Applied Probability Concise Notes

MATH60045/70045

Arnav Singh

Content from prior years assumed to be known.

Mathematics Imperial College London United Kingdom January 10, 2023

Contents

3	Dise	Discrete-time Markov Chains 3					
	3.1	Definition of discrete time Markov Chains	3				
	3.2	The <i>n</i> -step transition probabilities and Chapman-Kolmogorov equations	3				
	3.3	Dynamics of a Markov Chain	4				
	3.4	First passage/hitting times	4				
	$3.4 \\ 3.5$	Recurrence and transience	- 5				
	5.5		5				
		3.5.1 Mean recurrence time, null and positive recurrence $\dots \dots \dots$					
		3.5.2 Generating functions for $p_{ij}(n)$, $f_{ij}(n)$ (READING MATERIAL)	6				
		3.5.3 Example: Null recurrence/transience of a simple random walk (READING MATERIAL)	6				
	3.6	Aperiodicity and ergodicity	6				
	3.7	Communicating classes	6				
		3.7.1 The decomposition theorem	6				
		3.7.2 Class properties	7				
	3.8	Application: The gambler's ruin problem	7				
		3.8.1 The problem and the results	7				
	3.9	Stationarity	8				
		3.9.1 Stationarity distribution for irreducible Markov Chains	8				
		3.9.2 Limiting distribution	9				
		3.9.3 Ergodic Theorem	9				
		3.9.4 Properties of the elements of a stationary distribution associated with transient or	3				
			10				
		0 I	10				
	0.10	0	10				
	3.10	Time reversibility	10				
4	Properties of the Exponential Distribution 11						
4	4.1						
	4.1 4.2						
	4.3						
		tributed random variables	12				
5	Pois	sson Process	12				
Ŭ	5.1		12				
	5.3	•	$12 \\ 12$				
	0.0		$12 \\ 13$				
			13				
		8	13				
			14				
	5.4		14				
			14				
			14				
		5.4.3 Poisson process: Third definition	14				
		5.4.4 Conditional distribution of the arrival times	14				
	5.5	Some extensions to Poisson processes	14				
		-	14				
		1 1	15				
		8	15				
		о I	15 15				
	5.6		15 16				
		8					
	5.7		17				
			17				
		5.7.2 The Process	17				

		5.7.3 Time to most recent common ancestor	18			
6	Cor	ontinuous-time Markov Chains				
	6.1	Some definitions	18			
	6.2	Holding times and alarm clocks	19			
		6.2.1 Holding times	19			
		6.2.2 Describing the evolution of a Markov Chain using exponential holding times	19			
	6.3	The generator	20			
		6.3.1 Transition probabilities of the associated jump chain	20			
	6.4	The forward and backward equations	20			
		6.4.1 Matrix exponentials	20			
	6.5	Irreducibility, stationarity and limiting distribution	20			
	6.6	Jump chain and explosion	21			
	6.7	Birth processes	22			
		6.7.1 The forward and backward equations	22			
		6.7.2 Explosion of a birth process	22			
	6.8	Birth-death processes	$\overline{23}$			
7	Dno	ownian Motion	23			
1			23			
	7.2	From random walk to Brownian motion				
	7.0	7.2.1 Modes of convergence in distribution, Slutsky's theorem and the CLT	23			
	7.3	Brownian Motion	24			
	7.5	Finite dimensional distributions and transition densities	24			
	7.6	Symmetries and scaling laws	24			
		7.6.1 Some remarks	25			
	7.7	The reflection property and first-passage times				
	7.8	A model for asset prices	25			

3 Discrete-time Markov Chains

3.1 Definition of discrete time Markov Chains

Definition 3.1.1. A discrete-time stochastic process $X = \{X_n\}_{n \in \mathbb{N}_0}$ taking values in countable state space E a Markov chain if it satisfies the Markov condition

 $P(X_n = j \mid X_{n-1} = i, X_{n-2} = x_{n-2}, \dots, X_0 = x_0) = P(X_n = j \mid X_{n-1} = i), \forall n \in \mathbb{N} \ \forall x_0, \dots, x_{n-2}, i, j \in E$

Definition 3.1.2. (Time Homogenous)

1. Markov Chain $\{X_n\}_{n \in \mathbb{N}_0}$ is time-homogenous if

 $P(X_{n+1} = j \mid X_n = i) = P(X_1 = j \mid X_0 = i), \ \forall n \in \mathbb{N}_0, i, j \in E$

2. Transition matrix $P = (p_{ij})_{i,j \in E}$ is the $K \times K$ matrix of transition probabilities

Definition 3.1.3. (Stochastic Matrix) A square matrix P a stochastic matrix if

1. $p_{ij} \ge 0, \forall i, j$

2.
$$\sum_{i} p_{ij} = 1 \ \forall i$$

Theorem 3.1.4. Transition matrix P is stochastic

3.2 The *n*-step transition probabilities and Chapman-Kolmogorov equations

Definition 3.2.1. $n \in \mathbb{N}$, we have

$$P_n = (p_{ij}(n)) = P(X_{m+n} = j, X_m = i), \ m \in \mathbb{N}_0$$

The matrix of n-step transition probabilities.

Lemma 3.2.2. For discrete markov chain $\{X_n\}_{n\geq 0}$ on state space E we have

$$P(X_{n+m} = x_{n+m} | X_n = x_n, \dots, X_0 = x_0) = P(X_{n+m} = x_{n+m} | X_n = x_n), \ m \in \mathbb{N}, \forall x_{n+m}, x_n, \dots, x_0 \in E$$

Theorem 3.2.3. Let $m \in \mathbb{N}_0, n \in \mathbb{N}$ Then we have $\forall i, j \in E$

$$p_{ij}(m+n) = \sum_{l \in E} p_{il}(m) p_{lj}(n) \quad P_{m+n} = P_m P_n \quad P_n = P^n$$

Remark 3.2.4. Extend definition for case $K = \infty$ Let **x** a K-dimensional row vector, P a $K \times K$ matrix

$$(\mathbf{x}P)_j := \sum_{i \in E} x_i p_{ij}, \quad (P^2)_{ik} := \sum_{j \in E} p_{ij} p_{jk}, \ i, j, k \in \mathbb{N}$$

Define P^n similarly and take $(P^0)_{ij} = \delta_{ij}$

3.3 Dynamics of a Markov Chain

Definition 3.3.1. Denote probability mass function of X_n for $n \in \mathbb{N}_0$ by

$$\nu_i^{(n)} = P(X_n = i), \ i \in E$$

Take K = card(E), denote by $\nu^{(n)}$ the K-dimensional row vector with elements $\nu_i^n, i \in E$ Call this the **marginal distribution** of chain at time $n \in \mathbb{N}_0$

Theorem 3.3.3. We have

$$\nu^{(m+n)} = \nu^{(m)} P_n = \nu^{(m)} P^n, \ \forall n \in \mathbb{N}, m \in \mathbb{N}_0$$

So

$$\nu^{(n)} = \nu^{(0)} P_n = \nu^{(0)} P^n, \ \forall n \in \mathbb{N}$$

Theorem 3.3.4. Let $X = \{X_n\}_{n \in \mathbb{N}_0}$ a Markov chain on countable state space EThen given initial distribution $\nu^{(0)}$ and transition matrix P, we determine all finite dimensional distributions of Markov chain.

 $\forall 0 \le n_1 < n_2 < \dots < n_{k-1} < n_k \ (n_i \in \mathbb{N}_0, i = 1, \dots, k), k \in \mathbb{N}, x_1, \dots, x_k \in E$ We have

$$P(X_{n_1} = x_1, X_{n_2} = x_2, \dots, X_{n_k} = x_k) = (\nu^{(0)} P^{n_1})_{x_1} (P^{n_2 - n_1})_{x_1 x_2} \cdots (P^{n_k - n_{k-1}}) x_{k-1} x_k$$
$$= (\nu P^{n_1}) x_1 p_{x_1 x_2} (n_2 - n_1) \cdots p_{x_{k-1} x_k} (n_k - n_{k-1})$$

3.4 First passage/hitting times

Definition 3.4.1. Define first passage/hitting time of X for state $j \in E$ as

$$T_j = \min\{n \in N : X_n = j\}$$

If $X_n \neq j, \forall n \in \mathbb{N}$ then set $T_j = \infty$

Definition 3.4.2. For $i, j \in E, n \in \mathbb{N}$ define first passage probability

$$f_{ij}(n) = P(T_j = n \mid X_0 = i) = P(X_n = j, X_{n-1} \neq j, \dots, X_1 \neq j \mid X_0 = i)$$

Probability that we visit state j at time n, given we start at i at time 0Define $f_{ij}(0) = 0, f_{ij}(1) = p_{ij}, \forall i, j \in E$

Definition 3.4.4. Define

$$f_{ij} = P(T_j < \infty \mid X_0 = i)$$

For $i \neq j$, we have f_{ij} the probability that the chain ever visits state j, starting at iCall f_{ii} the returning probability

Proposition 3.4.5. $\forall i, j \in E$

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}(n)$$

Lemma 3.4.7. $\forall i, j \in E, n \in \mathbb{N}$, we have

$$p_{ij}(n) = \sum_{l=0}^{n} f_{ij}(l) p_{jj}(n-l)$$
$$= \sum_{l=1}^{n} f_{ij}(l) p_{jj}(n-l)$$

3.5 Recurrence and transience

Definition 3.5.1. Let $\{X_n\}_{n \in \mathbb{N}_0}$ be a markov chain on countable state space E.

$$j \in E, \ P(X_n = j, for \ some \ n \in \mathbb{N} \mid X_0 = j) = f_{jj} \begin{cases} 1, & recurrent; \\ < 1, & transient \end{cases}$$

Theorem 3.5.2. $j \in E$

$$\sum_{n=1}^{\infty} p_{ij}(n) = \begin{cases} \infty, & \Longleftrightarrow \ recurrent ; \\ < \infty, & \Longleftrightarrow \ transient . \end{cases}$$

Define

$$N_j = \sum_{n=0}^{\infty} I_n^{(j)}, \quad I_n^{(j)} = I_{X_n = j} = \begin{cases} 1, & \text{if } X_n = j; \\ 0, & \text{if } X_n \neq j. \end{cases}$$

Theorem 3.5.3. $j \in E$ transient

1. $P(N_j = n \mid X_0 = j) = f_{jj}^{n-1}(1 - f_{jj})$ for $n \in \mathbb{N}$ geometric distribution with param f_{jj} 2. $i \neq j$

$$P(N_j = n \mid X_0 = i) = \begin{cases} 1 - f_{ij}, & \text{if } n = 0; \\ f_{ij} f_{jj}^{n-1} (1 - f_{jj}), & \text{if } n \in \mathbb{N}. \end{cases}$$

Corollary 3.5.4. $j \in E$ transient

1.

$$E(N_j \mid X_0 = j) = \frac{1}{1 - f_{jj}}$$

2. $i \neq j$ we have

$$E(N_j \mid X_0 = i) = \frac{f_{ij}}{1 - f_{jj}}$$

Theorem 3.5.5. Given $X_0 = j$, we have

$$E(N_j \mid X_0 = j) = \sum_{n=0}^{\infty} p_{jj}(n)$$

Sum may diverge to ∞

Corollary 3.5.6. $j \in E$ transient then $p_{ij}(n) \xrightarrow[n \to \infty]{} 0, \forall i \in E$

3.5.1 Mean recurrence time, null and positive recurrence

Definition 3.5.7. The mean recurrence time μ_i of state $i \in E$ defined as $\mu_i = E[T_i \mid X_0 = i]$ **Theorem 3.5.8.** Let $i \in E$. We have $P(T_i = \infty \mid X_0 = i) > 0 \iff i$ transient, where we get

$$\mu_i = E[T_i \mid X_0 = i = \infty]$$

Theorem 3.5.9. For recurrent state $i \in E$ we have

$$\mu_i = E[T_i \mid X_0 = i] = \sum_{n=1}^{\infty} n f_{ii}(n)$$

Can be finite or infinite.

Definition 3.5.10. A recurrent state $i \in E$

$$\mu_i = \begin{cases} \infty, & \text{called null}; \\ < \infty, & \text{called positive.} \end{cases}$$

Theorem 3.5.11. Recurrent state $i \in E$ null $\iff p_{ii}(n) \xrightarrow[n \to \infty]{} 0$ Further, if this holds, then $p_{ji}(n) \xrightarrow[n \to \infty]{} 0, \forall j \in E$

- **3.5.2** Generating functions for $p_{ij}(n)$, $f_{ij}(n)$ (READING MATERIAL)
- 3.5.3 Example: Null recurrence/transience of a simple random walk (READING MATE-RIAL)

SEE FULL OFFICIAL NOTES

3.6 Aperiodicity and ergodicity

Definition 3.6.1. Period of state *i* defined by

$$d(i) = gcd\{n : p_{ii}(n) > 0\}$$

Definition 3.6.4. A state ergodic if it is positive recurrent and aperiodic

3.7 Communicating classes

Definition 3.7.1. (Accessible and Communicating)

1. *j* accessible from $i, i \to j$, if $\exists m \in \mathbb{N}_0 \ s.t \ p_{ij}(m) > 0$

2. i, j communicate, if $i \rightarrow j$ and $j \rightarrow i$; write $i \leftrightarrow j$

Theorem 3.7.2. (Communication an equivalence relation) Satisfies, reflexivity, symmetry and transitivity

Theorem 3.7.4. If $i \leftrightarrow j$ then

- 1. *i*, *j* have same period
- 2. i transient/recurrent \iff j transient/recurrent
- 3. i null recurrent \iff j null recurrent

Definition 3.7.5. Set of states C is

- 1. closed if $\forall i \in C, j \notin C, p_{ij} 0$
- 2. *irreducible* if $i \leftrightarrow j, \forall i, j \in C$

Theorem 3.7.6. Let C a closed communicating class, transition matrix P restricted to C is stochastic

3.7.1 The decomposition theorem

Theorem 3.7.8. C a communicating class, consisting of recurrent states. Then C is closed

Theorem 3.7.9. State-space E can be partitioned uniquely into

$$E = \underbrace{T}_{transient \ states} \cup \left(\bigcup_{\substack{i \\ i \ irreducible, \ closed\\ set \ of \ recurrent \ states}} \underbrace{C_i}_{i \ irreducible, \ closed} \right)$$

`

Theorem 3.7.11. $K < \infty$ Then at least one state is recurrent and all recurrent states are positive. **Theorem 3.7.12.** C a finite, closed communicating class \implies all states in C positive recurrent

3.7.2 Class properties

Type of Class	Finite	Infinite
Closed	positive recurrent	positive recurrent, null recurrent, transient
Not Closed	transient	transient

3.8 Application: The gambler's ruin problem

3.8.1 The problem and the results

Consider a gambler with initial fortune $i \in \{0, 1, \ldots, N\}$. At each play of the game, the gambler has

- probability p of winning one unit
- probability q of losing one unit
- each successive game is independent

What is the probability, a gambler starting at i units, has their fortune reach N before 0?

Let X_n denote gamblers fortune at time n. Then $\{X_n\}_{n\in\mathbb{N}_0}$ is a Markov Chain with transition probabilities, shown in diagram above.

This yields 3 communicating classes.

$$\underbrace{C_1 = \{0\}, C_2 = \{N\}}_{\text{positive recurrent}}, T_1 = \{1, 2, \dots, N-1\}$$

since finite and closed

Define the following for our problem:

Define first time X visits state i as

$$V_i = \min\{n \in \mathbb{N}_0 : X_n = i\}$$
$$h_i = h_i(N) = P(V_N < V_0 \mid X_0 = i)$$

This yields the following recurrence relation

$$h_i = h_{i+1}p + h_{i-1}q, \ i = 1, 2, \dots, N-1$$

Theorem 3.8.1. From above we achieve

$$h_i = h_i(N) = \begin{cases} \frac{1 - (q/p)^i}{1 - (q/p)^N}, & \text{if } p \neq \frac{1}{2}; \\ \frac{i}{N}, & \text{if } p = \frac{1}{2}. \end{cases}$$

Theorem 3.8.2. We also have

$$\lim_{N \to \infty} h_i(N) = h_i(\infty) = \begin{cases} 1 - (q/p)^i, & \text{if } p > \frac{1}{2}; \\ 0, & \text{if } p \le \frac{1}{2}. \end{cases}$$

• $p > \frac{1}{2} \implies \frac{q}{p} < 1 \implies \lim_{N \to \infty} (\frac{q}{p})^N = 0$ • $p < \frac{1}{2} \implies \frac{q}{p} > 1 \implies \lim_{N \to \infty} = \infty$

3.9 Stationarity

Definition 3.9.1. (Distributions)

1. row vector λ a distribution on E if

$$\forall j \in E, \lambda_j \ge 0, \text{ and } \sum_{j \in E} = 1$$

2. row vector λ with non-negative entries is called **invariant** for transition matrix P if

 $\lambda P = \lambda$

- 3. row vector π is invariant/stationary/equilibrium distribution of Markov chain on E with transition matrix P if
 - (a) π a distribution
 - (b) it is invariant

$$\pi P^n = \pi$$

3.9.1 Stationarity distribution for irreducible Markov Chains

Theorem 3.9.2. An irreducible chain has stationary distribution $\pi \iff$ all states are positive recurrent. π unique stationary distribution, s.t $\pi_i = \mu_i^{-1} \forall i$

Lemma 3.9.3. For markov chain X we have $\forall j \in E, n, m \in \mathbb{N}$

$$f_{jj}(m+n) = \sum_{i \in E, i \neq j} l_{ji}(m) f_{ij}(n)$$

For $l_{ji}(n) = P(X_n = i \cdot T_j \ge n \mid X_0 = j)$

Corollary 3.9.4. For Markov Chain X we have $\forall i, j \in E, i \neq j \text{ and } \forall n, m \in \mathbb{N}$

$$f_{jj}(m+n) \ge l_{ji}(m)f_{ij}(n)$$

Lemma 3.9.5. Let $i \neq j$ Then $l_{ji}(1) = p_{ji}$, and for integers $n \geq 2$

$$l_{ji}(n) = \sum_{r \in E: r \neq j} p_{ri} l_{jr}(n-1)$$

Lemma 3.9.6. $\forall j \in E$ of an irreducible, recurrent chain, the vector $\rho(j)$ satisfies $\rho_i(j) < \infty$ $\forall i$ and further $\rho(j) = \rho(j)P$

Lemma 3.9.7. Every irreducible, positive, recurrent chain has a stationary distribution

Theorem 3.9.8. If the chain is irreducible and recurrent, then $\exists \mathbf{x} > 0$ s.t $\mathbf{x} = \mathbf{x}\mathbf{P}$ unique up to multiplicative constant.

Chain is
$$\begin{cases} positive \ recurrent, & if \ \sum_i x_i < \infty; \\ null, & if \ \sum_i x_i = \infty. \end{cases}$$

Lemma 3.9.9. Let T a non-negative integer valued random variable on probability space (Ω, \mathcal{F}, P) , with $A \in \mathcal{F}$ an event s.t P(A) > 0. Can show that

$$E(T \mid A) = \sum_{n=1}^{\infty} P(T \ge n \mid A)$$

Theorem (Dominated convergence theorem) Let \mathcal{I} be a countable index set. If $\sum_{i \in \mathcal{I}} a_i(n)$ is an absolutely convergent series $\forall n \in N$ s.t

- 1. $\forall i \in \mathcal{I}$ the limit $\lim_{n \to \infty} a_i(n) = a_i$ exists
- 2. \exists seq. $(b_i)_{i \in I}$ s.t $b_i \ge 0 \forall i$ and $\sum_{i \in \mathcal{I}} b_i < \infty$ s.t $\forall n, i : |a_i(n)| \le b_i$

Then $\sum_{i \in \mathcal{I}} |a_i| < \infty$ and

$$\sum_{i \in I} a_i = \sum_{i \in I} \lim_{n \to \infty} a_i(n) = \lim_{n \to \infty} \sum_{i \in \mathcal{I}} a_i(n)$$

3.9.2 Limiting distribution

Definition 3.9.12. A distribution π is the limiting distribution of a discrete-time Markov Chain if, $\forall i, j \in E$ we have

$$\lim_{n \to \infty} p_{ij}(n) = \pi_j$$

Definition 3.9.14. For irreducible aperiodic chain we have

$$\lim_{n \to \infty} p_{ij}(n) = \frac{1}{\mu_j}$$

3.9.3 Ergodic Theorem

Theorem 3.9.16. (Ergodic Theorem)

Suppose we have irreducible Markov chain $\{X_n\}_{n\in\mathbb{N}_0}$ with state space E. Let μ_i the mean recurrence time to state $i \in E$

$$V_i(n) = \sum_{k=0}^{n-1} \mathbf{1}_{\{X_k=i\}}$$

The number of visits to i before n

So we have $V_i(n)/n$ the proportion of time before n spent at i

$$P\left(\frac{V_i(n)}{n} \to \frac{1}{\mu_i}, \text{ as } n \to \infty\right) = 1$$

Summary: Properties of irreducible Markov Chains 3 kinds of irreducible Markov Chains

1. Positive recurrent

- (a) Stationary distribution π exists
- (b) Stationary distribution is unique
- (c) All mean recurrence times are finite and $\mu_i = \frac{1}{\pi_i}$

(d)
$$V_i(n)/n \xrightarrow[n \to \infty]{} \pi_i$$

(e) If chain aperiodic

$$\lim_{n \to \infty} P(X_n = i) = \pi_i, \forall i \in E$$

2. Null recurrent

- (a) Recurrent, but all mean recurrence times are infinite
- (b) No stationary distribution exists

(c)
$$V_i(n)/n \xrightarrow[n \to \infty]{} 0$$

$$\lim_{n \to \infty} P(X_n = i) = 0, \forall i \in E$$

3. Transient

- (a) Any particular state is eventually never visited
- (b) No stationary distribution exists
- (c) $V_i(n)/n \xrightarrow[n \to \infty]{} 0$

(d)

$$\lim_{n \to \infty} P(X_n = i) = 0, \forall i \in E$$

3.9.4 Properties of the elements of a stationary distribution associated with transient or null-recurrent states

Theorem 3.9.17. Let X a time-homogeneous Markov Chain on countable state space E If π a stationary distribution of X, $i \in E$ either transient or null-recurrent, then $\pi_i = 0$

3.9.5 Existence of a stationary distribution on a finite state space

Theorem 3.9.19. If state space finite $\implies \exists$ at least one positive recurrent communicating class

Theorem 3.9.20. Suppose finite state space. The stationary distribution π for transition matrix P unique \iff there is a unique closed communicating class

Corollary 3.9.21. Markov chain on finite state space, and $N \ge 2$ closed classes. C_i the closed classes of Markov chain and $\pi^{(i)}$ the stationary distribution associated with class C_i using construction

$$\pi_j^{(i)} = \begin{cases} \pi_j^{C_i}, & \text{if } j \in C_i; \\ 0, & \text{if } j \notin C_i. \end{cases}$$

Then every stationary distribution of Markov Chain represented as

$$\sum_{i=1}^{N} \omega_i \pi^{(i)}$$

For weights $\omega_i \geq 0, \sum_{i=1}^n \omega_i = 1$

3.9.6 Limiting distributions on a finite state space

Theorem 3.9.23. Let $K = |E| < \infty$ Suppose for some $i \in E$ that

$$\lim_{n \to \infty} p_{ij}(n) = \pi_j, \quad \forall j \in E$$

Then π a stationary distribution

3.10 Time reversibility

Theorem 3.10.1. For irreducible, positive recurrent Markov chain $\{X_n\}_{n \in 0,1,...,N}, N \in \mathbb{N}$ assume π a stationary distribution, and P a transition matrix, and $\forall n \in \{0, 1, ..., N\}$ the marginal distribution $\nu^{(n)} = \pi$

 $Y_n = X_{N-n}$, The reversed chain defined for $n \in \{0, 1, \dots, N\}$

We have Y a Markov chain, satisfying

$$P(Y_{n+1} = j \mid Y_n = i) = \frac{\pi_j}{\pi_i} p_{ji}$$

Definition 3.10.2. $X = \{X_n : n \in \{0, 1, ..., N\}\}$ an irreducible Markov chain with stationary distribution π and marginal distributions $\nu^{(n)} = \pi$, $\forall n \in \{0, 1, ..., N\}$

Markov chain X time-reversible if transition matrices of X and its reversal Y are the same.

Theorem 3.10.3. $\{X_n\}_{n \in \{0,1,\ldots,N\}}$ time-reversible $\iff, \forall i, j \in E$

$$\pi_i p_{ij} = \pi_j p_{ji}$$

Theorem 3.10.4. For irreducible chain, if $\exists \pi \ s.t \ 3.10.1$ holds $\forall i, j \in E$. Then the chain is time-reversible (once in its stationary regime) and positive recurrent with stationary distribution π

4 Properties of the Exponential Distribution

4.1 Definition and basic properties

Definition 4.1.1. (Exponential distribution) A continuous random variable X is $X \sim Exp(\lambda)$ if it has density function

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x > 0; \\ 0, & \text{if otherwise.} \end{cases}$$

Cumulative distribution function

$$F_X(x) = \begin{cases} 0, & \text{if } x \le 0; \\ 1 - e^{-\lambda x}, & \text{if } x > 0. \end{cases}$$

Survival function of the exponential distribution is given by

$$P(X > x) = \begin{cases} 1, & \text{if } x \le 0; \\ e^{-\lambda x}, & \text{if } x > 0. \end{cases}$$

Theorem 4.1.2. $X \sim Exp(\lambda)$ for $\lambda > 0$ Then

- 1. $E(X) = \frac{1}{\lambda}$
- 2. $\lambda X \sim Exp(1)$

Theorem 4.1.3. Let $n \in \mathbb{N}$ and $\lambda > 0$. Consider independent and identically distributed random variables $H_i \sim Exp(\lambda)$, for i = 1, ..., n

Let $J_n := \sum_{i=1}^n H_i$ Then J_n follows the $Gamma(n, \lambda)$ distribution, i.e

$$f_{J_n}(t) = \frac{\lambda^n}{\Gamma(n)} t^{n-1} e^{-\lambda t}$$

Theorem 4.1.4. Let $n \in \mathbb{N}$ and $\lambda_1, \ldots, \lambda_n$. Consider independent random variables $H_i \sim Exp(\lambda_i)$ for $i = 1, \ldots, n$. Let $H := \min\{H_1, \ldots, H_n\}$ Then

- 1. $H \sim Exp(\sum_{i=1}^{n} \lambda i)$
- 2. For any $k = 1, \ldots, n, P(H = H_k) = \lambda_k / \sum_{i=1}^n \lambda_i$

Theorem 4.1.5. Consider a countable index set E and $\{H_i : i \in E\}$ independent random variables with $H_i \sim Exp(\lambda_i), \forall i \in E$. Suppose that $\sum_{i \in E} \lambda_i < \infty$ and set $H := \inf_{i \in E} H_i$ Then the infimum is attained at a unique random value I of E with probability 1 H, I are independent, with $H \sim Exp(\sum_{i \in E} \lambda_i < \infty)$ and $P(I = i) = \lambda_i / \sum_{k \in E} \lambda_k$

Remark 4.1.6. Suppose we have $X \sim Exp(\lambda_X), Y \sim Exp(\lambda_Y)$, Then

$$P(X < Y) = P(\min\{X, Y\} = X) = \frac{\lambda_X}{\lambda_X + \lambda_Y}$$

4.2 Lack of memory property

Theorem 4.2.1. (Lack of memory property)

A continuous random variable $X : \Omega \to (0, \infty)$ has an exponential distribution \iff has the lack of memory property

$$P(X > x + y \mid X > x) = P(X > y), \quad \forall x, y > 0$$

Remark 4.2.2. A random variable $X : \Omega \to (0, \infty)$ has an exponential distribution \iff has lack of memory property:

$$P(X > x + y \mid X > x) = P(X > y), \quad \forall x, y > 0$$

4.3 Criterion for the convergence/divergence of an infinite sum of independent exponentially distributed random variables

Theorem 4.3.1. Consider sequence of independent random variables $H_i \sim Exp(\lambda_i)$ for $0 < \lambda_i < \infty$ for all $i \in \mathbb{N}$ and let $J_{\infty} = \sum_{i=1}^{\infty} H_i$, Then:

1. If $\sum_{i=1}^{\infty} \frac{1}{\lambda_i} < \infty \implies P(J_{\infty} < \infty) = 1$

2. If
$$\sum_{i=1}^{\infty} \frac{1}{\lambda_i} = \infty \implies P(J_{\infty} = \infty) = 1$$

Lemma 4.3.2. For $x \ge 1$, we have

$$\log\left(1+\frac{1}{x}\right) \ge \log(2)\frac{1}{x}$$
$$\log(1+x) > \frac{x}{x+1}, \quad \text{for } x > -1$$

5 Poisson Process

5.1 Remarks on continuous-time stochastic processes on a countable state space

5.3 Some Definitions

Definition 5.3.0. A stochastic process $\{N_t\}_{t\geq 0}$ a counting process if N_t represents the total number of 'events' that have occurred up to time t Having the following properties:

- 1. $N_0 = 0$
- 2. $\forall t \geq 0, N_t \in \mathbb{N}_0$
- 3. If $0 \le s \le t, N_s \le N_t$
- 4. For $s < t, N_t N_s =$ the number of events in interval (s, t]
- 5. Process is piecewise constant and has upward jumps of size 1 i.e $N_t N_{t-} \in \{0, 1\}$

Definition 5.3.1. Let $(J_n)_{n \in \mathbb{N}_0}$ a strictly increasing sequence of positive random variables s.t $J_0 = 0$ almost surely.

Define process $\{N_t\}_{t\geq 0}$ as

$$N_t = \sum_{n=1}^{\infty} \mathbf{1}_{\{J_n \le t\}},$$

Interpret J_n as the (random) time at which the nth event occurs. The nth jump time.

5.3.1 Poisson Process: First Definition

Definition 5.3.0. Define $o(\cdot)$ notation. A function f is $o(\delta)$ if

$$\lim_{\delta \downarrow 0} \frac{f(\delta)}{\delta} = 0$$

With the following properties

- if f, g are $o(\delta)$ then so is f + g
- if f is $o(\delta)$ and $c \in \mathbb{R}$ then cf is $o(\delta)$

Definition 5.3.3. A Poisson process $\{N_t\}_{t\geq 0}$ of rate $\lambda > 0$ is a non-decreasing stochastic process with values in \mathbb{N}_0 satisfying:

- 1. $N_0 = 0^1$
- 2. Increments are independent, that is given any $n \in \mathbb{N}$ and $0 \le t_0 < t_1 < t_2 < \ldots < t_n$ random variables $N_{t_0}, N_{t_1} N_{t_0}, N_{t_2} N_{t_1}, N_{t_3} N_{t_2}, \ldots, N_{t_n} N_{t_{n-1}}$ are independent
- 3. The increments are stationary, Given any 2 distinct times $0 \leq s < t, \forall k \in \mathbb{N}_0$

$$P(N_t - N_s = k) = P(N_{t-s} = k)$$

4. There is a 'single arrival', i.e $\forall t \geq 0, \delta > 0, d \rightarrow 0$:

$$P(N_{t+\delta} - N_t = 1) = \lambda \delta + o(\delta)$$
$$P(N_{t+\delta} - N_t \ge 2) = o(\delta)$$

5.3.2 Poisson Process: Second definition

Definition 5.3.4. A Poisson Process $\{N_t\}_{t\geq 0}$ of rate $\lambda > 0$ is a stochastic process with values in \mathbb{N}_0 satisfying

- 1. $N_0 = 0$
- 2. Increments are independent, that is given any $n \in \mathbb{N}$ and $0 \le t_0 < t_1 < t_2 < \ldots < t_n$ random variables $N_{t_0}, N_{t_1} N_{t_0}, N_{t_2} N_{t_1}, N_{t_3} N_{t_2}, \ldots, N_{t_n} N_{t_{n-1}}$ are independent
- 3. The increments are stationary, Given any 2 distinct times $0 \le s < t, \forall k \in \mathbb{N}_0$

$$P(N_t - N_s = k) = P(N_{t-s} = k)$$

4. $\forall t \geq 0, N_t \sim Poi(\lambda t)$

$$\forall k \in \mathbb{N}_0, P(N_t = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

5.3.3 Right-continuous modification

Definition 5.3.0. For 2 stochastic processes $\{X_t\}_{t>0}, \{Y_t\}_{t>0}$, say X a modification of Y if

 $X_t = Y_t$, almost surely for each $t \ge 0$

$$P(X_t = Y_t) = 1, \forall t \ge 0$$

Can show that for each Poisson process, $\exists!$ modification which is càdlàg, (right continuous with left limits).

Remark 5.3.5. Note that the jump chain of the Poisson Process given by $Z = (Z_n)_{n \in \mathbb{N}_0}$, where $Z_n = n, n \in \mathbb{N}_0$

5.3.4 Equivalence of definitions

Theorem 5.3.6. Definition 5.3.3, 5.3.4 are equivalent

Lemma 5.3.7. Laplace transform of a Poisson random variable of mean $\lambda t, X \sim Poi(\lambda t)$ for $\lambda > 0, t > 0$ is given by

$$\mathcal{L}_X(u) = \exp\{\lambda t[e^{-u} - 1]\}, \quad \forall u > 0$$

5.4 Some properties of Poisson processes

5.4.1 Inter-arrival time distribution

Definition 5.4.1. Let $\{N_t\}_{t\geq 0}$ a Poisson process of rate $\lambda > 0$ Then the inter-arrival times are independently and identically distributed exponential random variables with parameter λ

5.4.2 Time to the n^{th} event

Theorem 5.4.2. We have $\forall n \in \mathbb{N}$, the time to the n^{th} event J_n follows a Gamman, λ distribution, with density

$$f_{J_n}(t) = \frac{\lambda^n}{\Gamma(n)} t^{n-1} e^{-\lambda t}, \ t > 0$$

5.4.3 Poisson process: Third definition

Definition 5.4.4. A Poisson process $\{N_t\}_{t\geq 0}$ of rate $\lambda > 0$ is a stochastic process with values in \mathbb{N}_0 s.t.

- 1. H_1, H_2, \ldots denote independently and identically exponentially distributed random variables with parameter $\lambda > 0$
- 2. Let $J_0 = 0$ and $J_n = \sum_{i=1}^n H_i$
- 3. Define

$$N_t = \sup\{n \in \mathbb{N}_0 : J_n \le t\}, \quad \forall t \ge 0$$

Theorem 5.4.5. Definitions 5.3.3, 5.3.4, 5.4.4 are equivalent

5.4.4 Conditional distribution of the arrival times

Theorem 5.4.6. Let $\{N_t\}_{t\geq 0}$ be a Poisson process of rate l > 0. Then $\forall n \in \mathbb{N}, t > 0$, the conditional density of (J_1, \ldots, J_n) given by $N_t = n$ is given by

$$f_{(J_1, \dots, J_n)}(t_1, \dots, t_n | N_t = n) = \begin{cases} \frac{n!}{t^n}, & \text{if } 0 < t_1 < \dots < t_n \le t; \\ 0, & \text{otherwise} \end{cases}$$

Remark 5.4.7. The above theorem says, conditional on the fact n events have occurred in [0,t], the times (J_1, \ldots, J_n) at which the events occur, when considered as unordered random variables are independently and uniformly distributed on [0,t]

5.5 Some extensions to Poisson processes

5.5.1 Superposition

Theorem 5.5.2. Given n independent Poisson processes $\{N_t^{(1)}\}_{t\geq 0}, \ldots, \{N_t^{(n)}\}_{t\geq 0}$ with respective rates, $\lambda_1, \ldots, \lambda_n > 0$ define

$$N_t = \sum_{i=1}^n N_t^{(i)}, \quad t \ge 0$$

Then $\{N_t\}_{t\geq 0}$ a Poisson process with rate $\lambda = \sum_{i=1}^n \lambda_i$ and is called a superposition of Poisson processes

5.5.2 Thinning

Theorem 5.5.5. Let $\{N_t\}_{t\geq 0}$ a Poisson process with rate $\lambda > 0$. Assume that each arrival, independent of other arrivals, is marked as a type k event with probability p_k for k = 1, ..., n where $\sum_{i=1}^{n} p_i = 1$. Let $N_t^{(k)}$ denote the number of type k events in [0, t]. Then $\{N_t^{(k)}\}_{t\geq 0}$ a Poisson process with rate λp_k and the processes

$$\{N_t^{(1)}\}_{t\geq 0}, \dots, \{N_t^{(n)}\}_{t\geq 0}$$

are independent. Each process called a thinned Poisson process

5.5.3 Non-homogeneous Poisson processes

Definition 5.5.6. Let $\lambda : [0, \infty) \mapsto (0, \infty)$ denote a non-negative and locally integrable function, called the *intensity function*

A non-decreasing stochastic process $N = \{N_t\}_{t\geq 0}$ with values in \mathbb{N}_0 called a **non-homogeneous Poisson** process with intensity function $(\lambda(t))_{t\geq 0}$ if it satisfies the following:

- 1. $N_0 = 0$
- 2. N has independent increments
- 3. 'Single arrival' property, For $t \ge 0, \delta > 0$

$$P(N_{t+\delta} - N_t = 1) = \lambda(t)\delta + o(\delta)$$
$$P(N_{t+\delta} - N_t \ge 2) = o(\delta)$$

Note that (3) also implies that

$$P(N_{t+\delta} - N_t = 0) = 1 - \lambda(t) + o(\delta)$$

Theorem 5.5.7. Let $N = \{N_t\}_{t\geq 0}$ denote a non-homogeneous Poisson process with continuous intensity function $(\lambda(t))_{t\geq 0}$ Then

$$N_t \sim Poi(m(t)), \quad where \quad m(t) = \int_0^t \lambda(s) ds$$

i.e. $\forall t \geq 0, n \in \mathbb{N}_0$

$$P(N_t = n) = \frac{[m(t)]^n}{n!} e^{-m(t)}$$

5.5.4 Compound Poisson processes

Definition 5.5.12. Let $\{N_t\}_{t\geq 0}$ be a Poisson process of rate $\lambda > 0$. Y_1, Y_2, \ldots be a sequence of independent and identically distributed random variables, that are independent of $\{N_t\}_{t\geq 0}$. Then the process $\{S_t\}_{t\geq 0}$ with

$$S_t = \sum_{i=1}^{N_i} Y_i, \quad t \ge 0$$

is a compound Poisson process

Theorem 5.5.13. Let $\{S_t\}_{t\geq 0}$ a compound Poisson process. Then for $t\geq 0$

$$E(S_t) = \lambda t E(Y_1), \quad Var(S_t) = \lambda t E(Y_1^2)$$

as defined in Definition 5.5.12

5.6 The Cramér-Lundberg model in insurance mathematics

Definition 5.6.1. The Cramér-Lundberg model is given by the following five conditions.

- 1. Claim size process is denoted by $Y = (Y_k)_{k \in \mathbb{N}}$, for Y_k denoting the positive i.i.d random variables with finite mean $\mu = E(Y)1$ and variance $\sigma^2 = Var(Y_1) \leq \infty$
- 2. Claim times occur at the random instants of time

$$0 < J_1 < J_2 < \dots a.s.$$

3. The claim arrival process is denoted by

$$N_t = \sup\{n \in \mathbb{N} : J_n \le t\}, t \ge 0$$

which is the number of claims in the interval [0, t].

4. The inter-arrival times are denoted by

$$H_1 = J_1, H_k = J_k - J_{k-1}, k = 2, 3, \dots$$

and are independent and exponentially distributed with parameter λ

5. sequences $(Y_k, (H_k))$ are independent of each other

Definition 5.6.3. The Total claim amount is defined as the process $(S_t)_{t>0}$ satisfying

$$S_t = \begin{cases} \sum_{i=1}^{N_t} Y_i, & \text{if } N_t > 0; \\ 0, & \text{if } N_t = 0. \end{cases}$$

Observe that the total claim amount is modelled as a compound Poisson process.

Theorem 5.6.4. The total claim amount distribution given by

$$P(S_t \le x) = \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} P\left(\sum_{i=1}^n Y_i \le x\right), \quad x \ge 0, t \ge 0$$

and $P(S_t \leq x) = 0$ for x < 0

Definition 5.6.5. The risk process $\{U_t\}_{t\geq 0}$ is defined as

$$U_t = u + ct - S_t, \quad t \ge 0$$

where $u \ge 0$, the initial capital and c > 0 denotes the premium income rate Definition 5.6.7. We have the following definitions

1. The ruin probability in finite time is given by

$$\psi(u,T) = P(U_t < 0 \text{ for some } t \leq T), \ 0 < T < \infty, u \geq 0$$

2. The ruin probability in infinite time is given by

$$\psi(u) := \psi(u, \infty), u \ge 0$$

Theorem 5.6.8.

$$E(U_t) = u + ct - \lambda t\mu + (c - \lambda\mu)t$$

A minimal requirement for choosing the premium could be

 $c > \lambda \mu$

referred to as the net profit condition

The Coalescent Process 5.7

5.7.1Problem

- Given collection of *n* individuals observe a DNA sequence from the individual
- A DNA sequence a collection of letters; A,C,T and G for simplicity take that only one letter observed
- Coalescent process provides genealogical tree representation of this data. A tree-like structure representing the history of the individuals backward in time.

Individuals coalesce until we have only individual - the most recent common ancestor.

Figure 1: A Coalescent Graph

5.7.2The Process

- At start of process we have $n \ge 2$ individuals (all of the same DNA base)
- Each pair of individuals coalesce according to an (independent) Poisson process of rate 1
- We have $\binom{n}{2}$ pairs time to first coalescent event is exponential random variable of rate $\binom{n}{2}$ since we consider the minimum of $\binom{n}{2}$ independent Exp(1)-distributed random variables.
- At first event 2 individuals picked uniformly at random and combined
- Continue this until there is only one individual the most recent common ancestor
- So we have n-1 coalescent events
- Model, assumes all individuals have the same DNA base, so we require another mechanism a mutation process
- In this process the number of individuals decrease our first example of a death process.

5.7.3 Time to most recent common ancestor

Time to most recent common ancestor estimated i.e. the height of the tree, estimated by

$$E\left(\sum_{k=1}^{n-1}H_k\right), \text{ for } n \in \mathbb{N}, n \ge 2$$

Where we have that H_k the time to k^{th} coalescence

$$H_k \sim \operatorname{Exp}\left(\binom{n-(k-1)}{2}\right) \implies E(H_k) = \left(\binom{n-(k-1)}{2}\right)^{-1}$$

So we have that

$$E(\sum_{k=1}^{n-1} H_k) = \sum_{k=1}^{n-1} E(H_k)$$

= $\sum_{k=1}^{n-1} \left(\frac{(n-k+1)!}{(n-k-1)!2!} \right)^{-1} = \sum_{k=1}^{n-1} \frac{2(n-k-1)!}{(n-k+1)!}$
= $\sum_{k=1}^{n-1} \frac{2}{(n-k+1)(n-k)} = \sum_{k=1}^{n-1} \frac{2}{k(k+1)}$
= $2\left(1-\frac{1}{n}\right)$

 $E(H_{n-1}) = 1$

Further, since $H_{n-1} \sim \operatorname{Exp}\left(\binom{2}{2}\right)$

6 Continuous-time Markov Chains

6.1 Some definitions

Definition 6.1.1. A continuous-time process $\{X_t\}_{t \in [0,\infty)}$ satisfies the Markov property if

$$P(X_{t_n} = j \mid X_{t_1} = i_1, \dots, X_{t_{n-1}} = i_{n-1}) = P(X_{t_n} = j \mid X_{t_{n-1}} = i_{n-1})$$

for all $j, i_1, \ldots, i_{n-1} \in E$ and for any sequence $0 \le t_1 < \ldots < t_n < \infty$ of times (with $n \in \mathbb{N}$)

Definition 6.1.2. The transition probability $p_{ij}(s,t)$ is, for $s \le t, i, j \in E$

$$p_{ij}(s,t) = P(X_t = j \mid X_s = i)$$

also, the chain is homogeneous if

$$p_{ij}(s,t) = p_{ij}(0,t-s)$$

Write $p_{ij}(t-s) = p_{ij}(s,t)$ in this case Let $\mathbf{P}_t = (p_{ij}(t))$

Theorem 6.1.3. The family $\{\mathbf{P}_t : t \ge 0\}$ is a stochastic semigroup; that is, it satisfies

- 1. $\mathbf{P}_0 = I_{K \times K}$
- 2. \mathbf{P}_t is stochastic non-negative entries with rows summing to 1
- 3. The Chapman-Kolmogorov equations hold:

$$\mathbf{P}_{s+t} = \mathbf{P}_s \mathbf{P}_t, \quad \forall s, t \ge 0$$

Definition 6.1.4. The semigroup $\{\mathbf{P}_t\}$ is called **standard** if

$$\lim_{t \downarrow 0} \mathbf{P}_t = \mathbf{I} \ (= \mathbf{P}_0$$

where $\mathbf{I} = \mathbf{I}_{K \times K}$ A semigroup standard \iff its elements $p_{ij}(t)$ are continuous functions in t

6.2 Holding times and alarm clocks

6.2.1 Holding times

Suppose that we have $\{X_t\}_{t\geq 0}$ a continuous-time homogeneous Markov Chain, suppose that $t\geq 0$ and for, $i\in E$, we have $X_t=i$. Given $X_t=i$, define

$$H_{|i|} = \inf\{s \ge 0 : X_{t+s} \neq i\}$$

to be the **holding time at state** i, that is the length of time that a continuous-time Markov chain started in state i stays in state i before transitioning to a new state.

Note that holding times does not depend on t since we work under time-homogeneity assumption

$$\inf\{s \ge 0 : X_{t+s} \ne i\} \mid X_t = i \stackrel{\text{def.}}{=} = \inf\{s \ge 0 : X_s \ne i\} \mid X_0 = i$$

Theorem 6.2.2. The holding times $H_{|i}$, for $i \in E$ follows an exponential distribution

6.2.2 Describing the evolution of a Markov Chain using exponential holding times

Can describe the evolution of continuous-time Markov chains by specifying **transition rates** between states and using the concept of **exponential alarm clocks**

- $\forall i \in E$ denote n_i number of states which can be reached from state i
- Associate n_i independent, exponential alarm clocks with rates q_{ij} provided j can be reached from state i
- When chain first visits state i, all n_i exponential alarm clocks are set simultaneously
- First alarm clock which rings, determines which state the chain transitions to.
- As soon as state j has been reached set n_j independent exponential alarm clocks associated to j and repeat the process

q_{ij} - transition rates

- Let $i \neq j$, with $q_{ij} > 0$ denote the transition rates when state j can be reached from state i
- Let $i \neq j$, set $q_{ij} = 0$ if j can't be reached from i
- Also set $q_{ii} = 0, \forall i \in E$
- The minimum/infimum of the n_i exponential alarm clocks of state i, follows an exponential distribution with rate

$$q_i = \sum_{j \in E} q_{ij}$$

- $P(i \rightarrow j) = P(q_i = q_{ij}) = \frac{q_{ij}}{q_i}$
- Hence, the transition probabilities of embedded chain Z given by

$$p_{ij}^Z = \frac{q_{ij}}{q_i}$$

We assumed above that $0 < q_i < \infty$. In case that $q_i = 0$ then we have $p_{ii}^Z = 1$

6.3 The generator

Definition 6.3.1. The generator $\mathbf{G} = (g_{ij})_{i,j \in E}$ of the Markov chain with stochastic semigroup \mathbf{P}_t is defined as the card(E) × card(E) matrix given by

$$\mathbf{G} := \lim_{\delta \downarrow 0} \frac{1}{\delta} [\mathbf{P}_{\delta} - \mathbf{I}] = \lim_{\delta \downarrow 0} \frac{1}{\delta} [\mathbf{P} - \mathbf{P}_0]$$

That is, \mathbf{P}_t differentiable at t = 0

6.3.1 Transition probabilities of the associated jump chain

Can now derive the transition probabilities of the embedded/jump chain - expressing them in terms of the generator

if $X_t = i$ - stay at *i* for exponentially distributed time with rate $-g_{ii} = q_i$ and then moves to other state *j* Probability that the chain jumps to $j \neq i$ is $-g_{ij}/g_{ii}$ i.e for $i \neq j$,

$$p_{ij}^Z = -\frac{g_{ij}}{g_{ii}} = \frac{q_{ij}}{q_i}$$

 $q_{ij} = q_i p_{ij}^Z$

Equivalent to

6.4 The forward and backward equations

Theorem 6.4.1. Subject to regularity conditions, a continuous-time Markov chain with stochastic semigroup $\{\mathbf{P}_t\}$ and generator **G** satisfies the Kolmogorov forward equation

$$\mathbf{P}_t' = \mathbf{P}_t \mathbf{G}$$

and the Kolmogorov backward equation

$$\mathbf{P}_t' = \mathbf{G}\mathbf{P}_t, \quad \forall t \ge 0$$

6.4.1 Matrix exponentials

6.5 Irreducibility, stationarity and limiting distribution

Definition 6.5.1. Chains is *irreducible* if for any $i, j \in E$ we have $p_{ij}(t) > 0$, for some t

Theorem 6.5.2. If $p_{ij}(t) > 0$, for some t > 0 then $p_{ij}(t) > 0$, $\forall t > 0$

Definition 6.5.3. A distribution π is the limiting distribution of a continuous-time Markov chain if, for all states $i, j \in E$ we have

$$\lim_{t \to \infty} p_{ij}(t) = \pi_j$$

Definition 6.5.4. A distribution π is a stationary distribution if $\pi = \pi \mathbf{P_t} \ \forall t \geq 0$

Theorem 6.5.5. Subject to regularity conditions, we have $\pi = \pi \mathbf{P_t}, \forall t \ge 0 \iff \pi \mathbf{G} = 0$

Theorem 6.5.6. Let X an irreducible Markov chain with a standard semigroup $\{\mathbf{P}_t\}$ of transition probabilities

1. If \exists stationary distribution π then it is unique and $\forall i, j \in E$

$$\lim_{t \to +\infty} p_{ij}(t) = \pi_j$$

2. If there is no stationary distribution then

$$\lim_{t \to +\infty} p_{ij}(t) = 0 \ \forall i, j \in E$$

6.6 Jump chain and explosion

Subject to regularity conditions, can construct the jump chain Z from a continuous time Markov chain X as follows

- J_n denote the *n*th change in value of the chain X and set $J_0 = 0$
- Values $Z_n = X_{J_n+}$ of X form a discrete-time Markov Chain $Z = \{Z_n\}_{n \in \mathbb{N}_0}$
- Transition matrix of Z denoted by \mathbf{P}^{Z} and satisfies

$$-p_{ij}^Z = g_{ij}/g_i$$
 if $g_i := -g_{ii} > 0$
- if $g_i = 0$, then the chain gets absorbed in state *i* once it gets there for the first time.

- If $Z_n = j$ then the holding time $H_{n+1} = J_{n+1} J_n = H_{|j}$ has exponential distribution with parameter g_j
- The chain Z is called the **jump chain of** X

Consider the converse - a discrete-time Markov chain Z taking values in E - Try and find a continuoustime Markov chain X having Z as its jump chain - Many such X exist

- Let \mathbf{P}^Z denote transition matrix of the discrete-time Markov chain Z taking values in E Assume $p_{ii}^Z = 0, \ \forall i \in E$
- $i \in E$ let g_i denote non-negative constants. Define

$$g_{ij} = \begin{cases} g_i p_{ij}^Z, & \text{if } i \neq j; \\ -g_i, & \text{if } i = j. \end{cases}$$

Construction of continuous-time Markov chain X done as follows

- Set $X_0 = Z_0$
- After holding time $H_1 = H_{|Z_0} \sim Exp(g_{Z_0})$ the process jumps to state Z_1
- After holding time $H_2 = H_{|Z_1} \sim Exp(gZ_1)$ the process jumps to state Z_3
- Formally: conditionally on the values Z_n of chain Z let H_1, H_2, \ldots be independent random variables with exponential distribution $H_i \sim Exp(gZ_{i-1}), i = 1, 2, \ldots$ Set $J_n = H_1 + \ldots + H_n$
- Then define

$$X_t = \begin{cases} Z_n, & \text{if } J_n \le t \le J_{n+1} \text{ for some } n; \\ \infty, & \text{otherwise i.e. if } J_\infty \le t. \end{cases}$$

• Note that the special state ∞ added in case the chain explodes Recall that $J_{\infty} = \lim_{n \to \infty} J_n \cdot J_{\infty}$ called the **explosion time** say chain **explodes** if

$$P(J_{\infty} < \infty) > 0$$

Can show that

- X a continuous-time Markov chain with state space $E \cup \{\infty\}$
- Matrix G is the generator of X
- Z is the jump chain of X

Theorem 6.6.1. The cain X constructed above does not explodes if any of the following conditions hold

- 1. State space E is finite
- 2. $\sup_{i \in E} g_i < \infty$
- 3. $X_0 = i$ where i a recurrent state for the jump chain Z

6.7 Birth processes

Definition 6.7.1. A birth process with intensities $\lambda_0, \lambda_1, \ldots \geq 0$ a stochastic process $\{N_t\}_{t\geq 0}$ with values in \mathbb{N}_0 , such that

- 1. Non-decreasing process: $N_0 \ge 0$; if s < t then $N_s \le N_t$
- 2. There is a 'single arrival' i.e. the infinitesimal transition probabilities are for $t \ge 0, \delta > 0, n, m \in \mathbb{N}_0$

$$P(N_{t+\delta} = n + m \mid N_t = n) = \begin{cases} 1 - \lambda_n \delta + o(\delta), & \text{if } m = 0; \\ \lambda_n \delta + o(\delta), & \text{if } m = 1; \\ o(\delta) & \text{if } m > 1 \end{cases}$$

3. Conditionally independent increments: Let s < t then the conditional on the values of N_s , the increment $N_t - N_s$ is independent of all arrivals prior to s

Note that by conditionally independent increments, mean that for $0 \le s < t$, conditional on the value of N_s , the increment $N_t - N_s$ independent of all arrivals prior to s i.e. for $k, l, x(r) \in \{0, 1, 2, ...\}$ for $0 \le r < s$ we have

$$P(N_t - N_s = k \mid N_s = l, N_r = x(r) \text{ for } 0 \le r < s) = P(N_t - N_s = k \mid N_s = l)$$

Birth process a continuous-time Markov chain

A Poisson process a special case of a birth process (with $\lambda_n = \lambda, \forall n \in \mathbb{N}_0$) With the general case, birth rates depend on the current state of the process.

6.7.1 The forward and backward equations

Let $\{N_t\}$ a birth process with positive intensities λ_0, \ldots With transition probabilities

$$p_{ij}(t) = P(N_{t+s} = j \mid N_s = i) = P(N_t = j \mid N_0 = i), \text{ for } i, j \in E$$

Theorem 6.7.5. For $i, j \in E, i < j, t \ge 0$ the forward equations of a birth process are given by

$$\frac{dp_{ij}(t)}{dt} = -\lambda_j p_{ij}(t) + \lambda_{j-1} p_{i,j-1}(t)$$

with $\lambda_{-1} = 0$, and the backward equation given by

$$\frac{dp_{ij}(t)}{dt} = -\lambda_i p_{ij}(t) + \lambda_i + p_{i+1,j}(t)$$

Where for both, boundary condition given by $p_{ij}(0) = \delta_{ij} - \delta$ the Kronecker delta

Theorem 6.7.6. Let $\{N_t\}_{t\geq 0}$ a birth process of positive intensities λ_0, \ldots Then the forward equations have unique solutions which satisfies the backward equations

6.7.2 Explosion of a birth process

Definition 6.7.7. Let J_0, J_1, \ldots denote the jump times of a birth process N

$$J_0 = 0 \quad J_{n+1} = \inf\{t \ge J_n : N_t \ne N_{J_n}\}, \quad n \in \mathbb{N}_0$$

Further let H_1, H_2, \ldots denote the corresponding holding times. As before, we write

$$J_{\infty} = \lim_{n \to \infty} J_n = \sum_{i=1}^{\infty} H_i$$

Then we say that explosion of the birth process N is possible if

$$P(J_{\infty} < \infty) > 0$$

Theorem 6.7.8. Let N be a birth process started from $k \in \mathbb{N}_0$, with rates $\lambda_k, \lambda_{k+1}, \ldots > 0$ Then:

If
$$\sum_{i=k}^{\infty} \frac{1}{\lambda_i} \begin{cases} < \infty, & \text{Then } P(J_{\infty} < \infty) = 1 \text{ (Explosion occurs with probability 1)}; \\ = \infty, & \text{Then } P(J_{\infty} = \infty) = 1 \text{ (Probability explosion occurs is 0)}. \end{cases}$$

6.8 Birth-death processes

Definition 6.8.1. Birth-death process

Suppose we are given the following process $\{X_t\}_{t\geq 0}$

- 1. $\{X_t\}_{t>0}$ is Markov chain on $E = \mathbb{N}_0$
- 2. The infinitesimal transition probabilities are (for $t \ge 0, \delta > 0, n \in \mathbb{N}_0, m \in \mathbb{Z}$)

$$P(X_{t+\delta} = n+m \mid X_t = n) = \begin{cases} 1 - (\lambda_n + \mu_n)\delta + o(\delta), & \text{if } m = 0; \\ \lambda_n + o(\delta), & \text{if } m = 1. \\ \mu_n \delta + o(\delta), & \text{if } m = -1 \\ o(\delta), & \text{if } m = -1 \end{cases}$$

3. The birth rates $\lambda_0, \lambda_1, \ldots$ and the death rates μ_0, μ_1, \ldots satisfy

$$\lambda_i \ge 0, \quad \mu_i \ge 0 \quad \mu_0 = 0$$

We have the generator given by

$$\begin{pmatrix} -\lambda_0 & \lambda_0 & 0 & 0 & 0 & \dots \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & 0 & 0 & \dots \\ 0 & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 & 0 & \dots \\ 0 & 0 & \mu_3 & -(\lambda_3 + \mu_3) & \lambda_3 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

We take a look at the asymptotic behaviour of the process. Suppose that $\mu_i, \lambda_i > 0, \forall i$, where the rates make sense. Then using the claim $\pi G = 0$

$$\begin{aligned} & -\lambda_0\pi_0+\mu_1\pi_1=0\\ \lambda_{n-1}\pi_{n-1}-(\lambda_n+\mu_n)\pi_n+\mu_{n+1}\pi_{n+1}=0, \quad n\geq 1 \end{aligned}$$

7 Brownian Motion

7.2 From random walk to Brownian motion

7.2.1 Modes of convergence in distribution, Slutsky's theorem and the CLT

Definition 7.2.2. (Convergence in probability)

A sequence of random variables X_1, X_2, \ldots converges in probability to X written $X_n \xrightarrow{P} X$ if for each $\epsilon > 0$

$$\lim_{n \to \infty} P(\{\omega : |X_n(\omega) - X(\omega)| \ge \epsilon\}) = \lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0$$

Definition 7.2.3. (Convergence in distribution)

Let the cumulative distribution function of X_n and X be denoted by F_n and F respectively Say X_n converges in distribution/weakly to X, written $X_n \xrightarrow{D} X$ if

$$\lim_{n \to \infty} F_n(x) = F(x), \quad \text{for every continuity point } x \text{ of } F(x)$$

Theorem 7.2.4. (Slutsky's theorem)

Suppose that $X_n \xrightarrow{d} X, A_n \xrightarrow{P} a, B_n \xrightarrow{P} b$, where a, b are (deterministic) constants. Then

$$A_n X_n + B_n \xrightarrow{d} a X + b$$

Theorem 7.2.5. (Central limit theorem)

Let Z_1, Z_2, \ldots a sequence of *i.i.d* random variables of finite mean μ and finite variance σ^2 . Then the distribution of

$$\frac{1}{\sigma\sqrt{n}}\left(\sum_{i=1}^{n} Z_i - n\mu\right)$$

tends to standard normal distribution as $n \to \infty$

Brownian Motion 7.3

Definition 7.3.1. A real-valued stochastic process $B = \{B_t\}_{t\geq 0}$ a standard Brownian motion if

- 1. $B_0 = 0$ almost surely
- 2. B has independent increments
- 3. B has stationary increments
- 4. The increments are Gaussian, for $0 \le s < t$

$$B_t - B_s \sim N(0, (t-s));$$

5. The sample paths are almost surely continuous i.e. the function $t \mapsto B_t$ almost surely continuous in t

Definition 7.3.2. Let $B = \{B_t\}_{t>0}$ denote a standard Brownian motion. Stochastic process $Y = \{Y_t\}_{t>0}$ defined by

$$Y_t = \sigma B_t + \mu_t, \forall t \ge 0$$

is called a Brownian motion with drift parameter $\mu \in \mathbb{R}$ and variance parameter $\sigma^2, \sigma > 0$ Note for $0 \le s < t, Y_t - Y_s \sim N(\mu(t-s), \sigma^2(t-s))$

7.5Finite dimensional distributions and transition densities

Theorem 7.5.1. Let $f : \mathbb{R} \to \mathbb{R}$ a continuous function satisfying some additional regularity conditions. Then the unique (continuous) solution $u_t(x)$ to the initial value problem

$$\frac{\partial}{\partial t}u_t(x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u_t(x)$$
$$u_0(x) = f(x)$$

is given by

$$u_t(x) = E[f(W_t^x)] = \int_{-\infty}^{\infty} p_t(x, y) f(y) \, \mathrm{d}y$$

where $\{W_t^x\}$ is a Brownian motion started at x

7.6 Symmetries and scaling laws

c

Proposition 7.6.1. Let $\{B_t\}_{t\geq 0}$ a standard Brownian motion. Then each of the following processes is also a standard Brownian motion

$$\begin{array}{ll} \{-B_t\}_{t\geq 0} & \text{Reflection} \\ \{B_{t+s} - B_s\}_{t\geq 0} & \text{for } s \geq 0 & \text{Translation} \\ \{aB_{t/a^2}\}_{t\geq 0} & \text{for } a \geq 0 & \text{Rescaling (Brownian scaling property)} \\ \{tB_{1/t}\}_{t\geq 0} & \text{Inversion} \end{array}$$

7.6.1 Some remarks

First look at maximum and minimum processes

$$M_t^+ := \max\{B_s : 0 \le s \le t\}$$
$$M_t^- := \min\{B_s : 0 \le s \le t\}$$

These are well-defined, because the Brownian motion has continuous paths, and continuous functions always attain their maximal and minimal values on compact intervals

Observe that if the path B_t is replaced by its reflection $-B_t$ then the maximum and the minimum are interchanged and negated

Since $-B_t$ a Brownian motion, follows that $M_t^+, -M_t^-$ have same distribution

$$M_t^+ \stackrel{d}{=} -M_t^-$$

As a first example, consider implications of Brownian scaling property for the distributions of the maximum random variables M_t^+ . Fix a > 0, and define

$$B_t^* := aB_{t/a^2}$$
$$M_t^{+,*} := \max_{0 \le s \le t} B_s^*$$
$$= aM_{t/a^2}^+$$

By Brownian scaling property B_t^* is a standard Brownian motion, and so random variable M_t^{+*} has same distribution as M_{t^+} . Therefore

$$M_t^+ \stackrel{a}{=} a M_{t/a^2}^+$$

Can be shown, above implies that the sample paths of a Brownian motion are with probability one, nowhere differentiable

7.7 The reflection property and first-passage times

Proposition 7.7.1. Let x > 0 then

$$P(M_t^+ \ge x) = 2P(B_t > x) = 2 - \Phi(x/\sqrt{t})$$

Where Φ the normal c.d.f

7.8 A model for asset prices

A model for describing movement of an asset price $\{S_t\}_{0 \le t \le T}, S_t \in \mathbb{R}^+$ is as follows

$$S_t = S_0 \exp\{(\mu - \sigma^2/2)t + \sigma B_t\}$$

where S_0 the initial value of the underlying stock. $\mu \in \mathbb{R}$ is the risk-free interest rate and σ the volatitily (the instantaneous standard deviation of the stock)

This process known as **geometric Brownian motion**.

It is well-known that this model does not fit the stylized features of financial returns data. Real financial data does not follow the dynamic above; because in practice volatility of asset prices is typically not constant, and often responds to a variety of market conditions We typically observe time-varying volatility clusters. This has yielded much academic and industrial research into cases (which goes back to at least the late 1970s) where σ is a stochastic process, e.g:

$$S_t = S_o \exp\left\{\left(\mu t - \frac{1}{2}\int_0^t \sigma_s^2 \,\mathrm{d}s + \int_0^t \sigma_s \,\mathrm{d}B_s\right)\right\}$$
$$\sigma_t = \sigma_0 \exp\{\gamma t + \eta W_t\}$$

where W_t is an independent Brownian motion; such a model is termed a stochastic volatility model