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3 Discrete-time Markov Chains

3.1 Definition of discrete time Markov Chains

Definition 3.1.1. A discrete-time stochastic process X = {Xn}n∈N0
taking values in countable state space

E a Markov chain if it satisfies the Markov condition

P (Xn = j | Xn−1 = i,Xn−2 = xn−2, . . . , X0 = x0) = P (Xn = j | Xn−1 = i),∀n ∈ N ∀x0, . . . , xn−2, i, j ∈ E

Definition 3.1.2. (Time Homogenous)

1. Markov Chain {Xn}n∈N0 is time-homogenous if

P (Xn+1 = j | Xn = i) = P (X1 = j | X0 = i), ∀n ∈ N0, i, j ∈ E

2. Transition matrix P = (pij)i,j∈E is the K ×K matrix of transition probabilities

Definition 3.1.3. (Stochastic Matrix)
A square matrix P a stochastic matrix if

1. pij ≥ 0,∀i, j

2.
∑

j pij = 1 ∀i

Theorem 3.1.4. Transition matrix P is stochastic

3.2 The n-step transition probabilities and Chapman-Kolmogorov equations

Definition 3.2.1. n ∈ N, we have

Pn = (pij(n)) = P (Xm+n = j,Xm = i), m ∈ N0

The matrix of n-step transition probabilities.

Lemma 3.2.2. For discrete markov chain {Xn}n≥0 on state space E we have

P (Xn+m = xn+m|Xn = xn, . . . , X0 = x0) = P (Xn+m = xn+m | Xn = xn), m ∈ N,∀xn+m, xn, . . . , x0 ∈ E

Theorem 3.2.3. Let m ∈ N0, n ∈ N Then we have ∀i, j ∈ E

pij(m+ n) =
∑
l∈E

pil(m)plj(n) Pm+n = PmPn Pn = Pn

Remark 3.2.4. Extend definition for case K = ∞
Let x a K-dimensional row vector, P a K ×K matrix

(xP )j :=
∑
i∈E

xipij , (P 2)ik :=
∑
j∈E

pijpjk, i, j, k ∈ N

Define Pn similarly and take (P 0)ij = δij
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3.3 Dynamics of a Markov Chain

Definition 3.3.1. Denote probability mass function of Xn for n ∈ N0 by

ν
(n)
i = P (Xn = i), i ∈ E

Take K = card(E), denote by ν(n) the K-dimensional row vector with elements νni , i ∈ E
Call this the marginal distribution of chain at time n ∈ N0

Theorem 3.3.3. We have

ν(m+n) = ν(m)Pn = ν(m)Pn, ∀n ∈ N,m ∈ N0

So
ν(n) = ν(0)Pn = ν(0)Pn, ∀n ∈ N

Theorem 3.3.4. Let X = {Xn}n∈N0
a Markov chain on countable state space E

Then given initial distribution ν(0) and transition matrix P , we determine all finite dimensional distributions
of Markov chain.
∀0 ≤ n1 < n2 < · · · < nk−1 < nk (ni ∈ N0, i = 1, . . . , k), k ∈ N, x1, . . . , xk ∈ E We have

P (Xn1
= x1, Xn2

= x2, . . . , Xnk
= xk) = (ν(0)Pn1)x1

(Pn2−n1)x1x2
· · · (Pnk−nk−1)xk−1xk

= (νPn1)x1px1x2
(n2 − n1) · · · pxk−1xk

(nk − nk−1)

3.4 First passage/hitting times

Definition 3.4.1. Define first passage/hitting time of X for state j ∈ E as

Tj = min{n ∈ N : Xn = j}

If Xn ̸= j,∀n ∈ N then set Tj = ∞

Definition 3.4.2. For i, j ∈ E,n ∈ N define first passage probability

fij(n) = P (Tj = n | X0 = i) = P (Xn = j,Xn−1 ̸= j, . . . , X1 ̸= j | X0 = i)

Probability that we visit state j at time n, given we start at i at time 0
Define fij(0) = 0, fij(1) = pij ,∀i, j ∈ E

Definition 3.4.4. Define
fij = P (Tj <∞ | X0 = i)

For i ̸= j, we have fij the probability that the chain ever visits state j, starting at i
Call fii the returning probability

Proposition 3.4.5. ∀i, j ∈ E

fij =

∞∑
n=1

fij(n)

Lemma 3.4.7. ∀i, j ∈ E,n ∈ N, we have

pij(n) =

n∑
l=0

fij(l)pjj(n− l)

=

n∑
l=1

fij(l)pjj(n− l)
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3.5 Recurrence and transience

Definition 3.5.1. Let {Xn}n∈N0
be a markov chain on countable state space E.

j ∈ E, P (Xn = j, for some n ∈ N | X0 = j) = fjj

{
1, recurrent;

< 1, transient .

Theorem 3.5.2. j ∈ E
∞∑

n=1

pij(n) =

{
∞, ⇐⇒ recurrent ;

<∞, ⇐⇒ transient .

Define

Nj =

∞∑
n=0

I(j)n , I(j)n = IXn=j =

{
1, if Xn = j;

0, if Xn ̸= j.

Theorem 3.5.3. j ∈ E transient

1. P (Nj = n | X0 = j) = fn−1
jj (1− fjj) for n ∈ N geometric distribution with param fjj

2. i ̸= j

P (Nj = n | X0 = i) =

{
1− fij , if n = 0;

fijf
n−1
jj (1− fjj), if n ∈ N.

Corollary 3.5.4. j ∈ E transient

1.

E(Nj | X0 = j) =
1

1− fjj

2. i ̸= j we have

E(Nj | X0 = i) =
fij

1− fjj

Theorem 3.5.5. Given X0 = j, we have

E(Nj | X0 = j) =

∞∑
n=0

pjj(n)

Sum may diverge to ∞
Corollary 3.5.6. j ∈ E transient then pij(n) −−−−→

n→∞
0,∀i ∈ E

3.5.1 Mean recurrence time, null and positive recurrence

Definition 3.5.7. The mean recurrence time µi of state i ∈ E defined as µi = E[Ti | X0 = i]

Theorem 3.5.8. Let i ∈ E. We have P (Ti = ∞ | X0 = i) > 0 ⇐⇒ i transient, where we get

µi = E[Ti | X0 = i = ∞]

Theorem 3.5.9. For recurrent state i ∈ E we have

µi = E[Ti | X0 = i] =

∞∑
n=1

nfii(n)

Can be finite or infinite.

Definition 3.5.10. A recurrent state i ∈ E

µi =

{
∞, called null;

<∞, called positive.

Theorem 3.5.11. Recurrent state i ∈ E null ⇐⇒ pii(n) −−−−→
n→∞

0

Further, if this holds, then pji(n) −−−−→
n→∞

0,∀j ∈ E
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3.5.2 Generating functions for pij(n), fij(n) (READING MATERIAL)

3.5.3 Example: Null recurrence/transience of a simple random walk (READING MATE-
RIAL)

SEE FULL OFFICIAL NOTES

3.6 Aperiodicity and ergodicity

Definition 3.6.1. Period of state i defined by

d(i) = gcd{n : pii(n) > 0}

Definition 3.6.4. A state ergodic if it is positive recurrent and aperiodic

3.7 Communicating classes

Definition 3.7.1. (Accessible and Communicating)

1. j accessible from i, i→ j, if ∃m ∈ N0 s.t pij(m) > 0

2. i, j communicate, if i→ j and j → i; write i↔ j

Theorem 3.7.2. (Communication an equivalence relation)
Satisfies, reflexivity, symmetry and transitivity

Theorem 3.7.4. If i↔ j then

1. i, j have same period

2. i transient/recurrent ⇐⇒ j transient/recurrent

3. i null recurrent ⇐⇒ j null recurrent

Definition 3.7.5. Set of states C is

1. closed if ∀i ∈ C, j /∈ C, pij − 0

2. irreducible if i↔ j,∀i, j ∈ C

Theorem 3.7.6. Let C a closed communicating class, transition matrix P restricted to C is stochastic

3.7.1 The decomposition theorem

Theorem 3.7.8. C a communicating class, consisting of recurrent states. Then C is closed

Theorem 3.7.9. State-space E can be partitioned uniquely into

E = T︸︷︷︸
transient states

∪

⋃
i

Ci︸︷︷︸
irreducible, closed

set of recurrent states


Theorem 3.7.11. K <∞ Then at least one state is recurrent and all recurrent states are positive.

Theorem 3.7.12. C a finite, closed communicating class =⇒ all states in C positive recurrent
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3.7.2 Class properties

Type of Class Finite Infinite

Closed positive recurrent positive recurrent, null recurrent, transient

Not Closed transient transient

3.8 Application: The gambler’s ruin problem

3.8.1 The problem and the results

Consider a gambler with initial fortune i ∈ {0, 1, . . . , N}. At each play of the game, the gambler has

� probability p of winning one unit

� probability q of losing one unit

� each successive game is independent

What is the probability, a gambler starting at i units, has their fortune reach N before 0 ?

Let Xn denote gamblers fortune at time n. Then {Xn}n∈N0
is a Markov Chain with transition probabil-

ities, shown in diagram above.
This yields 3 communicating classes.

C1 = {0}, C2 = {N}︸ ︷︷ ︸
positive recurrent

since finite and closed

, T1 = {1, 2, . . . , N − 1}

Define the following for our problem:
Define first time X visits state i as

Vi = min{n ∈ N0 : Xn = i}
hi = hi(N) = P (VN < V0 | X0 = i)

This yields the following recurrence relation

hi = hi+1p+ hi−1q, i = 1, 2, . . . , N − 1

Theorem 3.8.1. From above we achieve

hi = hi(N) =

{
1−(q/p)i

1−(q/p)N
, if p ̸= 1

2 ;
i
N , if p = 1

2 .

Theorem 3.8.2. We also have

lim
N→∞

hi(N) = hi(∞) =

{
1− (q/p)i, if p > 1

2 ;

0, if p ≤ 1
2 .

� p > 1
2 =⇒ q

p < 1 =⇒ lim
N→∞

( qp )
N = 0

� p < 1
2 =⇒ q

p > 1 =⇒ lim
N→∞

= ∞
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3.9 Stationarity

Definition 3.9.1. (Distributions)

1. row vector λ a distribution on E if

∀j ∈ E, λj ≥ 0, and
∑
j∈E

= 1

2. row vector λ with non-negative entries is called invariant for transition matrix P if

λP = λ

3. row vector π is invariant/stationary/equilibrium distribution of Markov chain on E with tran-
sition matrix P if

(a) π a distribution

(b) it is invariant

πPn = π

3.9.1 Stationarity distribution for irreducible Markov Chains

Theorem 3.9.2. An irreducible chain has stationary distribution π ⇐⇒ all states are positive recurrent.
π unique stationary distribution, s.t πi = µ−1

i ∀i

Lemma 3.9.3. For markov chain X we have ∀j ∈ E,n,m ∈ N

fjj(m+ n) =
∑

i∈E,i̸=j

lji(m)fij(n)

For lji(n) = P (Xn = i.Tj ≥ n | X0 = j)

Corollary 3.9.4. For Markov Chain X we have ∀i, j ∈ E, i ̸= j and ∀n,m ∈ N

fjj(m+ n) ≥ lji(m)fij(n)

Lemma 3.9.5. Let i ̸= j Then lji(1) = pji, and for integers n ≥ 2

lji(n) =
∑

r∈E:r ̸=j

priljr(n− 1)

Lemma 3.9.6. ∀j ∈ E of an irreducible, recurrent chain, the vector ρ(j) satisfies ρi(j) <∞ ∀i and further
ρ(j) = ρ(j)P

Lemma 3.9.7. Every irreducible, positive, recurrent chain has a stationary distribution

Theorem 3.9.8. If the chain is irreducible and recurrent, then ∃x > 0 s.t x = xP unique up to multiplicative
constant.

Chain is

{
positive recurrent, if

∑
i xi <∞;

null, if
∑

i xi = ∞.

Lemma 3.9.9. Let T a non-negative integer valued random variable on probability space (Ω,F , P ), with
A ∈ F an event s.t P (A) > 0. Can show that

E(T | A) =
∞∑

n=1

P (T ≥ n | A)
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Theorem (Dominated convergence theorem)
Let I be a countable index set.
If
∑

i∈I ai(n) is an absolutely convergent series ∀n ∈ N s.t

1. ∀i ∈ I the limit lim
n→∞

ai(n) = ai exists

2. ∃ seq. (bi)i∈I s.t bi ≥ 0 ∀i and
∑

i∈I bi <∞ s.t ∀n, i : |ai(n)| ≤ bi

Then
∑

i∈I |ai| <∞ and ∑
i∈I

ai =
∑
i∈I

lim
n→∞

ai(n) = lim
n→∞

∑
i∈I

ai(n)

3.9.2 Limiting distribution

Definition 3.9.12. A distribution π is the limiting distribution of a discrete-time Markov Chain if, ∀i, j ∈ E
we have

lim
n→∞

pij(n) = πj

Definition 3.9.14. For irreducible aperiodic chain we have

lim
n→∞

pij(n) =
1

µj

3.9.3 Ergodic Theorem

Theorem 3.9.16. (Ergodic Theorem)
Suppose we have irreducible Markov chain {Xn}n∈N0

with state space E. Let µi the mean recurrence time
to state i ∈ E

Vi(n) =

n−1∑
k=0

1{Xk=i}

The number of visits to i before n
So we have Vi(n)/n the proportion of time before n spent at i

P

(
Vi(n)

n
→ 1

µi
, as n→ ∞

)
= 1

Summary: Properties of irreducible Markov Chains
3 kinds of irreducible Markov Chains

1. Positive recurrent

(a) Stationary distribution π exists

(b) Stationary distribution is unique

(c) All mean recurrence times are finite and µi =
1
πi

(d) Vi(n)/n −−−−→
n→∞

πi

(e) If chain aperiodic
lim
n→∞

P (Xn = i) = πi,∀i ∈ E

2. Null recurrent

(a) Recurrent, but all mean recurrence times are infinite

(b) No stationary distribution exists

(c) Vi(n)/n −−−−→
n→∞

0
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(d)
lim

n→∞
P (Xn = i) = 0,∀i ∈ E

3. Transient

(a) Any particular state is eventually never visited

(b) No stationary distribution exists

(c) Vi(n)/n −−−−→
n→∞

0

(d)
lim

n→∞
P (Xn = i) = 0,∀i ∈ E

3.9.4 Properties of the elements of a stationary distribution associated with transient or
null-recurrent states

Theorem 3.9.17. Let X a time-homogeneous Markov Chain on countable state space E
If π a stationary distribution of X, i ∈ E either transient or null-recurrent, then πi = 0

3.9.5 Existence of a stationary distribution on a finite state space

Theorem 3.9.19. If state space finite =⇒ ∃ at least one positive recurrent communicating class

Theorem 3.9.20. Suppose finite state space. The stationary distribution π for transition matrix P unique
⇐⇒ there is a unique closed communicating class

Corollary 3.9.21. Markov chain on finite state space, and N ≥ 2 closed classes.
Ci the closed classes of Markov chain and π(i) the stationary distribution associated with class Ci using
construction

π
(i)
j =

{
πCi
j , if j ∈ Ci;

0, if j /∈ Ci.

Then every stationary distribution of Markov Chain represented as

N∑
i=1

ωiπ
(i)

For weights ωi ≥ 0,
∑n

i=1 ωi = 1

3.9.6 Limiting distributions on a finite state space

Theorem 3.9.23. Let K = |E| <∞ Suppose for some i ∈ E that

lim
n→∞

pij(n) = πj , ∀j ∈ E

Then π a stationary distribution

3.10 Time reversibility

Theorem 3.10.1. For irreducible, positive recurrent Markov chain {Xn}n∈0,1,...,N , N ∈ N assume π a
stationary distribution, and P a transition matrix, and ∀n ∈ {0, 1, . . . , N} the marginal distribution ν(n) = π

Yn = XN−n, The reversed chain defined for n ∈ {0, 1, . . . , N}

We have Y a Markov chain, satisfying

P (Yn+1 = j | Yn = i) =
πj
πi
pji
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Definition 3.10.2. X = {Xn : n ∈ {0, 1, . . . , N}} an irreducible Markov chain with stationary distribution
π and marginal distributions ν(n) = π, ∀n ∈ {0, 1, . . . , N}
Markov chain X time-reversible if transition matrices of X and its reversal Y are the same.

Theorem 3.10.3. {Xn}n∈{0,1,...,N} time-reversible ⇐⇒ ,∀i, j ∈ E

πipij = πjpji

Theorem 3.10.4. For irreducible chain, if ∃π s.t 3.10.1 holds ∀i, j ∈ E. Then the chain is time-reversible
(once in its stationary regime) and positive recurrent with stationary distribution π

4 Properties of the Exponential Distribution

4.1 Definition and basic properties

Definition 4.1.1. (Exponential distribution)
A continuous random variable X is X ∼ Exp(λ) if it has density function

fX(x) =

{
λe−λx, if x > 0;

0, if otherwise.

Cumulative distribution function

FX(x) =

{
0, if x ≤ 0;

1− e−λx, if x > 0.

Survival function of the exponential distribution is given by

P (X > x) =

{
1, if x ≤ 0;

e−λx, if x > 0.

Theorem 4.1.2. X ∼ Exp(λ) for λ > 0 Then

1. E(X) = 1
λ

2. λX ∼ Exp(1)

Theorem 4.1.3. Let n ∈ N and λ > 0. Consider independent and identically distributed random variables
Hi ∼ Exp(λ), for i = 1, . . . , n
Let Jn :=

∑n
i=1Hi Then Jn follows the Gamma(n, λ) distribution, i.e

fJn
(t) =

λn

Γ(n)
tn−1e−λt

Theorem 4.1.4. Let n ∈ N and λ1, . . . , λn. Consider independent random variables Hi ∼ Exp(λi) for
i = 1, . . . , n. Let H := min{H1, . . . ,Hn} Then

1. H ∼ Exp(
∑n

i=1 λi)

2. For any k = 1, . . . , n, P (H = Hk) = λk/
∑n

i=1 λi

Theorem 4.1.5. Consider a countable index set E and {Hi : i ∈ E} independent random variables with
Hi ∼ Exp(λi),∀i ∈ E. Suppose that

∑
i∈E λi <∞ and set H := infi∈E Hi

Then the infimum is attained at a unique random value I of E with probability 1
H, I are independent, with H ∼ Exp(

∑
i∈E λi <∞) and P (I = i) = λi/

∑
k∈E λk

Remark 4.1.6. Suppose we have X ∼ Exp(λX), Y ∼ Exp(λY ), Then

P (X < Y ) = P (min{X,Y } = X) =
λX

λX + λY

11



4.2 Lack of memory property

Theorem 4.2.1. (Lack of memory property)
A continuous random variable X : Ω → (0,∞) has an exponential distribution ⇐⇒ has the lack of memory
property

P (X > x+ y | X > x) = P (X > y), ∀x, y > 0

Remark 4.2.2. A random variable X : Ω → (0,∞) has an exponential distribution ⇐⇒ has lack of
memory property:

P (X > x+ y | X > x) = P (X > y), ∀x, y > 0

4.3 Criterion for the convergence/divergence of an infinite sum of independent
exponentially distributed random variables

Theorem 4.3.1. Consider sequence of independent random variables Hi ∼ Exp(λi) for 0 < λi <∞ for all
i ∈ N and let J∞ =

∑∞
i=1Hi, Then:

1. If
∑∞

i=1
1
λi
<∞ =⇒ P (J∞ <∞) = 1

2. If
∑∞

i=1
1
λi

= ∞ =⇒ P (J∞ = ∞) = 1

Lemma 4.3.2. For x ≥ 1, we have

log

(
1 +

1

x

)
≥ log(2)

1

x

log(1 + x) >
x

x+ 1
, for x > −1

5 Poisson Process

5.1 Remarks on continuous-time stochastic processes on a countable state space

5.3 Some Definitions

Definition 5.3.0. A stochastic process {Nt}t≥0 a counting process if Nt represents the total number of
’events’ that have occurred up to time t
Having the following properties:

1. N0 = 0

2. ∀t ≥ 0, Nt ∈ N0

3. If 0 ≤ s ≤ t,Ns ≤ Nt

4. For s < t,Nt −Ns = the number of events in interval (s, t]

5. Process is piecewise constant and has upward jumps of size 1 i.e Nt −Nt− ∈ {0, 1}

Definition 5.3.1. Let (Jn)n∈N0
a strictly increasing sequence of positive random variables s.t J0 = 0 almost

surely.
Define process {Nt}t≥0 as

Nt =

∞∑
n=1

1{Jn≤t},

Interpret Jn as the (random) time at which the nth event occurs.
The nth jump time.
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5.3.1 Poisson Process: First Definition

Definition 5.3.0. Define o(·) notation.
A function f is o(δ) if

lim
δ↓0

f(δ)

δ
= 0

With the following properties

� if f, g are o(δ) then so is f + g

� if f is o(δ) and c ∈ R then cf is o(δ)

Definition 5.3.3. A Poisson process {Nt}t≥0 of rate λ > 0 is a non-decreasing stochastic process with
values in N0 satisfying:

1. N0 = 01

2. Increments are independent, that is given any n ∈ N and 0 ≤ t0 < t1 < t2 < . . . < tn random variables
Nt0 , Nt1 −Nt0 , Nt2 −Nt1 , Nt3 −Nt2 , . . . , Ntn −Ntn−1 are independent

3. The increments are stationary, Given any 2 distinct times 0 ≤ s < t, ∀k ∈ N0

P (Nt −Ns = k) = P (Nt−s = k)

4. There is a ’single arrival’, i.e ∀t ≥ 0, δ > 0, d→ 0:

P (Nt+δ −Nt = 1) = λδ + o(δ)

P (Nt+δ −Nt ≥ 2) = o(δ)

5.3.2 Poisson Process: Second definition

Definition 5.3.4. A Poisson Process {Nt}t≥0 of rate λ > 0 is a stochastic process with values in N0

satisfying

1. N0 = 0

2. Increments are independent, that is given any n ∈ N and 0 ≤ t0 < t1 < t2 < . . . < tn random variables
Nt0 , Nt1 −Nt0 , Nt2 −Nt1 , Nt3 −Nt2 , . . . , Ntn −Ntn−1 are independent

3. The increments are stationary, Given any 2 distinct times 0 ≤ s < t, ∀k ∈ N0

P (Nt −Ns = k) = P (Nt−s = k)

4. ∀t ≥ 0, Nt ∼ Poi(λt)

∀k ∈ N0, P (Nt = k) =
(λt)k

k!
e−λt

5.3.3 Right-continuous modification

Definition 5.3.0. For 2 stochastic processes {Xt}t≥0, {Yt}t≥0, say X a modification of Y if

Xt = Yt, almost surely for eacht ≥ 0

P (Xt = Yt) = 1,∀t ≥ 0

Can show that for each Poisson process, ∃! modification which is càdlàg, (right continuous with left limits).

Remark 5.3.5. Note that the jump chain of the Poisson Process given by Z = (Zn)n∈N0 , where Zn = n, n ∈
N0
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5.3.4 Equivalence of definitions

Theorem 5.3.6. Definition 5.3.3, 5.3.4 are equivalent

Lemma 5.3.7. Laplace transform of a Poisson random variable of mean λt,X ∼ Poi(λt) for λ > 0, t > 0
is given by

LX(u) = exp{λt[e−u − 1]}, ∀u > 0

5.4 Some properties of Poisson processes

5.4.1 Inter-arrival time distribution

Definition 5.4.1. Let {Nt}t≥0 a Poisson process of rate λ > 0
Then the inter-arrival times are independently and identically distributed exponential random variables with
parameter λ

5.4.2 Time to the nth event

Theorem 5.4.2. We have ∀n ∈ N, the time to the nth event Jn follows a Gamman, λ distribution, with
density

fJn
(t) =

λn

Γ(n)
tn−1e−λt, t > 0

5.4.3 Poisson process: Third definition

Definition 5.4.4. A Poisson process {Nt}t≥0 of rate λ > 0 is a stochastic process with values in N0 s.t

1. H1, H2, . . . denote independently and identically exponentially distributed random variables with param-
eter λ > 0

2. Let J0 = 0 and Jn =
∑n

i=1Hi

3. Define
Nt = sup{n ∈ N0 : Jn ≤ t}, ∀t ≥ 0

Theorem 5.4.5. Definitions 5.3.3, 5.3.4, 5.4.4 are equivalent

5.4.4 Conditional distribution of the arrival times

Theorem 5.4.6. Let {Nt}t≥0 be a Poisson process of rate l > 0. Then ∀n ∈ N, t > 0, the conditional
density of

(
J1, . . . , Jn

)
given by Nt = n is given by

f(
J1, . . . , Jn

) (t1, . . . , tn|Nt = n
)
=

{
n!
tn , if 0 < t1 < . . . < tn ≤ t;

0, otherwise .

Remark 5.4.7. The above theorem says, conditional on the fact n events have occurred in [0, t], the times(
J1, . . . , Jn

)
at which the events occur, when considered as unordered random variables are independently

and uniformly distributed on [0, t]

5.5 Some extensions to Poisson processes

5.5.1 Superposition

Theorem 5.5.2. Given n independent Poisson processes {N (
t 1)}t≥0, . . . , {N (n)

t }t≥0 with respective rates,
λ1, . . . , λn > 0 define

Nt =

n∑
i=1

N
(i)
t , t ≥ 0

Then {Nt}t≥0 a Poisson process with rate λ =
∑n

i=1 λi and is called a superposition of Poisson processes
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5.5.2 Thinning

Theorem 5.5.5. Let {Nt}t≥0 a Poisson process with rate λ > 0. Assume that each arrival, independent of
other arrivals, is marked as a type k event with probability pk for k = 1, . . . , n where

∑n
i=1 pi = 1.

Let N
(k)
t denote the number of type k events in [0, t] . Then {N (k)

t }t≥0 a Poisson process with rate λpk and
the processes

{N (
t 1)}t≥0, . . . , {N (n)

t }t≥0

are independent. Each process called a thinned Poisson process

5.5.3 Non-homogeneous Poisson processes

Definition 5.5.6. Let λ : [0,∞) 7→ (0,∞) denote a non-negative and locally integrable function, called the
intensity function
A non-decreasing stochastic process N = {Nt}t≥0 with values in N0 called a non-homogeneous Poisson
process with intensity function (λ(t))t≥0 if it satisfies the following:

1. N0 = 0

2. N has independent increments

3. ’Single arrival’ property, For t ≥ 0, δ > 0

P (Nt+δ −Nt = 1) = λ(t)δ + o(δ)

P (Nt+δ −Nt ≥ 2) = o(δ)

Note that (3) also implies that
P (Nt+δ −Nt = 0) = 1− λ(t) + o(δ)

Theorem 5.5.7. Let N = {Nt}t≥0 denote a non-homogeneous Poisson process with continuous intensity
function (λ(t))t≥0 Then

Nt ∼ Poi(m(t)), where m(t) =

∫ t

0

λ(s)ds

i.e. ∀t ≥ 0, n ∈ N0

P (Nt = n) =
[m(t)]n

n!
e−m(t)

5.5.4 Compound Poisson processes

Definition 5.5.12. Let {Nt}t≥0 be a Poisson process of rate λ > 0.
Y1, Y2, . . . be a sequence of independent and identically distributed random variables, that are independent of
{Nt}t≥0. Then the process {St}t≥0 with

St =

Ni∑
i=1

Yi, t ≥ 0

is a compound Poisson process

Theorem 5.5.13. Let {St}t≥0 a compound Poisson process. Then for t ≥ 0

E(St) = λtE(Y1), V ar(St) = λtE(Y 2
1 )

as defined in Definition 5.5.12
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5.6 The Cramér-Lundberg model in insurance mathematics

Definition 5.6.1. The Cramér-Lundberg model is given by the following five conditions.

1. Claim size process is denoted by Y = (Yk)k∈N, for Yk denoting the positive i.i.d random variables with
finite mean µ = E(Y )1 and variance σ2 = V ar(Y1) ≤ ∞

2. Claim times occur at the random instants of time

0 < J1 < J2 < . . . a.s..

3. The claim arrival process is denoted by

Nt = sup{n ∈ N : Jn ≤ t}, t ≥ 0

which is the number of claims in the interval [0, t].

4. The inter-arrival times are denoted by

H1 = J1, Hk = Jk − Jk−1, k = 2, 3, . . .

and are independent and exponentially distributed with parameter λ

5. sequences (Yk, (Hk)) are independent of each other

Definition 5.6.3. The Total claim amount is defined as the process (St)t≥0 satisfying

St =

{∑Nt

i=1 Yi, if Nt > 0;

0, if Nt = 0.

Observe that the total claim amount is modelled as a compound Poisson process.

Theorem 5.6.4. The total claim amount distribution given by

P (St ≤ x) =

∞∑
n=0

e−λt (λt)
n

n!
P

(
n∑

i=1

Yi ≤ x

)
, x ≥ 0, t ≥ 0

and P (St ≤ x) = 0 for x < 0

Definition 5.6.5. The risk process {Ut}t≥0 is defined as

Ut = u+ ct− St, t ≥ 0

where u ≥ 0, the initial capital and c > 0 denotes the premium income rate

Definition 5.6.7. We have the following definitions

1. The ruin probability in finite time is given by

ψ(u, T ) = P (Ut < 0 for some t ≤ T ), 0 < T <∞, u ≥ 0

2. The ruin probability in infinite time is given by

ψ(u) := ψ(u,∞), u ≥ 0

Theorem 5.6.8.
E(Ut) = u+ ct− λtµ+ (c− λµ)t

A minimal requirement for choosing the premium could be

c > λµ

referred to as the net profit condition
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5.7 The Coalescent Process

5.7.1 Problem

� Given collection of n individuals - observe a DNA sequence from the individual

� A DNA sequence a collection of letters; A,C,T and G - for simplicity take that only one letter observed

� Coalescent process provides genealogical tree representation of this data. A tree-like structure repre-
senting the history of the individuals backward in time.
Individuals coalesce until we have only individual - the most recent common ancestor.

Figure 1: A Coalescent Graph

5.7.2 The Process

� At start of process we have n ≥ 2 individuals (all of the same DNA base)

� Each pair of individuals coalesce according to an (independent) Poisson process of rate 1

� We have

(
n
2

)
pairs - time to first coalescent event is exponential random variable of rate

(
n
2

)
- since

we consider the minimum of

(
n
2

)
independent Exp(1)-distributed random variables.

� At first event - 2 individuals picked uniformly at random and combined

� Continue this until there is only one individual - the most recent common ancestor

� So we have n− 1 coalescent events

� Model, assumes all individuals have the same DNA base, so we require another mechanism - a mutation
process

� In this process the number of individuals decrease - our first example of a death process.
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5.7.3 Time to most recent common ancestor

Time to most recent common ancestor estimated i.e. the height of the tree, estimated by

E

(
n−1∑
k=1

Hk

)
, for n ∈ N, n ≥ 2

Where we have that Hk the time to kth coalescence

Hk ∼ Exp

((
n− (k − 1)

2

))
=⇒ E(Hk) =

((
n− (k − 1)

2

))−1

So we have that

E(

n−1∑
k=1

Hk) =

n−1∑
k=1

E(Hk)

=
n−1∑
k=1

(
(n− k + 1)!
(n− k − 1)!2!

)−1

=
n−1∑
k=1

2(n− k − 1)!

(n− k + 1)!

=

n−1∑
k=1

2

(n− k + 1)(n− k)
=

n−1∑
k=1

2

k(k + 1)

= 2

(
1− 1

n

)

Further, since Hn−1 ∼ Exp

((
2
2

))
E(Hn−1) = 1

6 Continuous-time Markov Chains

6.1 Some definitions

Definition 6.1.1. A continuous-time process {Xt}t∈[0,∞) satisfies the Markov property if

P (Xtn = j | Xt1 = i1, . . . , Xtn−1
= in−1) = P (Xtn = j | Xtn−1

= in−1)

for all j, i1, . . . , in−1 ∈ E and for any sequence 0 ≤ t1 < . . . < tn <∞ of times (with n ∈ N )

Definition 6.1.2. The transition probability pij(s, t) is, for s ≤ t, i, j ∈ E

pij(s, t) = P (Xt = j | Xs = i)

also, the chain is homogeneous if
pij(s, t) = pij(0, t− s)

Write pij(t− s) = pij(s, t) in this case
Let Pt = (pij(t))

Theorem 6.1.3. The family {Pt : t ≥ 0} is a stochastic semigroup; that is, it satisfies

1. P0 = IK×K

2. Pt is stochastic - non-negative entries with rows summing to 1

3. The Chapman-Kolmogorov equations hold:

Ps+t = PsPt, ∀s, t ≥ 0
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Definition 6.1.4. The semigroup {Pt} is called standard if

lim
t↓0

Pt = I (= P0)

where I = IK×K

A semigroup standard ⇐⇒ its elements pij(t) are continuous functions in t

6.2 Holding times and alarm clocks

6.2.1 Holding times

Suppose that we have {Xt}t≥0 a continuous-time homogeneous Markov Chain, suppose that t ≥ 0 and for,
i ∈ E, we have Xt = i. Given Xt = i, define

H|i = inf{s ≥ 0 : Xt+s ̸= i}

to be the holding time at state i , that is the length of time that a continuous-time Markov chain started
in state i stays in state i before transitioning to a new state.
Note that holding times does not depend on t since we work under time-homogeneity assumption

inf{s ≥ 0 : Xt+s ̸= i} | Xt = i
def.
= = inf{s ≥ 0 : Xs ̸= i} | X0 = i

Theorem 6.2.2. The holding times H|i, for i ∈ E follows an exponential distribution

6.2.2 Describing the evolution of a Markov Chain using exponential holding times

Can describe the evolution of continuous-time Markov chains by specifying transition rates between states
and using the concept of exponential alarm clocks

� ∀i ∈ E denote ni- number of states which can be reached from state i

� Associate ni independent, exponential alarm clocks with rates qij provided j can be reached from state
i

� When chain first visits state i, all ni exponential alarm clocks are set simultaneously

� First alarm clock which rings, determines which state the chain transitions to.

� As soon as state j has been reached - set nj independent exponential alarm clocks associated to jand
repeat the process

qij - transition rates

� Let i ̸= j, with qij > 0 denote the transition rates when state j can be reached from state i

� Let i ̸= j, set qij = 0 if j can’t be reached from i

� Also set qii = 0,∀i ∈ E

� The minimum/infimum of the ni exponential alarm clocks of state i,follows an exponential distribution
with rate

qi =
∑
j∈E

qij

� P (i→ j) = P (qi = qij) =
qij
qi

� Hence, the transition probabilities of embedded chain Z given by

pZij =
qij
qi

We assumed above that 0 < qi <∞. In case that qi = 0 then we have pZii = 1
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6.3 The generator

Definition 6.3.1. The generator G = (gij)i,j∈E of the Markov chain with stochastic semigroup Pt is defined
as the card(E)× card(E) matrix given by

G := lim
δ↓0

1

δ
[Pδ − I] = lim

δ↓0

1

δ
[P−P0]

That is, Pt differentiable at t = 0

6.3.1 Transition probabilities of the associated jump chain

Can now derive the transition probabilities of the embedded/jump chain - expressing them in terms of the
generator
if Xt = i- stay at i for exponentially distributed time with rate −gii = qi and then moves to other state j
Probability that the chain jumps to j ̸= i is −gij/gii
i.e for i ̸= j,

pZij = −gij
gii

=
qij
qi

Equivalent to
qij = qip

Z
ij

6.4 The forward and backward equations

Theorem 6.4.1. Subject to regularity conditions, a continuous-time Markov chain with stochastic semigroup
{Pt} and generator G satisfies the Kolmogorov forward equation

P′
t = PtG

and the Kolmogorov backward equation

P′
t = GPt, ∀t ≥ 0

6.4.1 Matrix exponentials

6.5 Irreducibility, stationarity and limiting distribution

Definition 6.5.1. Chains is irreducible if for any i, j ∈ E we have pij(t) > 0, for some t

Theorem 6.5.2. If pij(t) > 0, for some t > 0 then pij(t) > 0, ∀t > 0

Definition 6.5.3. A distribution π is the limiting distribution of a continuous-time Markov chain if,
for all states i, j ∈ E we have

lim
t→∞

pij(t) = πj

Definition 6.5.4. A distribution π is a stationary distribution if π = πPt ∀t ≥ 0

Theorem 6.5.5. Subject to regularity conditions, we have π = πPt,∀t ≥ 0 ⇐⇒ πG = 0

Theorem 6.5.6. Let X an irreducible Markov chain with a standard semigroup {Pt} of transition proba-
bilities

1. If ∃ stationary distribution π then it is unique and ∀i, j ∈ E

lim
t→+∞

pij(t) = πj

2. If there is no stationary distribution then

lim
t→+∞

pij(t) = 0 ∀i, j ∈ E
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6.6 Jump chain and explosion

Subject to regularity conditions, can construct the jump chain Z from a continuous time Markov chain X
as follows

� Jn denote the nth change in value of the chain X and set J0 = 0

� Values Zn = XJn+ of X form a discrete-time Markov Chain Z = {Zn}n∈N0

� Transition matrix of Z denoted by PZ and satisfies

– pZij = gij/gi if gi := −gii > 0

– if gi = 0, then the chain gets absorbed in state i once it gets there for the first time.

� If Zn = j then the holding time Hn+1 = Jn+1 − Jn = H|j has exponential distribution with parameter
gj

� The chain Z is called the jump chain of X

Consider the converse - a discrete-time Markov chain Z taking values in E - Try and find a continuous-
time Markov chain X having Z as its jump chain - Many such X exist

� Let PZ denote transition matrix of the discrete-time Markov chain Z taking values in E
Assume pZii = 0, ∀i ∈ E

� i ∈ E let gi denote non-negative constants. Define

gij =

{
gip

Z
ij , if i ̸= j;

−gi, if i = j.

Construction of continuous-time Markov chain X done as follows

� Set X0 = Z0

� After holding time H1 = H|Z0
∼ Exp(gZ0

) the process jumps to state Z1

� After holding time H2 = H|Z1
∼ Exp(gZ1) the process jumps to state Z3

� Formally: conditionally on the values Zn of chain Z let H1, H2, . . . be independent random variables
with exponential distribution Hi ∼ Exp(gZi−1), i = 1, 2, . . .. Set Jn = H1 + . . .+Hn

� Then define

Xt =

{
Zn, if Jn ≤ t ≤ Jn+1 for some n;

∞, otherwise i.e. if J∞ ≤ t.

� Note that the special state ∞ added in case the chain explodes Recall that J∞ = lim
n→∞

Jn · J∞ called

the explosion time say chain explodes if

P (J∞ <∞) > 0

Can show that

� X a continuous-time Markov chain with state space E ∪ {∞}

� Matrix G is the generator of X

� Z is the jump chain of X

Theorem 6.6.1. The cain X constructed above does not explodes if any of the following conditions hold

1. State space E is finite

2. supi∈E gi <∞

3. X0 = i where i a recurrent state for the jump chain Z
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6.7 Birth processes

Definition 6.7.1. A birth process with intensities λ0, λ1, . . . ≥ 0 a stochastic process {Nt}t≥0 with values in
N0, such that

1. Non-decreasing process: N0 ≥ 0; if s < t then Ns ≤ Nt

2. There is a ’single arrival’ i.e. the infinitesimal transition probabilities are for t ≥ 0, δ > 0, n,m ∈ N0

P (Nt+δ = n+m | Nt = n) =


1− λnδ + o(δ), if m = 0;

λnδ + o(δ), if m = 1;

o(δ) if m > 1

3. Conditionally independent increments: Let s < t then the conditional on the values of Ns, the increment
Nt −Ns is independent of all arrivals prior to s

Note that by conditionally independent increments, mean that for 0 ≤ s < t, conditional on the value of Ns,
the increment Nt − Ns independent of all arrivals prior to s i.e. for k, l, x(r) ∈ {0, 1, 2, . . .} for 0 ≤ r < s
we have

P (Nt −Ns = k | Ns = l, Nr = x(r) for 0 ≤ r < s) = P (Nt −Ns = k | Ns = l)

Birth process a continuous-time Markov chain
A Poisson process a special case of a birth process (with λn = λ,∀n ∈ N0)
With the general case, birth rates depend on the current state of the process.

6.7.1 The forward and backward equations

Let {Nt} a birth process with positive intensities λ0, . . .
With transition probabilities

pij(t) = P (Nt+s = j | Ns = i) = P (Nt = j | N0 = i), for i, j ∈ E

Theorem 6.7.5. For i, j ∈ E, i < j, t ≥ 0 the forward equations of a birth process are given by

dpij(t)

dt
= −λjpij(t) + λj−1pi,j−1(t)

with λ−1 = 0, and the backward equation given by

dpij(t)

dt
= −λipij(t) + λi + pi+1,j(t)

Where for both, boundary condition given by pij(0) = δij - δ the Kronecker delta

Theorem 6.7.6. Let {Nt}t≥0 a birth process of positive intensities λ0, . . . Then the forward equations have
unique solutions which satisfies the backward equations

6.7.2 Explosion of a birth process

Definition 6.7.7. Let J0, J1, . . . denote the jump times of a birth process N

J0 = 0 Jn+1 = inf{t ≥ Jn : Nt ̸= NJn
}, n ∈ N0

Further let H1, H2, . . . denote the corresponding holding times. As before, we write

J∞ = lim
n→∞

Jn =

∞∑
i=1

Hi

Then we say that explosion of the birth process N is possible if

P (J∞ <∞) > 0

Theorem 6.7.8. Let N be a birth process started from k ∈ N0, with rates λk, λk+1, . . . > 0 Then:

If

∞∑
i=k

1

λi

{
<∞, Then P (J∞ <∞) = 1 (Explosion occurs with probability 1);

= ∞, Then P (J∞ = ∞) = 1 (Probability explosion occurs is 0).
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6.8 Birth-death processes

Definition 6.8.1. Birth-death process
Suppose we are given the following process {Xt}t≥0

1. {Xt}t≥0 is Markov chain on E = N0

2. The infinitesimal transition probabilities are (for t ≥ 0, δ > 0, n ∈ N0,m ∈ Z )

P (Xt+δ = n+m | Xt = n) =


1− (λn + µn)δ + o(δ), if m = 0;

λn + o(δ), if m = 1.

µnδ + o(δ), if m = −1

o(δ), if |m| > 1

3. The birth rates λ0, λ1, . . . and the death rates µ0, µ1, . . . satisfy

λi ≥ 0, µi ≥ 0 µ0 = 0

We have the generator given by
−λ0 λ0 0 0 0 . . .
µ1 −(λ1 + µ1) λ1 0 0 . . .
0 µ2 −(λ2 + µ2) λ2 0 . . .
0 0 µ3 −(λ3 + µ3) λ3 . . .
...

...
...

...
...

. . .


We take a look at the asymptotic behaviour of the process.

Suppose that µi, λi > 0,∀i, where the rates make sense. Then using the claim πG = 0

−λ0π0 + µ1π1 = 0

λn−1πn−1 − (λn + µn)πn + µn+1πn+1 = 0, n ≥ 1

7 Brownian Motion

7.2 From random walk to Brownian motion

7.2.1 Modes of convergence in distribution, Slutsky’s theorem and the CLT

Definition 7.2.2. (Convergence in probability)

A sequence of random variables X1, X2, . . . converges in probability to X written Xn
P−→ X if for each ϵ > 0

lim
n→∞

P ({ω : |Xn(ω)−X(ω)| ≥ ϵ}) = lim
n→∞

P (|Xn −X| ≥ ϵ) = 0

Definition 7.2.3. (Convergence in distribution)
Let the cumulative distribution function of Xn and X be denoted by Fn and F respectively

Say Xn converges in distribution/weakly to X, written Xn
D−→ X if

lim
n→∞

Fn(x) = F (x), for every continuity point xofF (x)

Theorem 7.2.4. (Slutsky’s theorem)

Suppose that Xn
d−→ X,An

P−→ a,Bn
P−→ b, where a, b are (deterministic) constants. Then

AnXn +Bn
d−→ aX + b
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Theorem 7.2.5. (Central limit theorem)
Let Z1, Z2, . . . a sequence of i.i.d random variables of finite mean µ and finite variance σ2. Then the distri-
bution of

1

σ
√
n

(
n∑

i=1

Zi − nµ

)
tends to standard normal distribution as n→ ∞

7.3 Brownian Motion

Definition 7.3.1. A real-valued stochastic process B = {Bt}t≥0 a standard Brownian motion if

1. B0 = 0 almost surely

2. B has independent increments

3. B has stationary increments

4. The increments are Gaussian, for 0 ≤ s < t

Bt −Bs ∼ N(0, (t− s));

5. The sample paths are almost surely continuous i.e. the function t 7→ Bt almost surely continuous in t

Definition 7.3.2. Let B = {Bt}t≥0 denote a standard Brownian motion.
Stochastic process Y = {Yt}t≥0 defined by

Yt = σBt + µt,∀t ≥ 0

is called a Brownian motion with drift parameter µ ∈ R and variance parameter σ2, σ > 0
Note for 0 ≤ s < t, Yt − Ys ∼ N(µ(t− s), σ2(t− s))

7.5 Finite dimensional distributions and transition densities

Theorem 7.5.1. Let f : R → R a continuous function satisfying some additional regularity conditions. Then
the unique (continuous) solution ut(x) to the initial value problem

∂

∂t
ut(x) =

1

2

∂2

∂x2
ut(x)

u0(x) = f(x)

is given by

ut(x) = E[f(W x
t )] =

∫ ∞

−∞
pt(x, y)f(y) dy

where {W x
t } is a Brownian motion started at x

7.6 Symmetries and scaling laws

Proposition 7.6.1. Let {Bt}t≥0 a standard Brownian motion. Then each of the following processes is also
a standard Brownian motion

{−Bt}t≥0 Reflection
{Bt+s −Bs}t≥0 for s ≥ 0 Translation
{aBt/a2}t≥0 for a ≥ 0 Rescaling (Brownian scaling property)
{tB1/t}t≥0 Inversion
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7.6.1 Some remarks

First look at maximum and minimum processes

M+
t := max{Bs : 0 ≤ s ≤ t}

M−
t := min{Bs : 0 ≤ s ≤ t}

These are well-defined, because the Brownian motion has continuous paths, and continuous functions
always attain their maximal and minimal values on compact intervals
Observe that if the path Bt is replaced by its reflection −Bt then the maximum and the minimum are
interchanged and negated
Since −Bt a Brownian motion, follows that M+

t ,−M−
t have same distribution

M+
t

d
= −M−

t

As a first example, consider implications of Brownian scaling property for the distributions of the maxi-
mum random variables M+

t . Fix a > 0 , and define

B∗
t := aBt/a2

M+,∗
t := max

0≤s≤t
B∗

s

= aM+
t/a2

By Brownian scaling property B∗
t is a standard Brownian motion, and so random variable M+∗

t has same
distribution as Mt+ . Therefore

M+
t

d
= aM+

t/a2

Can be shown, above implies that the sample paths of a Brownian motion are with probability one, nowhere
differentiable

7.7 The reflection property and first-passage times

Proposition 7.7.1. Let x > 0 then

P (M+
t ≥ x) = 2P (Bt > x) = 2− Φ(x/

√
t)

Where Φ the normal c.d.f

7.8 A model for asset prices

A model for describing movement of an asset price {St}0≤t≤T , St ∈ R+ is as follows

St = S0 exp{(µ− σ2/2)t+ σBt}

where S0 the initial value of the underlying stock. µ ∈ R is the risk-free interest rate and σ the volatitily
(the instantaneous standard deviation of the stock)
This process known as geometric Brownian motion.

It is well-known that this model does not fit the stylized features of financial returns data.
Real financial data does not follow the dynamic above; because in practice volatility of asset prices is typi-
cally not constant, and often responds to a variety of market conditions
We typically observe time-varying volatility clusters.
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This has yielded much academic and industrial research into cases (which goes back to at least the late
1970s) where σ is a stochastic process, e.g:

St = So exp

{(
µt− 1

2

∫ t

0

σ2
s ds+

∫ t

0

σs dBs

)}
σt = σ0 exp{γt+ ηWt}

where Wt is an independent Brownian motion; such a model is termed a stochastic volatility model

26


	Discrete-time Markov Chains
	Definition of discrete time Markov Chains
	The n-step transition probabilities and Chapman-Kolmogorov equations
	Dynamics of a Markov Chain
	First passage/hitting times
	Recurrence and transience
	Mean recurrence time, null and positive recurrence
	Generating functions for pij (n), fij (n) (READING MATERIAL)
	Example: Null recurrence/transience of a simple random walk (READING MATERIAL)

	Aperiodicity and ergodicity
	Communicating classes
	The decomposition theorem
	Class properties

	Application: The gambler's ruin problem
	The problem and the results

	Stationarity
	Stationarity distribution for irreducible Markov Chains
	Limiting distribution
	Ergodic Theorem
	Properties of the elements of a stationary distribution associated with transient or null-recurrent states
	Existence of a stationary distribution on a finite state space
	Limiting distributions on a finite state space

	Time reversibility

	Properties of the Exponential Distribution
	Definition and basic properties
	Lack of memory property
	Criterion for the convergence/divergence of an infinite sum of independent exponentially distributed random variables

	Poisson Process
	Remarks on continuous-time stochastic processes on a countable state space
	Some Definitions
	Poisson Process: First Definition
	Poisson Process: Second definition
	Right-continuous modification
	Equivalence of definitions

	Some properties of Poisson processes
	Inter-arrival time distribution
	Time to the nth event
	Poisson process: Third definition
	Conditional distribution of the arrival times

	Some extensions to Poisson processes
	Superposition
	Thinning
	Non-homogeneous Poisson processes
	Compound Poisson processes

	The Cramér-Lundberg model in insurance mathematics
	The Coalescent Process
	Problem
	The Process
	Time to most recent common ancestor


	Continuous-time Markov Chains
	Some definitions
	Holding times and alarm clocks
	Holding times
	Describing the evolution of a Markov Chain using exponential holding times

	The generator
	Transition probabilities of the associated jump chain

	The forward and backward equations
	Matrix exponentials

	Irreducibility, stationarity and limiting distribution
	Jump chain and explosion
	Birth processes
	The forward and backward equations
	Explosion of a birth process

	Birth-death processes

	Brownian Motion
	From random walk to Brownian motion
	Modes of convergence in distribution, Slutsky's theorem and the CLT

	Brownian Motion
	Finite dimensional distributions and transition densities
	Symmetries and scaling laws
	Some remarks

	The reflection property and first-passage times
	A model for asset prices


