Applied Probability Concise Notes

MATH60045/70045

Arnav Singh

Content from prior years assumed to be known.

Mathematics Imperial College London United Kingdom January 10, 2023

Contents

3 Discrete-time Markov Chains

3.1 Definition of discrete time Markov Chains

Definition 3.1.1. A discrete-time stochastic process $X = \{X_n\}_{n \in \mathbb{N}_0}$ taking values in countable state space E a Markov chain if it satisfies the Markov condition

$$
P(X_n = j \mid X_{n-1} = i, X_{n-2} = x_{n-2}, \dots, X_0 = x_0) = P(X_n = j \mid X_{n-1} = i), \forall n \in \mathbb{N} \ \forall x_0, \dots, x_{n-2}, i, j \in E
$$

Definition 3.1.2. (Time Homogenous)

1. Markov Chain $\{X_n\}_{n\in\mathbb{N}_0}$ is time-homogenous if

 $P(X_{n+1} = j \mid X_n = i) = P(X_1 = j \mid X_0 = i), \ \forall n \in \mathbb{N}_0, i, j \in E$

2. Transition matrix $P = (p_{ij})_{i,j \in E}$ is the $K \times K$ matrix of transition probabilities

Definition 3.1.3. (Stochastic Matrix) A square matrix P a stochastic matrix if

1. $p_{ij} \geq 0, \forall i, j$

2.
$$
\sum_{j} p_{ij} = 1 \ \forall i
$$

Theorem 3.1.4. Transition matrix P is stochastic

3.2 The n-step transition probabilities and Chapman-Kolmogorov equations

Definition 3.2.1. $n \in \mathbb{N}$, we have

$$
P_n = (p_{ij}(n)) = P(X_{m+n} = j, X_m = i), \ m \in \mathbb{N}_0
$$

The matrix of n-step transition probabilities.

Lemma 3.2.2. For discrete markov chain $\{X_n\}_{n\geq 0}$ on state space E we have

$$
P(X_{n+m} = x_{n+m} | X_n = x_n, \dots, X_0 = x_0) = P(X_{n+m} = x_{n+m} | X_n = x_n), \ m \in \mathbb{N}, \forall x_{n+m}, x_n, \dots, x_0 \in E
$$

Theorem 3.2.3. Let $m \in \mathbb{N}_0, n \in \mathbb{N}$ Then we have $\forall i, j \in E$

$$
p_{ij}(m+n) = \sum_{l \in E} p_{il}(m) p_{lj}(n) \quad P_{m+n} = P_m P_n \quad P_n = P^n
$$

Remark 3.2.4. Extend definition for case $K = \infty$ Let **x** a K-dimensional row vector, P a $K \times K$ matrix

$$
(\mathbf{x}P)_j := \sum_{i \in E} x_i p_{ij}, \quad (P^2)_{ik} := \sum_{j \in E} p_{ij} p_{jk}, \ i, j, k \in \mathbb{N}
$$

Define P^n similarly and take $(P^0)_{ij} = \delta_{ij}$

3.3 Dynamics of a Markov Chain

Definition 3.3.1. Denote probability mass function of X_n for $n \in \mathbb{N}_0$ by

$$
\nu_i^{(n)} = P(X_n = i), \ i \in E
$$

Take $K = \text{card}(E)$, denote by $\nu^{(n)}$ the K-dimensional row vector with elements $\nu_i^n, i \in E$ Call this the **marginal distribution** of chain at time $n \in \mathbb{N}_0$

Theorem 3.3.3. We have

$$
\nu^{(m+n)}=\nu^{(m)}P_n=\nu^{(m)}P^n,\ \forall n\in\mathbb{N}, m\in\mathbb{N}_0
$$

So

$$
\nu^{(n)} = \nu^{(0)} P_n = \nu^{(0)} P^n, \ \forall n \in \mathbb{N}
$$

Theorem 3.3.4. Let $X = \{X_n\}_{n \in \mathbb{N}_0}$ a Markov chain on countable state space E Then given initial distribution $\nu^{(0)}$ and transition matrix P, we determine all finite dimensional distributions of Markov chain.

 $∀0 ≤ n₁ < n₂ < ··· < n_{k-1} < n_k (n_i ∈ ℕ₀, i = 1, ..., k), k ∈ ℕ, x₁, ..., x_k ∈ E We have$

$$
P(X_{n_1} = x_1, X_{n_2} = x_2, \dots, X_{n_k} = x_k) = (\nu^{(0)} P^{n_1})_{x_1} (P^{n_2 - n_1})_{x_1 x_2} \cdots (P^{n_k - n_{k-1}})_{x_{k-1} x_k}
$$

=
$$
(\nu P^{n_1})_{x_1 p_{x_1 x_2} (n_2 - n_1)} \cdots p_{x_{k-1} x_k} (n_k - n_{k-1})
$$

3.4 First passage/hitting times

Definition 3.4.1. Define first passage/hitting time of X for state $j \in E$ as

$$
T_j = \min\{n \in N : X_n = j\}
$$

If $X_n \neq j, \forall n \in \mathbb{N}$ then set $T_j = \infty$

Definition 3.4.2. For $i, j \in E, n \in \mathbb{N}$ define first passage probability

$$
f_{ij}(n) = P(T_j = n | X_0 = i) = P(X_n = j, X_{n-1} \neq j, \dots, X_1 \neq j | X_0 = i)
$$

Probability that we visit state j at time n , given we start at i at time 0 *Define* $f_{ij}(0) = 0, f_{ij}(1) = p_{ij}, \forall i, j \in E$

Definition 3.4.4. Define

$$
f_{ij} = P(T_j < \infty \mid X_0 = i)
$$

For $i \neq j$, we have f_{ij} the probability that the chain ever visits state j, starting at i $Call f_{ii}$ the returning probability

Proposition 3.4.5. $\forall i, j \in E$

$$
f_{ij} = \sum_{n=1}^{\infty} f_{ij}(n)
$$

Lemma 3.4.7. $\forall i, j \in E, n \in \mathbb{N}$, we have

$$
p_{ij}(n) = \sum_{l=0}^{n} f_{ij}(l)p_{jj}(n-l)
$$

$$
= \sum_{l=1}^{n} f_{ij}(l)p_{jj}(n-l)
$$

3.5 Recurrence and transience

Definition 3.5.1. Let $\{X_n\}_{n\in\mathbb{N}_0}$ be a markov chain on countable state space E.

$$
j \in E, \ P(X_n = j, \text{for some } n \in \mathbb{N} \mid X_0 = j) = f_{jj} \begin{cases} 1, & \text{recurrent;} \\ < 1, & \text{transient.} \end{cases}
$$

Theorem 3.5.2. $j \in E$

$$
\sum_{n=1}^{\infty} p_{ij}(n) = \begin{cases} \infty, & \iff \text{ recurrent ;} \\ < \infty, & \iff \text{transient .} \end{cases}
$$

Define

$$
N_j = \sum_{n=0}^{\infty} I_n^{(j)}, \quad I_n^{(j)} = I_{X_n = j} = \begin{cases} 1, & \text{if } X_n = j; \\ 0, & \text{if } X_n \neq j. \end{cases}
$$

Theorem 3.5.3. $j \in E$ transient

1. $P(N_j = n | X_0 = j) = f_{jj}^{n-1}(1 - f_{jj})$ for $n \in \mathbb{N}$ geometric distribution with param f_{jj} 2. $i \neq j$

$$
P(N_j = n \mid X_0 = i) = \begin{cases} 1 - f_{ij}, & \text{if } n = 0; \\ f_{ij} f_{jj}^{n-1} (1 - f_{jj}), & \text{if } n \in \mathbb{N}. \end{cases}
$$

Corollary 3.5.4. $j \in E$ transient

1.

$$
E(N_j \mid X_0 = j) = \frac{1}{1 - f_{jj}}
$$

2. $i \neq j$ we have

$$
E(N_j \mid X_0 = i) = \frac{f_{ij}}{1 - f_{jj}}
$$

Theorem 3.5.5. Given $X_0 = j$, we have

$$
E(N_j | X_0 = j) = \sum_{n=0}^{\infty} p_{jj}(n)
$$

Sum may diverge to ∞

Corollary 3.5.6. $j \in E$ transient then $p_{ij}(n) \xrightarrow[n \to \infty]{} 0, \forall i \in E$

3.5.1 Mean recurrence time, null and positive recurrence

Definition 3.5.7. The mean recurrence time μ_i of state $i \in E$ defined as $\mu_i = E[T_i \mid X_0 = i]$ **Theorem 3.5.8.** Let $i \in E$. We have $P(T_i = \infty | X_0 = i) > 0 \iff i$ transient, where we get

$$
\mu_i = E[T_i \mid X_0 = i = \infty]
$$

Theorem 3.5.9. For recurrent state $i \in E$ we have

$$
\mu_i = E[T_i \mid X_0 = i] = \sum_{n=1}^{\infty} n f_{ii}(n)
$$

Can be finite or infinite.

Definition 3.5.10. A recurrent state $i \in E$

$$
\mu_i = \begin{cases} \infty, & called \; \textbf{null}; \\ < \infty, & called \; \textbf{positive}. \end{cases}
$$

Theorem 3.5.11. Recurrent state $i \in E$ null \iff $p_{ii}(n) \xrightarrow[n \to \infty]{} 0$ Further, if this holds, then $p_{ji}(n) \xrightarrow[n \to \infty]{} 0, \forall j \in E$

- 3.5.2 Generating functions for $p_{ij}(n)$, $f_{ij}(n)$ (READING MATERIAL)
- 3.5.3 Example: Null recurrence/transience of a simple random walk (READING MATE-RIAL)

SEE FULL OFFICIAL NOTES

3.6 Aperiodicity and ergodicity

Definition 3.6.1. Period of state i defined by

$$
d(i) = gcd\{n : p_{ii}(n) > 0\}
$$

Definition 3.6.4. A state ergodic if it is positive recurrent and aperiodic

3.7 Communicating classes

Definition 3.7.1. (Accessible and Communicating)

1. j accessible from i, $i \to j$, if $\exists m \in \mathbb{N}_0$ s.t $p_{ij}(m) > 0$

2. *i, j* communicate, if $i \rightarrow j$ and $j \rightarrow i$; write $i \leftrightarrow j$

Theorem 3.7.2. (Communication an equivalence relation) Satisfies, reflexivity, symmetry and transitivity

Theorem 3.7.4. If $i \leftrightarrow j$ then

- 1. i, j have same period
- 2. i transient/recurrent \iff j transient/recurrent
- 3. i null recurrent \iff j null recurrent

Definition 3.7.5. Set of states C is

- 1. closed if $\forall i \in C, j \notin C, p_{ij} = 0$
- 2. irreducible if $i \leftrightarrow j, \forall i, j \in C$

Theorem 3.7.6. Let C a closed communicating class, transition matrix P restricted to C is stochastic

3.7.1 The decomposition theorem

Theorem 3.7.8. C a communicating class, consisting of recurrent states. Then C is closed

Theorem 3.7.9. State-space E can be partitioned uniquely into

$$
E = \underbrace{T}_{\text{transient states}} \cup \left(\bigcup_{\substack{i \\ i \ \text{irreducible, closed} \\ \text{set of recurrent states}}} C_i \right)
$$

Theorem 3.7.11. $K < \infty$ Then at least one state is recurrent and all recurrent states are positive. **Theorem 3.7.12.** C a finite, closed communicating class \implies all states in C positive recurrent

3.7.2 Class properties

3.8 Application: The gambler's ruin problem

3.8.1 The problem and the results

Consider a gambler with initial fortune $i \in \{0, 1, \ldots, N\}$. At each play of the game, the gambler has

- probability p of winning one unit
- probability q of losing one unit
- each successive game is independent

What is the probability, a gambler starting at i units, has their fortune reach N before 0 ?

Let X_n denote gamblers fortune at time n. Then $\{X_n\}_{n\in\mathbb{N}_0}$ is a Markov Chain with transition probabilities, shown in diagram above.

This yields 3 communicating classes.

$$
C_1 = \{0\}, C_2 = \{N\}, T_1 = \{1, 2, \dots, N - 1\}
$$

positive recurrent

positive recurrent since finite and closed

Define the following for our problem:

Define first time X visits state i as

$$
V_i = \min\{n \in \mathbb{N}_0 : X_n = i\}
$$

$$
h_i = h_i(N) = P(V_N < V_0 \mid X_0 = i)
$$

This yields the following recurrence relation

$$
h_i = h_{i+1}p + h_{i-1}q, \ i = 1, 2, \dots, N-1
$$

Theorem 3.8.1. From above we achieve

$$
h_i = h_i(N) = \begin{cases} \frac{1 - (q/p)^i}{1 - (q/p)^N}, & \text{if } p \neq \frac{1}{2};\\ \frac{i}{N}, & \text{if } p = \frac{1}{2}. \end{cases}
$$

Theorem 3.8.2. We also have

$$
\lim_{N \to \infty} h_i(N) = h_i(\infty) = \begin{cases} 1 - (q/p)^i, & \text{if } p > \frac{1}{2}; \\ 0, & \text{if } p \le \frac{1}{2}. \end{cases}
$$

• $p > \frac{1}{2} \implies \frac{q}{p} < 1 \implies \lim_{N \to \infty} (\frac{q}{p})^N = 0$ • $p < \frac{1}{2} \implies \frac{q}{p} > 1 \implies \lim_{N \to \infty} = \infty$

3.9 Stationarity

Definition 3.9.1. (Distributions)

1. row vector λ a **distribution** on E if

$$
\forall j \in E, \lambda_j \geq 0, \quad and \sum_{j \in E} = 1
$$

2. row vector λ with non-negative entries is called **invariant** for transition matrix P if

 $\lambda P = \lambda$

- 3. row vector π is **invariant/stationary/equilibrium distribution** of Markov chain on E with transition matrix P if
	- (a) π a distribution
	- (b) it is invariant

$$
\pi P^n = \pi
$$

3.9.1 Stationarity distribution for irreducible Markov Chains

Theorem 3.9.2. An irreducible chain has stationary distribution $\pi \iff$ all states are positive recurrent. π unique stationary distribution, s.t $\pi_i = \mu_i^{-1} \forall i$

Lemma 3.9.3. For markov chain X we have $\forall j \in E, n, m \in \mathbb{N}$

$$
f_{jj}(m+n) = \sum_{i \in E, i \neq j} l_{ji}(m) f_{ij}(n)
$$

For $l_{ii}(n) = P(X_n = i \cdot T_i \ge n \mid X_0 = j)$

Corollary 3.9.4. For Markov Chain X we have $\forall i, j \in E, i \neq j$ and $\forall n, m \in \mathbb{N}$

$$
f_{jj}(m+n) \ge l_{ji}(m) f_{ij}(n)
$$

Lemma 3.9.5. Let $i \neq j$ Then $l_{ji}(1) = p_{ji}$, and for integers $n \geq 2$

$$
l_{ji}(n) = \sum_{r \in E: r \neq j} p_{ri} l_{jr}(n-1)
$$

Lemma 3.9.6. $\forall j \in E$ of an irreducible, recurrent chain, the vector $\rho(j)$ satisfies $\rho_i(j) < \infty$ $\forall i$ and further $\rho(j) = \rho(j)P$

Lemma 3.9.7. Every irreducible, positive, recurrent chain has a stationary distribution

Theorem 3.9.8. If the chain is irreducible and recurrent, then $\exists x > 0$ s.t $x = xP$ unique up to multiplicative constant.

Chain is
$$
\begin{cases} positive \text{ recurrent}, & \text{if } \sum_i x_i < \infty; \\ null, & \text{if } \sum_i x_i = \infty. \end{cases}
$$

Lemma 3.9.9. Let T a non-negative integer valued random variable on probability space (Ω, \mathcal{F}, P) , with $A \in \mathcal{F}$ an event s.t $P(A) > 0$. Can show that

$$
E(T \mid A) = \sum_{n=1}^{\infty} P(T \ge n \mid A)
$$

Theorem (Dominated convergence theorem) Let $\mathcal I$ be a countable index set. If $\sum_{i\in\mathcal{I}} a_i(n)$ is an absolutely convergent series $\forall n \in N$ s.t

- 1. $\forall i \in \mathcal{I}$ the limit $\lim_{n \to \infty} a_i(n) = a_i$ exists
- 2. \exists seq. $(b_i)_{i \in I}$ s.t $b_i \geq 0$ $\forall i$ and $\sum_{i \in \mathcal{I}} b_i < \infty$ s.t $\forall n, i : |a_i(n)| \leq b_i$

Then $\sum_{i \in \mathcal{I}} |a_i| < \infty$ and

$$
\sum_{i \in I} a_i = \sum_{i \in I} \lim_{n \to \infty} a_i(n) = \lim_{n \to \infty} \sum_{i \in \mathcal{I}} a_i(n)
$$

3.9.2 Limiting distribution

Definition 3.9.12. A distribution π is the limiting distribution of a discrete-time Markov Chain if, $\forall i, j \in E$ we have

$$
\lim_{n \to \infty} p_{ij}(n) = \pi_j
$$

Definition 3.9.14. For irreducible aperiodic chain we have

$$
\lim_{n \to \infty} p_{ij}(n) = \frac{1}{\mu_j}
$$

3.9.3 Ergodic Theorem

Theorem 3.9.16. (Ergodic Theorem)

Suppose we have irreducible Markov chain $\{X_n\}_{n\in\mathbb{N}_0}$ with state space E. Let μ_i the mean recurrence time to state $i \in E$

$$
V_i(n) = \sum_{k=0}^{n-1} \mathbf{1}_{\{X_k = i\}}
$$

The number of visits to i before n

So we have $V_i(n)/n$ the proportion of time before n spent at i

$$
P\left(\frac{V_i(n)}{n} \to \frac{1}{\mu_i}, \text{ as } n \to \infty\right) = 1
$$

Summary: Properties of irreducible Markov Chains 3 kinds of irreducible Markov Chains

1. Positive recurrent

- (a) Stationary distribution π exists
- (b) Stationary distribution is unique
- (c) All mean recurrence times are finite and $\mu_i = \frac{1}{\pi_i}$

(d)
$$
V_i(n)/n \longrightarrow_{n \to \infty} \pi_i
$$

(e) If chain aperiodic

$$
\lim_{n \to \infty} P(X_n = i) = \pi_i, \forall i \in E
$$

2. Null recurrent

- (a) Recurrent, but all mean recurrence times are infinite
- (b) No stationary distribution exists

(c)
$$
V_i(n)/n \xrightarrow[n \to \infty]{} 0
$$

$$
\lim_{n \to \infty} P(X_n = i) = 0, \forall i \in E
$$

3. Transient

(d)

- (a) Any particular state is eventually never visited
- (b) No stationary distribution exists
- (c) $V_i(n)/n \longrightarrow 0$

(d)

$$
\lim_{n\to\infty} P(X_n = i) = 0, \forall i \in E
$$

3.9.4 Properties of the elements of a stationary distribution associated with transient or null-recurrent states

Theorem 3.9.17. Let X a time-homogeneous Markov Chain on countable state space E If π a stationary distribution of X, $i \in E$ either transient or null-recurrent, then $\pi_i = 0$

3.9.5 Existence of a stationary distribution on a finite state space

Theorem 3.9.19. If state space finite $\implies \exists$ at least one positive recurrent communicating class

Theorem 3.9.20. Suppose finite state space. The stationary distribution π for transition matrix P unique \iff there is a unique closed communicating class

Corollary 3.9.21. Markov chain on finite state space, and $N \geq 2$ closed classes. C_i the closed classes of Markov chain and $\pi^{(i)}$ the stationary distribution associated with class C_i using construction

$$
\pi_j^{(i)} = \begin{cases} \pi_j^{C_i}, & \text{if } j \in C_i; \\ 0, & \text{if } j \notin C_i. \end{cases}
$$

Then every stationary distribution of Markov Chain represented as

$$
\sum_{i=1}^N \omega_i \pi^{(i)}
$$

For weights $\omega_i \geq 0$, $\sum_{i=1}^n \omega_i = 1$

3.9.6 Limiting distributions on a finite state space

Theorem 3.9.23. Let $K = |E| < \infty$ Suppose for some $i \in E$ that

$$
\lim_{n \to \infty} p_{ij}(n) = \pi_j, \quad \forall j \in E
$$

Then π a stationary distribution

3.10 Time reversibility

Theorem 3.10.1. For irreducible, positive recurrent Markov chain $\{X_n\}_{n\in{0,1,\ldots,N}}$, $N \in \mathbb{N}$ assume π a stationary distribution, and P a transition matrix, and $\forall n \in \{0, 1, ..., N\}$ the marginal distribution $\nu^{(n)} = \pi$

 $Y_n = X_{N-n}$, The reversed chain defined for $n \in \{0, 1, ..., N\}$

We have Y a Markov chain, satisfying

$$
P(Y_{n+1} = j \mid Y_n = i) = \frac{\pi_j}{\pi_i} p_{ji}
$$

Definition 3.10.2. $X = \{X_n : n \in \{0, 1, ..., N\}\}\$ an irreducible Markov chain with stationary distribution π and marginal distributions $\nu^{(n)} = \pi$, $\forall n \in \{0, 1, ..., N\}$

Markov chain X time-reversible if transition matrices of X and its reversal Y are the same.

Theorem 3.10.3. $\{X_n\}_{n\in\{0,1,\ldots,N\}}$ time-reversible \iff , $\forall i, j \in E$

$$
\pi_i p_{ij} = \pi_j p_{ji}
$$

Theorem 3.10.4. For irreducible chain, if $\exists \pi$ s.t 3.10.1 holds $\forall i, j \in E$. Then the chain is time-reversible (once in its stationary regime) and positive recurrent with stationary distribution π

4 Properties of the Exponential Distribution

4.1 Definition and basic properties

Definition 4.1.1. (Exponential distribution) A continuous random variable X is $X \sim Exp(\lambda)$ if it has density function

$$
f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x > 0; \\ 0, & \text{if otherwise.} \end{cases}
$$

Cumulative distribution function

$$
F_X(x) = \begin{cases} 0, & \text{if } x \le 0; \\ 1 - e^{-\lambda x}, & \text{if } x > 0. \end{cases}
$$

Survival function of the exponential distribution is given by

$$
P(X > x) = \begin{cases} 1, & \text{if } x \le 0; \\ e^{-\lambda x}, & \text{if } x > 0. \end{cases}
$$

Theorem 4.1.2. $X \sim Exp(\lambda)$ for $\lambda > 0$ Then

- 1. $E(X) = \frac{1}{\lambda}$
- 2. $\lambda X \sim Exp(1)$

Theorem 4.1.3. Let $n \in \mathbb{N}$ and $\lambda > 0$. Consider independent and identically distributed random variables $H_i \sim Exp(\lambda)$, for $i = 1, \ldots, n$

Let $J_n := \sum_{i=1}^n H_i$ Then J_n follows the Gamma (n, λ) distribution, i.e.

$$
f_{J_n}(t) = \frac{\lambda^n}{\Gamma(n)} t^{n-1} e^{-\lambda t}
$$

Theorem 4.1.4. Let $n \in \mathbb{N}$ and $\lambda_1, \ldots, \lambda_n$. Consider independent random variables $H_i \sim Exp(\lambda_i)$ for $i=1,\ldots,n.$ Let $H:=\min\{H_1,\ldots,H_n\}$ Then

- 1. $H \sim Exp(\sum_{i=1}^{n} \lambda_i)$
- 2. For any $k = 1, ..., n$, $P(H = H_k) = \lambda_k / \sum_{i=1}^n \lambda_i$

Theorem 4.1.5. Consider a countable index set E and $\{H_i : i \in E\}$ independent random variables with $H_i \sim Exp(\lambda_i), \forall i \in E$. Suppose that $\sum_{i \in E} \lambda_i < \infty$ and set $H := \inf_{i \in E} H_i$ Then the infimum is attained at a unique random value I of E with probability 1 H, I are independent, with $H \sim Exp(\sum_{i \in E} \lambda_i < \infty)$ and $P(I = i) = \lambda_i / \sum_{k \in E} \lambda_k$

Remark 4.1.6. Suppose we have $X \sim Exp(\lambda_X)$, $Y \sim Exp(\lambda_Y)$, Then

$$
P(X < Y) = P(\min\{X, Y\} = X) = \frac{\lambda_X}{\lambda_X + \lambda_Y}
$$

4.2 Lack of memory property

Theorem 4.2.1. (Lack of memory property)

A continuous random variable $X : \Omega \to (0, \infty)$ has an exponential distribution \iff has the lack of memory property

$$
P(X > x + y | X > x) = P(X > y), \quad \forall x, y > 0
$$

Remark 4.2.2. A random variable $X : \Omega \to (0, \infty)$ has an exponential distribution \iff has lack of memory property:

$$
P(X > x + y | X > x) = P(X > y), \quad \forall x, y > 0
$$

4.3 Criterion for the convergence/divergence of an infinite sum of independent exponentially distributed random variables

Theorem 4.3.1. Consider sequence of independent random variables $H_i \sim Exp(\lambda_i)$ for $0 < \lambda_i < \infty$ for all $i \in \mathbb{N}$ and let $J_{\infty} = \sum_{i=1}^{\infty} H_i$, Then:

1. If $\sum_{i=1}^{\infty} \frac{1}{\lambda_i} < \infty \implies P(J_{\infty} < \infty) = 1$

2. If
$$
\sum_{i=1}^{\infty} \frac{1}{\lambda_i} = \infty \implies P(J_{\infty} = \infty) = 1
$$

Lemma 4.3.2. For $x \geq 1$, we have

$$
\log\left(1+\frac{1}{x}\right) \ge \log(2)\frac{1}{x}
$$

$$
\log(1+x) > \frac{x}{x+1}, \quad \text{for } x > -1
$$

5 Poisson Process

5.1 Remarks on continuous-time stochastic processes on a countable state space

5.3 Some Definitions

Definition 5.3.0. A stochastic process $\{N_t\}_{t\geq0}$ a **counting process** if N_t represents the total number of 'events' that have occurred up to time t Having the following properties:

- 1. $N_0 = 0$
- 2. $\forall t \geq 0, N_t \in \mathbb{N}_0$
- 3. If $0 \le s \le t, N_s \le N_t$
- 4. For $s < t, N_t N_s =$ the number of events in interval $(s, t]$
- 5. Process is piecewise constant and has upward jumps of size 1 i.e $N_t N_{t-} \in \{0, 1\}$

Definition 5.3.1. Let $(J_n)_{n\in\mathbb{N}_0}$ a strictly increasing sequence of positive random variables s.t $J_0 = 0$ almost surely.

Define process $\{N_t\}_{t\geq 0}$ as

$$
N_t = \sum_{n=1}^{\infty} \mathbf{1}_{\{J_n \le t\}},
$$

Interpret J_n as the (random) time at which the nth event occurs. The nth jump time.

5.3.1 Poisson Process: First Definition

Definition 5.3.0. Define $o(\cdot)$ notation. A function f is $o(\delta)$ if

$$
\lim_{\delta \downarrow 0} \frac{f(\delta)}{\delta} = 0
$$

With the following properties

- if f, g are $o(\delta)$ then so is $f + g$
- if f is $o(\delta)$ and $c \in \mathbb{R}$ then cf is $o(\delta)$

Definition 5.3.3. A Poisson process $\{N_t\}_{t>0}$ of rate $\lambda > 0$ is a non-decreasing stochastic process with values in \mathbb{N}_0 satisfying:

- 1. $N_0 = 0^1$
- 2. Increments are independent, that is given any $n \in \mathbb{N}$ and $0 \le t_0 < t_1 < t_2 < \ldots < t_n$ random variables $N_{t_0}, N_{t_1} - N_{t_0}, N_{t_2} - N_{t_1}, N_{t_3} - N_{t_2}, \ldots, N_{t_n} - N_{t_{n-1}}$ are independent
- 3. The increments are stationary, Given any 2 distinct times $0 \le s < t, \forall k \in \mathbb{N}_0$

$$
P(N_t - N_s = k) = P(N_{t-s} = k)
$$

4. There is a 'single arrival', i.e $\forall t \geq 0, \delta > 0, d \rightarrow 0$:

$$
P(N_{t+\delta} - N_t = 1) = \lambda \delta + o(\delta)
$$

$$
P(N_{t+\delta} - N_t \ge 2) = o(\delta)
$$

5.3.2 Poisson Process: Second definition

Definition 5.3.4. A Poisson Process $\{N_t\}_{t\geq 0}$ of rate $\lambda > 0$ is a stochastic process with values in \mathbb{N}_0 satisfying

- 1. $N_0 = 0$
- 2. Increments are independent, that is given any $n \in \mathbb{N}$ and $0 \le t_0 < t_1 < t_2 < \ldots < t_n$ random variables $N_{t_0}, N_{t_1} - N_{t_0}, N_{t_2} - N_{t_1}, N_{t_3} - N_{t_2}, \ldots, N_{t_n} - N_{t_{n-1}}$ are independent
- 3. The increments are stationary, Given any 2 distinct times $0 \le s < t, \forall k \in \mathbb{N}_0$

$$
P(N_t - N_s = k) = P(N_{t-s} = k)
$$

 $4. \ \forall t \geq 0, N_t \sim Poi(\lambda t)$

$$
\forall k \in \mathbb{N}_0, P(N_t = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}
$$

5.3.3 Right-continuous modification

Definition 5.3.0. For 2 stochastic processes $\{X_t\}_{t\geq0}$, $\{Y_t\}_{t\geq0}$, say X a modification of Y if

 $X_t = Y_t$, almost surely for eacht ≥ 0

$$
P(X_t = Y_t) = 1, \forall t \ge 0
$$

Can show that for each Poisson process, $\exists!$! modification which is càdlàg, (right continuous with left limits).

Remark 5.3.5. Note that the jump chain of the Poisson Process given by $Z = (Z_n)_{n \in \mathbb{N}_0}$, where $Z_n = n, n \in \mathbb{N}_0$ \mathbb{N}_0

5.3.4 Equivalence of definitions

Theorem 5.3.6. Definition 5.3.3, 5.3.4 are equivalent

Lemma 5.3.7. Laplace transform of a Poisson random variable of mean λt , $X \sim Poi(\lambda t)$ for $\lambda > 0$, $t > 0$ is given by

$$
\mathcal{L}_X(u) = \exp\{\lambda t [e^{-u} - 1]\}, \quad \forall u > 0
$$

5.4 Some properties of Poisson processes

5.4.1 Inter-arrival time distribution

Definition 5.4.1. Let $\{N_t\}_{t>0}$ a Poisson process of rate $\lambda > 0$ Then the inter-arrival times are independently and identically distributed exponential random variables with parameter λ

 $\mathbf{5.4.2} \quad$ Time to the n^{th} event

Theorem 5.4.2. We have $\forall n \in \mathbb{N}$, the time to the nth event J_n follows a Gamman, λ distribution, with density

$$
f_{J_n}(t) = \frac{\lambda^n}{\Gamma(n)} t^{n-1} e^{-\lambda t}, \ t > 0
$$

5.4.3 Poisson process: Third definition

Definition 5.4.4. A Poisson process $\{N_t\}_{t>0}$ of rate $\lambda > 0$ is a stochastic process with values in \mathbb{N}_0 s.t

- 1. H_1, H_2, \ldots denote independently and identically exponentially distributed random variables with param $eter \lambda > 0$
- 2. Let $J_0 = 0$ and $J_n = \sum_{i=1}^n H_i$
- 3. Define

$$
N_t = \sup\{n \in \mathbb{N}_0 : J_n \le t\}, \quad \forall t \ge 0
$$

Theorem 5.4.5. Definitions 5.3.3, 5.3.4, 5.4.4 are equivalent

5.4.4 Conditional distribution of the arrival times

Theorem 5.4.6. Let $\{N_t\}_{t>0}$ be a Poisson process of rate $l > 0$. Then $\forall n \in \mathbb{N}, t > 0$, the conditional density of (J_1, \ldots, J_n) given by $N_t = n$ is given by

$$
f_{(J_1,\ldots,J_n)}(t_1,\ldots,t_n|N_t=n)=\begin{cases} \frac{n!}{t^n}, & \text{if } 0 < t_1 < \ldots < t_n \leq t; \\ 0, & \text{otherwise} \end{cases}
$$

Remark 5.4.7. The above theorem says, conditional on the fact n events have occurred in $[0, t]$, the times (J_1, \ldots, J_n) at which the events occur, when considered as unordered random variables are independently and uniformly distributed on $[0, t]$

5.5 Some extensions to Poisson processes

5.5.1 Superposition

Theorem 5.5.2. Given n independent Poisson processes $\{N_t^{\{1\}}\}_{t\geq0}$, ..., $\{N_t^{(n)}\}_{t\geq0}$ with respective rates, $\lambda_1, \ldots, \lambda_n > 0$ define

$$
N_t = \sum_{i=1}^n N_t^{(i)}, \quad t \ge 0
$$

Then $\{N_t\}_{t\geq 0}$ a Poisson process with rate $\lambda = \sum_{i=1}^n \lambda_i$ and is called a **superposition of Poisson processes**

5.5.2 Thinning

Theorem 5.5.5. Let $\{N_t\}_{t\geq 0}$ a Poisson process with rate $\lambda > 0$. Assume that each arrival, independent of other arrivals, is marked as a type k event with probability p_k for $k = 1, ..., n$ where $\sum_{i=1}^{n} p_i = 1$. Let $N_t^{(k)}$ denote the number of type k events in $[0,t]$. Then $\{N_t^{(k)}\}_{t\geq0}$ a Poisson process with rate λp_k and the processes

$$
\{N_t^{\left(1\right)}\}_{t\geq0},\ldots,\{N_t^{\left(n\right)}\}_{t\geq0}
$$

are independent. Each process called a thinned Poisson process

5.5.3 Non-homogeneous Poisson processes

Definition 5.5.6. Let $\lambda : [0, \infty) \mapsto (0, \infty)$ denote a non-negative and locally integrable function, called the intensity function

A non-decreasing stochastic process $N = \{N_t\}_{t\geq 0}$ with values in \mathbb{N}_0 called a non-homogeneous Poisson **process** with intensity function $(\lambda(t))_{t\geq0}$ if it satisfies the following:

- 1. $N_0 = 0$
- 2. N has independent increments
- 3. 'Single arrival' property, For $t \geq 0, \delta > 0$

$$
P(N_{t+\delta} - N_t = 1) = \lambda(t)\delta + o(\delta)
$$

$$
P(N_{t+\delta} - N_t \ge 2) = o(\delta)
$$

Note that (3) also implies that

$$
P(N_{t+\delta} - N_t = 0) = 1 - \lambda(t) + o(\delta)
$$

Theorem 5.5.7. Let $N = \{N_t\}_{t>0}$ denote a non-homogeneous Poisson process with continuous intensity function $(\lambda(t))_{t\geq 0}$ Then

$$
N_t \sim Poi(m(t)), \quad where \quad m(t) = \int_0^t \lambda(s)ds
$$

i.e. $\forall t \geq 0, n \in \mathbb{N}_0$

$$
P(N_t = n) = \frac{[m(t)]^n}{n!}e^{-m(t)}
$$

5.5.4 Compound Poisson processes

Definition 5.5.12. Let $\{N_t\}_{t>0}$ be a Poisson process of rate $\lambda > 0$. Y_1, Y_2, \ldots be a sequence of independent and identically distributed random variables, that are independent of $\{N_t\}_{t\geq 0}$. Then the process $\{S_t\}_{t\geq 0}$ with

$$
S_t = \sum_{i=1}^{N_i} Y_i, \quad t \ge 0
$$

is a compound Poisson process

Theorem 5.5.13. Let $\{S_t\}_{t>0}$ a compound Poisson process. Then for $t \geq 0$

$$
E(S_t) = \lambda t E(Y_1), \quad Var(S_t) = \lambda t E(Y_1^2)
$$

as defined in Definition 5.5.12

5.6 The Cramet-Lundberg model in insurance mathematics

Definition 5.6.1. The **Cramér-Lundberg model** is given by the following five conditions.

- 1. Claim size process is denoted by $Y = (Y_k)_{k \in \mathbb{N}}$, for Y_k denoting the positive i.i.d random variables with finite mean $\mu = E(Y)1$ and variance $\sigma^2 = Var(Y_1) \leq \infty$
- 2. Claim times occur at the random instants of time

$$
0
$$

3. The claim arrival process is denoted by

$$
N_t = \sup\{n \in \mathbb{N} : J_n \le t\}, t \ge 0
$$

which is the number of claims in the interval $[0, t]$.

4. The inter-arrival times are denoted by

$$
H_1 = J_1, H_k = J_k - J_{k-1}, k = 2, 3, \dots
$$

and are independent and exponentially distributed with parameter λ

5. sequences $(Y_k,(H_k))$ are independent of each other

Definition 5.6.3. The **Total claim amount** is defined as the process $(S_t)_{t>0}$ satisfying

$$
S_t = \begin{cases} \sum_{i=1}^{N_t} Y_i, & \text{if } N_t > 0; \\ 0, & \text{if } N_t = 0. \end{cases}
$$

Observe that the total claim amount is modelled as a compound Poisson process.

Theorem 5.6.4. The total claim amount distribution given by

$$
P(S_t \le x) = \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} P\left(\sum_{i=1}^n Y_i \le x\right), \quad x \ge 0, t \ge 0
$$

and $P(S_t \leq x) = 0$ for $x < 0$

Definition 5.6.5. The **risk process** $\{U_t\}_{t\geq0}$ is defined as

$$
U_t = u + ct - S_t, \quad t \ge 0
$$

where $u \geq 0$, the **initial capital** and $c > 0$ denotes the **premium income rate** Definition 5.6.7. We have the following definitions

1. The ruin probability in finite time is given by

$$
\psi(u,T) = P(U_t < 0 \quad \text{for some } t \leq T), \ 0 < T < \infty, u \geq 0
$$

2. The ruin probability in infinite time is given by

$$
\psi(u) := \psi(u, \infty), u \ge 0
$$

Theorem 5.6.8.

$$
E(U_t) = u + ct - \lambda t \mu + (c - \lambda \mu)t
$$

A minimal requirement for choosing the premium could be

 $c > \lambda \mu$

referred to as the net profit condition

5.7 The Coalescent Process

5.7.1 Problem

- Given collection of n individuals observe a DNA sequence from the individual
- A DNA sequence a collection of letters; A,C,T and G for simplicity take that only one letter observed
- Coalescent process provides genealogical tree representation of this data. A tree-like structure representing the history of the individuals backward in time.

Individuals coalesce until we have only individual - the most recent common ancestor.

Figure 1: A Coalescent Graph

5.7.2 The Process

- At start of process we have $n \geq 2$ individuals (all of the same DNA base)
- Each pair of individuals coalesce according to an (independent) Poisson process of rate 1
- We have $\binom{n}{2}$ 2) pairs - time to first coalescent event is exponential random variable of rate $\binom{n}{0}$ 2 $\Big)$ - since we consider the minimum of $\binom{n}{2}$ 2 independent $Exp(1)$ -distributed random variables.
- At first event 2 individuals picked uniformly at random and combined
- Continue this until there is only one individual the most recent common ancestor
- So we have $n-1$ coalescent events
- Model, assumes all individuals have the same DNA base, so we require another mechanism a mutation process
- In this process the number of individuals decrease our first example of a death process.

5.7.3 Time to most recent common ancestor

Time to most recent common ancestor estimated i.e. the height of the tree, estimated by

$$
E\left(\sum_{k=1}^{n-1} H_k\right), \text{ for } n \in \mathbb{N}, n \ge 2
$$

Where we have that H_k the time to k^{th} coalescence

$$
H_k \sim \text{Exp}\left(\binom{n-(k-1)}{2}\right) \implies E(H_k) = \left(\binom{n-(k-1)}{2}\right)^{-1}
$$

So we have that

$$
E(\sum_{k=1}^{n-1} H_k) = \sum_{k=1}^{n-1} E(H_k)
$$

=
$$
\sum_{k=1}^{n-1} \left(\frac{(n-k+1)!}{(n-k-1)!2!} \right)^{-1} = \sum_{k=1}^{n-1} \frac{2(n-k-1)!}{(n-k+1)!}
$$

=
$$
\sum_{k=1}^{n-1} \frac{2}{(n-k+1)(n-k)} = \sum_{k=1}^{n-1} \frac{2}{k(k+1)}
$$

=
$$
2\left(1 - \frac{1}{n}\right)
$$

Further, since $H_{n-1} \sim \text{Exp}\left(\begin{pmatrix} 2\\ 2 \end{pmatrix}\right)$ \setminus

6 Continuous-time Markov Chains

6.1 Some definitions

Definition 6.1.1. A continuous-time process $\{X_t\}_{t\in[0,\infty)}$ satisfies the **Markov property** if

$$
P(X_{t_n} = j \mid X_{t_1} = i_1, \dots, X_{t_{n-1}} = i_{n-1}) = P(X_{t_n} = j \mid X_{t_{n-1}} = i_{n-1})
$$

 $E(H_{n-1}) = 1$

for all $j, i_1, \ldots, i_{n-1} \in E$ and for any sequence $0 \le t_1 < \ldots < t_n < \infty$ of times (with $n \in \mathbb{N}$)

Definition 6.1.2. The **transition probability** $p_{ij}(s,t)$ is, for $s \le t, i, j \in E$

$$
p_{ij}(s,t) = P(X_t = j \mid X_s = i)
$$

also, the chain is homogeneous if

$$
p_{ij}(s,t) = p_{ij}(0,t-s)
$$

Write $p_{ij}(t-s) = p_{ij}(s,t)$ in this case Let $\mathbf{P}_t = (p_{ij}(t))$

Theorem 6.1.3. The family $\{P_t : t \geq 0\}$ is a **stochastic semigroup**; that is, it satisfies

- 1. $\mathbf{P}_0 = I_{K \times K}$
- 2. P_t is stochastic non-negative entries with rows summing to 1
- 3. The Chapman-Kolmogorov equations hold:

$$
\mathbf{P}_{s+t} = \mathbf{P}_s \mathbf{P}_t, \quad \forall s, t \ge 0
$$

Definition 6.1.4. The semigroup $\{P_t\}$ is called **standard** if

$$
\lim_{t\downarrow 0} \mathbf{P}_t = \mathbf{I} \ (= \mathbf{P}_0)
$$

where $\mathbf{I} = \mathbf{I}_{K \times K}$ A semigroup standard \iff its elements $p_{ij}(t)$ are continuous functions in t

6.2 Holding times and alarm clocks

6.2.1 Holding times

Suppose that we have $\{X_t\}_{t>0}$ a continuous-time homogeneous Markov Chain, suppose that $t \geq 0$ and for, $i \in E$, we have $X_t = i$. Given $X_t = i$, define

$$
H_{|i} = \inf\{s \ge 0 : X_{t+s} \ne i\}
$$

to be the **holding time at state** i , that is the length of time that a continuous-time Markov chain started in state i stays in state i before transitioning to a new state.

Note that holding times does not depend on t since we work under time-homogeneity assumption

$$
\inf\{s \ge 0 : X_{t+s} \ne i\} \mid X_t = i \stackrel{\text{def.}}{=} \inf\{s \ge 0 : X_s \ne i\} \mid X_0 = i
$$

Theorem 6.2.2. The holding times $H_{\vert i}$, for $i \in E$ follows an exponential distribution

6.2.2 Describing the evolution of a Markov Chain using exponential holding times

Can describe the evolution of continuous-time Markov chains by specifying transition rates between states and using the concept of exponential alarm clocks

- $\forall i \in E$ denote n_i number of states which can be reached from state i
- Associate n_i independent, exponential alarm clocks with rates q_{ij} provided j can be reached from state i
- When chain first visits state i , all n_i exponential alarm clocks are set simultaneously
- First alarm clock which rings, determines which state the chain transitions to.
- As soon as state j has been reached set n_j independent exponential alarm clocks associated to jand repeat the process

q_{ij} - transition rates

- Let $i \neq j$, with $q_{ij} > 0$ denote the transition rates when state j can be reached from state i
- Let $i \neq j$, set $q_{ij} = 0$ if j can't be reached from i
- Also set $q_{ii} = 0, \forall i \in E$
- The minimum/infimum of the n_i exponential alarm clocks of state *i*,follows an exponential distribution with rate

$$
q_i = \sum_{j \in E} q_{ij}
$$

- $P(i \to j) = P(q_i = q_{ij}) = \frac{q_{ij}}{q_i}$
- Hence, the transition probabilities of embedded chain Z given by

$$
p_{ij}^Z = \frac{q_{ij}}{q_i}
$$

We assumed above that $0 < q_i < \infty$. In case that $q_i = 0$ then we have $p_{ii}^Z = 1$

6.3 The generator

Definition 6.3.1. The generator $\mathbf{G} = (g_{ij})_{i,j \in E}$ of the Markov chain with stochastic semigroup \mathbf{P}_t is defined as the card(E) \times card(E) matrix given by

$$
\mathbf{G} := \lim_{\delta \downarrow 0} \frac{1}{\delta} [\mathbf{P}_\delta - \mathbf{I}] = \lim_{\delta \downarrow 0} \frac{1}{\delta} [\mathbf{P} - \mathbf{P}_0]
$$

That is, \mathbf{P}_t differentiable at $t = 0$

6.3.1 Transition probabilities of the associated jump chain

Can now derive the transition probabilities of the embedded/jump chain - expressing them in terms of the generator

if $X_t = i$ - stay at *i* for exponentially distributed time with rate $-g_{ii} = q_i$ and then moves to other state j Probability that the chain jumps to $j \neq i$ is $-g_{ij}/g_{ii}$ i.e for $i \neq j$,

$$
p_{ij}^Z = -\frac{g_{ij}}{g_{ii}} = \frac{q_{ij}}{q_i}
$$

Equivalent to

6.4 The forward and backward equations

Theorem 6.4.1. Subject to regularity conditions, a continuous-time Markov chain with stochastic semigroup ${P_t}$ and generator G satisfies the Kolmogorov forward equation

 $q_{ij} = q_i p_{ij}^Z$

$$
\mathbf{P}'_t = \mathbf{P}_t \mathbf{G}
$$

and the Kolmogorov backward equation

$$
\mathbf{P}'_t = \mathbf{G} \mathbf{P}_t, \quad \forall t \ge 0
$$

6.4.1 Matrix exponentials

6.5 Irreducibility, stationarity and limiting distribution

Definition 6.5.1. Chains is **irreducible** if for any $i, j \in E$ we have $p_{ij}(t) > 0$, for some t

Theorem 6.5.2. If $p_{ij}(t) > 0$, for some $t > 0$ then $p_{ij}(t) > 0$, $\forall t > 0$

Definition 6.5.3. A distribution π is the **limiting distribution** of a continuous-time Markov chain if, for all states $i, j \in E$ we have

$$
\lim_{t \to \infty} p_{ij}(t) = \pi_j
$$

Definition 6.5.4. A distribution π is a stationary distribution if $\pi = \pi \mathbf{P_t} \ \forall t \geq 0$

Theorem 6.5.5. Subject to regularity conditions, we have $\pi = \pi \mathbf{P_t}$, $\forall t \geq 0 \iff \pi \mathbf{G} = 0$

Theorem 6.5.6. Let X an irreducible Markov chain with a standard semigroup $\{P_t\}$ of transition probabilities

1. If \exists stationary distribution π then it is unique and $\forall i, j \in E$

$$
\lim_{t \to +\infty} p_{ij}(t) = \pi_j
$$

2. If there is no stationary distribution then

$$
\lim_{t \to +\infty} p_{ij}(t) = 0 \,\,\forall i, j \in E
$$

6.6 Jump chain and explosion

Subject to regularity conditions, can construct the jump chain Z from a continuous time Markov chain X as follows

- J_n denote the *n*th change in value of the chain X and set $J_0 = 0$
- Values $Z_n = X_{J_n+}$ of X form a discrete-time Markov Chain $Z = \{Z_n\}_{n \in \mathbb{N}_0}$
- Transition matrix of Z denoted by \mathbf{P}^Z and satisfies

$$
- p_{ij}^Z = g_{ij}/g_i
$$
 if $g_i := -g_{ii} > 0$
- if $g_i = 0$, then the chain gets absorbed in state *i* once it gets there for the first time.

- If $Z_n = j$ then the holding time $H_{n+1} = J_{n+1} J_n = H_{j}$ has exponential distribution with parameter g_i
- The chain Z is called the jump chain of X

Consider the converse - a discrete-time Markov chain Z taking values in E - Try and find a continuoustime Markov chain X having Z as its jump chain - Many such X exist

- Let \mathbf{P}^Z denote transition matrix of the discrete-time Markov chain Z taking values in E Assume $p_{ii}^Z = 0, \ \forall i \in E$
- $i \in E$ let g_i denote non-negative constants. Define

$$
g_{ij} = \begin{cases} g_i p_{ij}^Z, & \text{if } i \neq j; \\ -g_i, & \text{if } i = j. \end{cases}
$$

Construction of continuous-time Markov chain X done as follows

- Set $X_0 = Z_0$
- After holding time $H_1 = H_{|Z_0} \sim Exp(g_{Z_0})$ the process jumps to state Z_1
- After holding time $H_2 = H_{|Z_1} \sim Exp(gZ_1)$ the process jumps to state Z_3
- Formally: conditionally on the values Z_n of chain Z let H_1, H_2, \ldots be independent random variables with exponential distribution $H_i \sim Exp(gZ_{i-1}), i = 1, 2, \ldots$ Set $J_n = H_1 + \ldots + H_n$
- Then define

$$
X_t = \begin{cases} Z_n, & \text{if } J_n \le t \le J_{n+1} \text{ for some } n; \\ \infty, & \text{otherwise i.e. if } J_\infty \le t. \end{cases}
$$

• Note that the special state ∞ added in case the chain explodes Recall that $J_{\infty} = \lim_{n \to \infty} J_n \cdot J_{\infty}$ called the explosion time say chain explodes if

$$
P(J_{\infty} < \infty) > 0
$$

Can show that

- X a continuous-time Markov chain with state space $E \cup {\infty}$
- Matrix G is the generator of X
- Z is the jump chain of X

Theorem 6.6.1. The cain X constructed above does not explodes if any of the following conditions hold

- 1. State space E is finite
- 2. $\sup_{i \in E} g_i < \infty$
- 3. $X_0 = i$ where i a recurrent state for the jump chain Z

6.7 Birth processes

Definition 6.7.1. A birth process with intensities $\lambda_0, \lambda_1, \ldots \geq 0$ a stochastic process $\{N_t\}_{t>0}$ with values in \mathbb{N}_0 , such that

- 1. Non-decreasing process: $N_0 \geq 0$; if $s < t$ then $N_s \leq N_t$
- 2. There is a 'single arrival' i.e. the infinitesimal transition probabilities are for $t \geq 0, \delta > 0, n, m \in \mathbb{N}_0$

$$
P(N_{t+\delta} = n + m \mid N_t = n) = \begin{cases} 1 - \lambda_n \delta + o(\delta), & \text{if } m = 0; \\ \lambda_n \delta + o(\delta), & \text{if } m = 1; \\ o(\delta) & \text{if } m > 1 \end{cases}
$$

3. Conditionally independent increments: Let $s < t$ then the conditional on the values of N_s , the increment $N_t - N_s$ is independent of all arrivals prior to s

Note that by conditionally independent increments, mean that for $0 \leq s \leq t$, conditional on the value of N_s , the increment $N_t - N_s$ independent of all arrivals prior to s i.e. for $k, l, x(r) \in \{0, 1, 2, ...\}$ for $0 \le r < s$ we have

$$
P(N_t - N_s = k \mid N_s = l, N_r = x(r) \text{ for } 0 \le r < s) = P(N_t - N_s = k \mid N_s = l)
$$

Birth process a continuous-time Markov chain

A Poisson process a special case of a birth process (with $\lambda_n = \lambda, \forall n \in \mathbb{N}_0$) With the general case, birth rates depend on the current state of the process.

6.7.1 The forward and backward equations

Let $\{N_t\}$ a birth process with positive intensities λ_0, \ldots With transition probabilities

$$
p_{ij}(t) = P(N_{t+s} = j \mid N_s = i) = P(N_t = j \mid N_0 = i), \text{ for } i, j \in E
$$

Theorem 6.7.5. For $i, j \in E, i < j, t \geq 0$ the forward equations of a birth process are given by

$$
\frac{dp_{ij}(t)}{dt} = -\lambda_j p_{ij}(t) + \lambda_{j-1} p_{i,j-1}(t)
$$

with $\lambda_{-1} = 0$, and the backward equation given by

$$
\frac{dp_{ij}(t)}{dt} = -\lambda_i p_{ij}(t) + \lambda_i + p_{i+1,j}(t)
$$

Where for both, boundary condition given by $p_{ij}(0) = \delta_{ij}$ - δ the Kronecker delta

Theorem 6.7.6. Let $\{N_t\}_{t>0}$ a birth process of positive intensities λ_0, \ldots Then the forward equations have unique solutions which satisfies the backward equations

6.7.2 Explosion of a birth process

Definition 6.7.7. Let J_0, J_1, \ldots denote the jump times of a birth process N

$$
J_0 = 0 \quad J_{n+1} = \inf\{t \ge J_n : N_t \ne N_{J_n}\}, \quad n \in \mathbb{N}_0
$$

Further let H_1, H_2, \ldots denote the corresponding holding times. As before, we write

$$
J_{\infty} = \lim_{n \to \infty} J_n = \sum_{i=1}^{\infty} H_i
$$

Then we say that explosion of the birth process N is possible if

$$
P(J_{\infty} < \infty) > 0
$$

Theorem 6.7.8. Let N be a birth process started from $k \in \mathbb{N}_0$, with rates $\lambda_k, \lambda_{k+1}, \ldots > 0$ Then:

$$
If \sum_{i=k}^{\infty} \frac{1}{\lambda_i} \begin{cases} < \infty, & \text{Then } P(J_{\infty} < \infty) = 1 \text{ (Explosion occurs with probability 1)}; \\ = \infty, & \text{Then } P(J_{\infty} = \infty) = 1 \text{ (Probability explosion occurs is 0)}. \end{cases}
$$

6.8 Birth-death processes

Definition 6.8.1. Birth-death process

Suppose we are given the following process $\{X_t\}_{t\geq 0}$

- 1. $\{X_t\}_{t\geq 0}$ is Markov chain on $E = \mathbb{N}_0$
- 2. The infinitesimal transition probabilities are (for $t \geq 0, \delta > 0, n \in \mathbb{N}_0, m \in \mathbb{Z}$)

$$
P(X_{t+\delta} = n + m \mid X_t = n) = \begin{cases} 1 - (\lambda_n + \mu_n)\delta + o(\delta), & \text{if } m = 0; \\ \lambda_n + o(\delta), & \text{if } m = 1. \\ \mu_n \delta + o(\delta), & \text{if } m = -1 \\ o(\delta), & \text{if } |m| > 1 \end{cases}
$$

3. The birth rates $\lambda_0, \lambda_1, \ldots$ and the death rates μ_0, μ_1, \ldots satisfy

$$
\lambda_i \ge 0, \quad \mu_i \ge 0 \quad \mu_0 = 0
$$

We have the generator given by

$$
\begin{pmatrix}\n-\lambda_0 & \lambda_0 & 0 & 0 & 0 & \dots \\
\mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & 0 & 0 & \dots \\
0 & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 & 0 & \dots \\
0 & 0 & \mu_3 & -(\lambda_3 + \mu_3) & \lambda_3 & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots\n\end{pmatrix}
$$

We take a look at the asymptotic behaviour of the process. Suppose that $\mu_i, \lambda_i > 0, \forall i$, where the rates make sense. Then using the claim $\pi G = 0$

$$
-\lambda_0 \pi_0 + \mu_1 \pi_1 = 0
$$

$$
\lambda_{n-1} \pi_{n-1} - (\lambda_n + \mu_n) \pi_n + \mu_{n+1} \pi_{n+1} = 0, \quad n \ge 1
$$

7 Brownian Motion

7.2 From random walk to Brownian motion

7.2.1 Modes of convergence in distribution, Slutsky's theorem and the CLT

Definition 7.2.2. *(Convergence in probability)* A sequence of random variables X_1, X_2, \ldots converges in probability to X written $X_n \stackrel{P}{\to} X$ if for each $\epsilon > 0$

$$
\lim_{n \to \infty} P(\{\omega : |X_n(\omega) - X(\omega)| \ge \epsilon\}) = \lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0
$$

Definition 7.2.3. (Convergence in distribution)

Let the cumulative distribution function of X_n and X be denoted by F_n and F respectively Say X_n converges in distribution/weakly to X, written $X_n \stackrel{D}{\rightarrow} X$ if

$$
\lim_{n \to \infty} F_n(x) = F(x), \quad \text{for every continuity point } x \text{ of } F(x)
$$

Theorem 7.2.4. (Slutsky's theorem)

Suppose that $X_n \xrightarrow{d} X$, $A_n \xrightarrow{P} a$, $B_n \xrightarrow{P} b$, where a, b are (deterministic) constants. Then

$$
A_n X_n + B_n \xrightarrow{d} aX + b
$$

Theorem 7.2.5. (Central limit theorem)

Let Z_1, Z_2, \ldots a sequence of i.i.d random variables of finite mean μ and finite variance σ^2 . Then the distribution of

$$
\frac{1}{\sigma\sqrt{n}}\left(\sum_{i=1}^n Z_i - n\mu\right)
$$

tends to standard normal distribution as $n \to \infty$

7.3 Brownian Motion

Definition 7.3.1. A real-valued stochastic process $B = \{B_t\}_{t\geq 0}$ a **standard Brownian motion** if

- 1. $B_0 = 0$ almost surely
- 2. B has independent increments
- 3. B has stationary increments
- 4. The increments are Gaussian, for $0 \leq s < t$

$$
B_t - B_s \sim N(0, (t - s));
$$

5. The sample paths are almost surely continuous i.e. the function $t \mapsto B_t$ almost surely continuous in t

Definition 7.3.2. Let $B = \{B_t\}_{t>0}$ denote a standard Brownian motion. Stochastic process $Y = \{Y_t\}_{t>0}$ defined by

$$
Y_t = \sigma B_t + \mu_t, \forall t \ge 0
$$

is called a Brownian motion with drift parameter $\mu \in \mathbb{R}$ and variance parameter $\sigma^2, \sigma > 0$ Note for $0 \leq s < t, Y_t - Y_s \sim N(\mu(t-s), \sigma^2(t-s))$

7.5 Finite dimensional distributions and transition densities

Theorem 7.5.1. Let $f: \mathbb{R} \to \mathbb{R}$ a continuous function satisfying some additional regularity conditions. Then the unique (continuous) solution $u_t(x)$ to the initial value problem

$$
\frac{\partial}{\partial t}u_t(x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u_t(x)
$$

$$
u_0(x) = f(x)
$$

is given by

$$
u_t(x) = E[f(W_t^x)] = \int_{-\infty}^{\infty} p_t(x, y) f(y) dy
$$

where ${W_t^x}$ is a Brownian motion started at x

7.6 Symmetries and scaling laws

Proposition 7.6.1. Let ${B_t}_{t\geq0}$ a standard Brownian motion. Then each of the following processes is also a standard Brownian motion

$$
\{ -B_t \}_{t \geq 0}
$$
 Reflection
\n
$$
\{ B_{t+s} - B_s \}_{t \geq 0}
$$
 for $s \geq 0$
\n
$$
\{ a B_{t/a^2} \}_{t \geq 0}
$$
 for $a \geq 0$
\nRescaling (Brownian scaling property)
\n
$$
\{ t B_{1/t} \}_{t \geq 0}
$$

7.6.1 Some remarks

First look at maximum and minimum processes

$$
M_t^+:=\max\{B_s:0\leq s\leq t\}
$$

$$
M_t^-:=\min\{B_s:0\leq s\leq t\}
$$

These are well-defined, because the Brownian motion has continuous paths, and continuous functions always attain their maximal and minimal values on compact intervals

Observe that if the path B_t is replaced by its reflection $-B_t$ then the maximum and the minimum are interchanged and negated

Since $-B_t$ a Brownian motion, follows that M_t^+ , $-M_t^-$ have same distribution

$$
M_t^+ \stackrel{d}{=} -M_t^-
$$

As a first example, consider implications of Brownian scaling property for the distributions of the maximum random variables M_t^+ . Fix $a > 0$, and define

$$
B_t^* := aB_{t/a^2}
$$

$$
M_t^{+,*} := \max_{0 \le s \le t} B_s^*
$$

$$
= aM_{t/a^2}^*
$$

By Brownian scaling property B_t^* is a standard Brownian motion, and so random variable M_t^{+*} has same distribution as M_{t+} . Therefore

$$
M_t^+ \stackrel{d}{=} a M_{t/a^2}^+
$$

Can be shown, above implies that the sample paths of a Brownian motion are with probability one, nowhere differentiable

7.7 The reflection property and first-passage times

Proposition 7.7.1. Let $x > 0$ then

$$
P(M_t^+ \ge x) = 2P(B_t > x) = 2 - \Phi(x/\sqrt{t})
$$

Where Φ the normal c.d.f

7.8 A model for asset prices

A model for describing movement of an asset price $\{S_t\}_{0 \leq t \leq T}, S_t \in \mathbb{R}^+$ is as follows

$$
S_t = S_0 \exp\{(\mu - \sigma^2/2)t + \sigma B_t\}
$$

where S_0 the initial value of the underlying stock. $\mu \in \mathbb{R}$ is the risk-free interest rate and σ the volatitily (the instantaneous standard deviation of the stock)

This process known as geometric Brownian motion.

It is well-known that this model does not fit the stylized features of financial returns data. Real financial data does not follow the dynamic above; because in practice volatility of asset prices is typically not constant, and often responds to a variety of market conditions We typically observe time-varying volatility clusters.

This has yielded much academic and industrial research into cases (which goes back to at least the late 1970s) where σ is a stochastic process, e.g:

$$
S_t = S_o \exp\left\{ \left(\mu t - \frac{1}{2} \int_0^t \sigma_s^2 ds + \int_0^t \sigma_s dB_s \right) \right\}
$$

$$
\sigma_t = \sigma_0 \exp\{\gamma t + \eta W_t\}
$$

where W_t is an independent Brownian motion; such a model is termed a stochastic volatility model