $\exists n, r \geq 0$ and elements $d_1, \ldots, d_r \in R$ such that

$$
M \cong R^n \oplus R/(d_1) \oplus \ldots \oplus R/(d_r)
$$

We can assume that $d_1 | d_2 | \ldots | d_r$

Can be shown that is we choose the d_i to satisfy these conditions, then the n and d_i are unique.