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Chapter 1

Course information

1.1 Course content
Course details: This course is focussed upon applied probability, which is a rather complex academic
discipline. We will study discrete and continuous-time stochastic processes and their applications, that is
random variables that will vary according to a time parameter. This parameter can change either discretely
or continuously. In particular, we will focus upon three broad areas:

• Markov chains in discrete time

• Markov chains in continuous time (incl. Poisson, Birth-death processes)

• Brownian Motion: A Markov process in continuous time on a continuous state space

Applications: During the course we will look at genuine applications of these ideas, within the context of
finance, population genetics. Examples include

• The evolution of insurance claims over time.

• The time evolution of DNA sequences back to a most recent common ancestor.

• The evolution of a stock over a day of financial trading.

1.1.1 Syllabus
This module introduces stochastic processes and their applications. The theory of different kinds of pro-
cesses will be described and illustrated with applications in several areas.

The course covers the following topics:

• Discrete-time Markov chains: Chapman-Kolmogorov equations. Recurrent, transient, periodic, ape-
riodic chains. Returning probabilities and times. Communicating classes. The basic limit theorem.
Stationarity. Ergodic Theorem. Time-reversibility. Random walks. Gambler’s ruin.

• Poisson processes: Poisson processes and their properties; Superposition, thinning of Poisson pro-
cesses; non-homogeneous, compound, and doubly stochastic Poisson processes. Autocorrelation
functions. Generating functions and how to use them.

• General continuous-time Markov chains: generator, forward and backward equations, holding times,
stationarity, long-term behaviour, jump chain, explosion; birth, death, immigration, emigration pro-
cesses. Differential and difference equations and pgfs. Finding pgfs. Embedded processes. Time to
extinction.

• Brownian motion and its properties.

All parts of the lecture notes and problem sheets are potentially examinable.
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1.1.2 Recent updates
The lecture notes were originally based on a set of notes by Prof. Ajay Jasra, who taught the course in 2010
and 2011, but they have been regularly updated subsequently.

The lecture notes have been revised substantially for the academic year 2020-2021, when more ex-
amples, case studies and implementations of examples in R have been included1. In particular, most of
the material which had typically been covered in the live lectures (but was not necessarily included in the
typed notes) is now included in the lecture notes to make the notes more self-contained and more suitable
for mixed-mode delivery.

In the academic year 2020-2021, further corrections have been made and a chapter on Brownian motion
has been added to reflect the new syllabus.

For the academic year 2022-2023, the material on discrete-time Markov chains has been shortened to
reflect the fact that both Y3 and Y4 students had a first introduction to this topic in the Y2 course Probability
for Statistics and the material on Brownian motion has been further extended.

1.2 Complementary reading
The lecture notes are self-contained. They are mainly based on the following textbooks:

• Grimmett & Stirzaker (2001b): At times, the course relies quite heavily on this text, and reading this
book, as well as doing the exercises, will help quite a lot.

• Grimmett & Stirzaker (2001a): This is the solutions manual for the book Grimmett & Stirzaker
(2001b).

• Norris (1998): This books is very suitable for independent complementary reading of the theoretical
aspects of Markov chains in both discrete and continuous time.

• Dobrow (2016): This book explains the underlying theory at a more intuitive level and contains
plenty of examples and R code. Students who are more interested in applications will most likely
find this book very enjoyable to read.

Other very good textbooks include Ross (2010), Pinsky & Karlin (2011), Durrett (2016).
For very motivated students, the references Billingsley (2012), Kallenberg (2002), Shiryaev (1996),

Williams (1991) might be of interest, but note that they are very advanced.

1However, note that programming skills in R are not required for any assessments.
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Chapter 2

Preliminaries [Mainly reading material]

There are number of concepts that need to be known. You should be familiar with the material in this
section from your first year probability and statistics course. If you have forgotten some of the material,
however, then it is a good idea to start revising the material now before we start with the new material!

2.1 Cardinality of sets
Definition 2.1.1 (Finite, countably infinite and uncountably infinite sets).

• A set A is said to be finite, if it has a finite number of elements.

• A set A is called countably infinite if there is a bijection between the elements of A and the natural
numbers N = {1, 2, . . . }.

• A set A is called countable if it is either finite or countably infinite.

• If the set A is neither finite nor countably infinite, we call it uncountable or uncountably infinite.

2.2 The probability space
Recall that probability theory starts with a probability space which consists of a triple (Ω,F ,P), where

• the set Ω is the sample-space (or state-space), which is the set of all possible outcomes. E. g. when
we role a die once, the corresponding sample space is given by Ω = {1, 2, 3, 4, 5, 6}.

• F is a collection of events/sets we can make probability statements about (we will make this precise
below).

• P is a probability measure which ‘measures’ the probability of each set A ∈ F .

Let Ω be a set.

Definition 2.2.1. A collection F∗ of subsets of Ω is called an algebra on Ω if it satisfies the following three
conditions:

1. ∅ ∈ F∗;

2. if A ∈ F∗, then Ac ∈ F∗;

3. if A1, A2 ∈ F∗, then A1 ∪A2 ∈ F∗.

Note that the above definition implies that Ω = ∅c ∈ F∗, and that if A1, A2 ∈ F∗, then A1 ∩ A2 =
(Ac1 ∪Ac2)c ∈ F∗. So we have seen that an algebra is stable under finitely many set operations.
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Definition 2.2.2. A collection F of subsets of Ω is called a σ−algebra on Ω if F is an algebra such that if
A1, A2, . . . ,∈ F , then ∪∞i=1Ai ∈ F .

Note that if F is a σ-algebra andA1, A2, . . . ,∈ F , then ∩∞i=1Ai = (∪∞i=1A
c
i )
c ∈ F . Hence a σ-algebra

is stable under countably infinite set operations.

Definition 2.2.3. Let Ω denote a set and let F be a σ-algebra on Ω. We call the pair (Ω,F) a measurable
space. An element of F is called a F-measurable subset of Ω.

Definition 2.2.4. Let A denote an arbitrary family of subsets of Ω. Then the σ-algebra generated by A is
defined as the smallest σ-algebra which contains A, i.e.

σ(A) := ∩{G : G is a σ-algebra,A ⊂ G}.

Example 2.2.5. The smallest σ−algebra associated with Ω is the collection F = σ(Ω) = {∅,Ω}.
Example 2.2.6. Let A be any subset of Ω. Then σ(A) = {∅, A,Ac,Ω}.
Example 2.2.7. A very important example is the σ–algebra generated by the open subsets of R, which we
call the Borel σ–algebra and which is denoted by B = B(R). One can show that B = σ({(−∞, y] : y ∈
R}).

Note that (−∞, y] = ∩n∈N(−∞, y + 1
n ) is a countable intersection of open sets and hence is in B.

Definition 2.2.8 (Probability measure). A mapping P : F → R is called a probability measure on (Ω,F)
if it satisfies three conditions:

(i) P(A) ≥ 0 for all events A ∈ F ,

(ii) P(Ω) = 1,

(iii) For any sequence of disjoint events A1, A2, A3, · · · ∈ F we have

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

[Note that by ”disjoint events” we mean that Ai ∩Aj = ∅ for all i 6= j.]

Summarising, we re-iterate that throughout the course, we always assume that we are on a probability
space (Ω,F ,P), where

• the set Ω is the sample space and ω ∈ Ω is called a sample point;

• F is a σ-algebra on Ω which describes the family of events. An event is defined as an element of F ,
i.e. an event is a F-measurable subset of Ω;

• P is a probability measure on the measurable space (Ω,F).

2.3 Some rules of probability
As a reminder, and in a non-rigorous way, we have the following identities. All notation is as above and
we refer to any sets as above. Note that we use these ideas, without further reference, later in the notes.

• Complement: P(Ac) = 1− P(A) for all A ∈ F ,

• Addition law: P(A ∪B) = P(A) + P(B)− P(A ∩B), for all A,B ∈ F ,

• Conditional probability: For B ∈ F with P(B) > 0, define

P(A|B) =
P(A ∩B)

P(B)
.
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In this course, we will deal with conditional probabilities a lot! When we write down a conditional
probability, we will always (implicitly) assume that, the event on which we condition, does not have zero
probability!

Theorem 2.3.1 (Multiplication rule). Let n ∈ N, then for any eventsA1, . . . , An with P(A2∩· · ·∩An) > 0,
we have

P(A1 ∩ · · · ∩An) = P(A1|A2 ∩ · · · ∩An)P(A2|A3 ∩ · · · ∩An) · · ·
P(An−2|An−1 ∩An)P(An−1|An)P(An),

where the right hand side is a product of n terms.

Note that the ordering of the events in the theorem above can be changed.

2.3.1 The law of total probability
Definition 2.3.2 (Partition). A partition of the sample space Ω is a collection {Bi : i ∈ I} (for a countable
index set I) of disjoint events (meaning that Bi ∈ F and Bi ∩Bj = ∅ for i 6= j) such that Ω =

⋃
i∈I Bi.

Remark 2.3.3. We note that a partition of the sample space is often not unique and the choice of the
particular partition typically very much depends on the problem we want to solve!

Theorem 2.3.4 (Law of total probability). Let {Bi : i ∈ I} denote a partition of Ω, with P(Bi) > 0 for
all i ∈ I. Then, for all A ∈ F ,

P(A) =
∑
i∈I

P(A ∩Bi) =
∑
i∈I

P(A|Bi)P(Bi).

Example 2.3.5. Given two events A,B ∈ F such that 0 < P(B) < 1, we have

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc).

Theorem 2.3.6 (Law of total probability with additional conditioning). Consider eventsA,E with P(E) >
0 and let {Bi : i ∈ I} denote a partition of Ω, with P(Bi ∩ E) > 0 for all i ∈ I. Then,

P(A|E) =
∑
i∈I

P(A ∩Bi ∩ E)

P(E)
=
∑
i∈I

P(A|Bi ∩ E)P(Bi|E).

2.3.2 Independence
Definition 2.3.7. Events A and B are independent if

P(A ∩B) = P(A)P(B).

More generally, a family {Ai : i ∈ I} is called independent if

P (∩i∈JAi) =
∏
i∈J

P(Ai),

for all finite subsets J of I.

2.4 Random variables
Let us recall further important definitions.
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2.4.1 Pre-images
Definition 2.4.1. Consider a function with domain X and co-domain Y , i.e. f : X → Y .

• For any subset A ⊆ X , we define the image of A under f as

f(A) = {y ∈ Y : ∃x ∈ A : f(x) = y} = {f(x) : x ∈ A}.
If A = X , then we call f(X ) = Imf the image of f .

• For any subset B ⊆ Y , we define the pre-image of B under f as

f−1(B) = {x ∈ X : f(x) ∈ B}.

Please not that the pre-image should not be confused with the inverse function (despite the fact that we
are using the same notation). The pre-image is well-defined for any function, whereas the inverse function
obviously only exists when the function f is invertible.

The definition of the pre-image implies that

x ∈ f−1(B)⇔ f(x) ∈ B.
Note that in the case when B is a singleton, i.e. B = {b} for an element b ∈ Y , then we often simplify

the notation to f−1({b}) = f−1(b).

2.4.2 Random variables
Definition 2.4.2 (Random variable). A random variable on the probability space (Ω,F ,P) is defined as
the mapping X : Ω→ R which satisfies

X−1((−∞, x]) = {ω ∈ Ω : X(ω) ≤ x} ∈ F for all x ∈ R. (2.4.1)

Definition 2.4.3 (Cumulative distribution function (c.d.f.)). Suppose that X is a random variable on
(Ω,F ,P), then the cumulative distribution function (c.d.f.) of X is defined as the mapping FX : R →
[0, 1] given by

FX(x) = P({ω ∈ Ω : X(ω) ≤ x}) = P(X−1((−∞, x])),

which is typically abbreviated to FX(x) = P(X ≤ x).

Definition 2.4.4 (Discrete random variable). A discrete random variable on the probability space (Ω,F ,P)
is defined as a mapping X : Ω→ R such that

(i) the image/range of Ω under X denoted by ImX = {X(ω) : ω ∈ Ω} is a countable subset of R,

(ii) X−1(x) = {ω ∈ Ω : X(ω) = x} ∈ F for all x ∈ R.

Definition 2.4.5 (Probability mass function). The probability mass function (pmf) of the discrete random
variable X is defined as the function pX : R→ [0, 1] given by

pX(x) = P({ω ∈ Ω : X(ω) = x}) = P(X−1(x)). (2.4.2)

We typically shorten the notation significantly and write pX(x) = P(X = x).

Definition 2.4.6 (Continuous random variable and probability density function). A random variable X is
called continuous if its c.d.f. can be written as

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(u)du, for all x ∈ R, (2.4.3)

where the function fX : R→ R satisfies

(i) fX(u) ≥ 0 for all u ∈ R,

(ii)
∫∞
−∞ fX(u)du = 1.

We call fX the probability density function (p.d.f.) of X (or just the density).1
1In a later analysis/measure course we will say that equation 2.4.3 means that the ”c.d.f. of a continuous random variable is

absolutely continuous with respect to the Lebesgue measure”.
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2.4.3 Independence of random variables
Recall that in Definition 2.3.7 we defined independent events. Next, we want to define the concept of
independence of random variables.

Discrete random variables X and Y are independent if the events {X = x} and {Y = y} are inde-
pendent for all x and y. More generally:

Definition 2.4.7. Let I ⊂ R denote an index set. A family {Xi : i ∈ I} of discrete random variables is
independent if for all finite subsets J ⊆ I and all xj ∈ R, j ∈ J , the following product rule holds:

P (Xi = xi, for all i ∈ J ) =
∏
i∈J

P(Xi = xi).

Recall that we cannot define the independence of continuous random variables X and Y in terms of
events such as {X = x} and {Y = y}, since these events have zero probabilities and are hence trivially
independent.

We now state a definition of independence which is valid for any pair of random variables, regardless
of their types (discrete, continuous, etc.).

Random variables X and Y are called independent if the events {X ≤ x} and {Y ≤ y} are indepen-
dent for all x, y ∈ R. More generally, we have:

Definition 2.4.8 (Independence of a family of random variables). Let I ⊂ R denote an index set. A
family of random variables {Xi : i ∈ I} is said to be independent if for all finite subsets J ⊆ I and all
xj ∈ R, j ∈ J , the following product rule holds:

P (∩j∈J {Xj ≤ xj}) =
∏
j∈J

P(Xj ≤ xj).

2.5 Continuity of the probability measure
Definition 2.5.1 (Increasing and decreasing sets). A sequence of sets (Ai)

∞
i=1 is said to increase to A,

i.e. Ai ↑ A, if A1 ⊆ A2 ⊆ · · · and ∪∞i=1Ai = A. Similarly, a sequence of sets (Ai)
∞
i=1 is said to decrease

to A, i.e. Ai ↓ A, if A1 ⊇ A2 ⊇ · · · and ∩∞i=1Ai = A.

Note that Ai ↑ A if and only if Aci ↓ Ac.
Next we will state and prove the continuity property of the probability measure2.

Theorem 2.5.2. If A1, A2, · · · ∈ F and Ai ↑ A or Ai ↓ A, then

lim
i→∞

P(Ai) = P(A).

The above theorem states that, for increasing or decreasing sets, we can interchange the limit operation
and the probability measure, i.e. we have

lim
i→∞

P(Ai) = P( lim
i→∞

Ai),

where the set limit on the right hand side needs to be understood as taking an infinite union or intersection
for increasing and decreasing sequences, respectively.

2.6 Expectation of random variables

2.6.1 Definition of the expectation
Next we define the expectation of a discrete random variable.

2Recall that a sequence of real numbers (xn) is said to converge to a real number x if for all ε > 0 there exists an n0 ∈ N such
that for all n ≥ n0 we have |xn − x| < ε.

10
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Definition 2.6.1 (Expectation of discrete random variable). Let X denote a discrete random variable, then
the expectation of X is defined as

E(X) =
∑
x

xP(X = x)

whenever the sum on the right hand side converges absolutely, i.e. when we have
∑
x |x|P(X = x) <∞.3

Definition 2.6.2 (Expectation of a continuous random variable). For a continuous random variableX with
density fX , we define the expectation of X as

E(X) =

∫ ∞
−∞

xfX(x)dx,

provided that
∫∞
−∞ |x|fX(x)dx <∞.

2.6.2 Law of the unconscious statistician (LOTUS)
Theorem 2.6.3 (LOTUS: Discrete case). Let X be a discrete random variable and g : R→ R, then

E(g(X)) =
∑

x∈ImX

g(x)P(X = x),

whenever the sum on the right hand side converges absolutely.

Theorem 2.6.4 (LOTUS: Continuous case). Let X be a continuous random variable with density fX ,
consider a function g : R→ R, then

E(g(X)) =

∫ ∞
−∞

g(x)fX(x)dx,

provided that
∫∞
−∞ |g(x)|fX(x)dx <∞.

2.7 Conditional expectation and the law of total expectation

2.7.1 The discrete case
Definition 2.7.1 (Conditional distribution and conditional expectation). Let X denote a discrete random
variable on the probability space (Ω,F ,P). Consider an event B ∈ F such that P(B) > 0. The condi-
tional distribution of X given B is defined as

P(X = x|B) =
P({X = x} ∩B)

P(B)
, for x ∈ R.

Further, the conditional expectation of X given B is defined as

E(X|B) =
∑

x∈ImX

xP(X = x|B),

provided the sum is absolutely convergent.

Similarly to the ideas presented in the law of total probability, it can often be useful to consider a
partition of the probability space to compute an (unconditional) expectation via conditional expectations as
we describe in the following theorem.

Theorem 2.7.2. [Law of total expectation] Consider a partition {Bi : i ∈ I} of Ω with P(Bi) > 0 for all
i ∈ I. Let X denote a discrete random variable with finite expectation. Then

E(X) =
∑
i∈I

E(X|Bi)P(Bi),

whenever the sum converges absolutely.
3This assumption matters in the case when ImX is infinite. If the sum converges absolutely, then the sum takes the same value

irrespectively of the order of summation.
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Conditioning on a random variable

Suppose (X,Y ) are jointly discrete random variables. In the above definition, consider the event B =
{X = x} for some x ∈ R such that pX(x) = P(X = x) > 0. Then the conditional distribution/probability
mass function of Y given X = x is given by

pY |X(y|x) = P(Y = y|X = x) =
pX,Y (x, y)

pX(x)
, for y ∈ R.

Also, the conditional expectation of Y given X = x is given by

ψ(x) = E(Y |X = x) =
∑
y

ypY |X(y|x),

provided the sum is absolutely convergent.
We call the random variable ψ(X) = E(Y |X) the conditional expectation of Y given X .
Also, the law of the unconscious statistician (LOTUS) for conditional expectations says that

E(g(Y )|X = x) =
∑
y

g(y)pY |X(y|x).

Note that we can also formulate an independence condition in terms of conditional p.m.f.s: Discrete X
and Y are independent if and only if

P(Y = y|X = x) = P(Y = y)

for all x, y such that P(X = x) > 0.

2.7.2 Continuous case
Let X,Y denote jointly continuous random variables with joint density function denoted by f(X,Y ) and
marginal densities denoted by fX and fY , respectively. Then the conditional density function of Y given
X is defined as

fY |X(y|x) =
f(X,Y )(x, y)

fX(x)
,

for any x, such that fX(x) > 0. Also, the conditional distribution function of Y given X = x is defined as

FY |X=x(y|x) = P(Y ≤ y|X = x) =

∫ y

−∞
fY |X(v|x)dv,

for any x, such that fX(x) > 0.
Note that we can also formulate an independence condition in terms of conditional p.d.f.s: Jointly

continuous random variables X and Y are independent if and only if

fY |X(y|x) = fY (y),

for all x, y such that fX(x) > 0.
Note that, by Tonelli’s theorem, see Theorem 2.8.1, we obtain the continuous version of the law of total

probability:

P(Y > y) =

∫ ∞
y

fY (v)dv =

∫ ∞
y

∫ ∞
−∞

f(X,Y )(x, v)dxdv

=

∫ ∞
−∞

∫ ∞
y

f(X,Y )(x, v)dvdx

=

∫ ∞
−∞

∫ ∞
y

fY |X(v|x)fX(x)dvdx

12



A. E. D. Veraart Applied Probability Autumn 2022

=

∫ ∞
−∞

∫ ∞
y

fY |X(v|x)dvfX(x)dx

=

∫ ∞
−∞

P(Y > y|X = x)fX(x)dx.

Definition 2.7.3 (Conditional expectation). For two jointly continuous random variables X,Y , we define
the conditional expectation of Y given X = x as

ψ(x) = E(Y |X = x) =

∫ ∞
−∞

yfY |X(y|x)dy =

∫ ∞
−∞

y
fX,Y (x, y)

fX(x)
dy,

provided that fX(x) > 0.

The continuous analogue of the law of total expectation reads as follows:

Theorem 2.7.4 (Law of total expectation). For jointly continuous random variable X,Y with E|Y | <∞,
we have

E(Y ) =

∫
{x:fX(x)>0}

E(Y |X = x)fX(x)dx.

Another variant of the law of total expectation/continuous law of total probability, which we will be
using frequently, is given as follows.

Suppose that A is an event and IA is the indicator variables associated with the event A. Let X be a
continuous random variable with probability density function fX . Then we have

E(IA) = E(E(IA|X)) =

∫
E(IA|X = x)fX(x)dx. (2.7.1)

Recalling that E(IA) = P(A), we get

P(A) =

∫
P(A|X = x)fX(x)dx, (2.7.2)

which we often also refer to as a continuous version of the law of total probability.

2.8 Interchanging sums, integrals, limits
Throughout the course, we will often need to interchange limits/sums/integrals/expectations. We will now
state important theorems which will justify such interchanges under suitable conditions.

I will not assume that you have seen these theorems before. We will now state these theorems (without
proofs), and we will apply them throughout the course.

Theorem 2.8.1 (Tonelli’s theorem). The order of integration, countable summation and (conditional) ex-
pectation can be interchanged whenever the integrand/summands/random variables are non-negative.

Proof. See (Kallenberg 2002, Theorem 1.27).

There is a related result, called Fubini’s theorem, which applies in the setting when integrands/sum-
mands/random variables are not necessarily non-negative. However, an additional integrability condition
is needed for this more general theorem to hold.

We will now state the famous dominated and monotone convergence theorems. We note that they can
be expressed more concisely using measure theory. However, since knowledge of measure theory is not
assumed for this course, we will just state the versions of these theorems which will be needed during the
course, even if this appears rather repetitive!

We first state the dominated convergence theorem for real (deterministic) sequences, there will be no
randomness! See (Kallenberg 2002, Theorem 1.21).

13
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Theorem 2.8.2 (Dominated Convergence Theorem). Let I denote a countable index set. If
∑
i∈I ai(n) is

an absolutely convergent series for all n ∈ N such that

1. for all i ∈ I the limit limn→∞ ai(n) = ai exists,

2. there exists a sequence (bi)i∈I , such that bi ≥ 0 for all i ∈ I and
∑
i∈I bi < ∞ such that for all

n, i : |ai(n)| ≤ bi.
Then

∑
i∈I |ai| <∞ and ∑

i∈I
ai =

∑
i∈I

lim
n→∞

ai(n) = lim
n→∞

∑
i∈I

ai(n).

Next, we study theorems which apply to sequences of random variables and will enable us to inter-
change limits and expectations.

Theorem 2.8.3. Suppose {Zn} is a sequence of random variables with P(limn→∞ Zn = Z) = 1, then

1. Monotone convergence (MON): If P(Zn ≥ 0) = 1 and P(Zn ≤ Zn+1) = 1 for all n, then

lim
n→∞

E(Zn) = E( lim
n→∞

Zn) = E(Z).

2. Monotone convergence (MON2): If P(Zn ≥ 0) = 1 and P(Zn ≥ Zn+1) = 1 for all n, E(Z1) <∞,
then

lim
n→∞

E(Zn) = E( lim
n→∞

Zn) = E(Z).

3. Dominated convergence (DOM): If P(|Zn| ≤ Y ) = 1 for all n, and E|Y | <∞, then

lim
n→∞

E(Zn) = E( lim
n→∞

Zn) = E(Z).

4. Bounded convergence (BC) (special case of DOM): If P(|Zn| ≤ c) = 1 for some constant c for all
n, then

lim
n→∞

E(Zn) = E( lim
n→∞

Zn) = E(Z).

See Grimmett & Stirzaker (2001b, p.179–180) and Kallenberg (2002, Theorem 1.19, Theorem 1.21,
Corollary 17.13, Theorem 6.1) for details and note that these convergence results can be extended to con-
ditional expectations as well!

An important consequence of the monotone convergence theorem is that, for non-negative random
variables {Zn} with finite expectation,

E

( ∞∑
i=1

Zi

)
= E

(
lim
N→∞

N∑
i=1

Zi

)
MON

= lim
N→∞

E

(
N∑
i=1

Zi

)
= lim
N→∞

N∑
i=1

E (Zi) =

∞∑
i=1

E (Zi) ,

whether or not the summation if finite.

2.9 Stochastic processes and their realisations/sample paths
In the first year probability courses we have only focused on random variables, now we extend this notion
to stochastic/random processes.

Definition 2.9.1. A stochastic process X = (Xt)t∈T on (Ω,F ,P) is a collection of random variables.
I.e.

X : Ω× T → E, (ω, t) 7→ Xt(ω),

where T is some time domain (e.g. T = N ∪ {0}, T = [0, T ] or T = [0,∞)) and E denotes the common
state space of the random variables.

14
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Note that a stochastic process is a function in two variables: ω and t, but we typically just write
X = (Xt)t∈T .

Note that we will be using the notation (Xt), (Xt)t∈T , {Xt} and {Xt}t∈T interchangeably for stochas-
tic processes.

Recall that the randomness in the random variable comes from ω, more precisely, from the fact that we
do not know which ω will appear in an experiment. For a random variable Y , say, as soon as ω is known,
then Y (ω) is known and typically called the realisation of the random variable Y .

In the context of stochastic processes, for any ω ∈ Ω, we call the function

X(ω) : T → E, t 7→ Xt(ω)

a realisation/sample path/trajectory ofX = (Xt)t∈T . I.e. when we talk about a sample path/realisation,
then the ω is fixed and we consider only a function in t and no longer a function in both t and ω.

End of lecture 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Chapter 3

Discrete-time Markov chains

Markov processes are one of the most important (if not the most important) of all stochastic processes.
Examples include Poisson processes, Brownian motion, diffusion processes etc. The underlying idea is to
encapsulate the dependence structure of the process using a simple property.

Andrei Markov (1856–1922) was a Russian mathematician, who is well–known for his influential work
on stochastic processes.

Figure 3.1: Andrei Markov

Informally, a Markov process has the property that conditional on the present value, the future is
independent of the past.

We will, of course, formalise this concept as the chapter progresses. Markov processes, are often the
term for a continuous time process, on a general (continuous) state-space. We will consider one such
a process towards the end of this course, but this chapter is focussed upon Markov chains, which, for
our purposes are Markov processes in discrete (or continuous time) on a discrete state–space. We begin
with discrete-time, discrete space Markov chains, and we will investigate a variety of properties, including
stationarity. In the next chapter, we then turn to continuous-time, discrete state, Markov chains.

3.1 Definition of discrete-time Markov chains
We begin by giving the basic set-up:

• Consider a probability space (Ω,F ,P).

• Let X0, X1, . . . be a sequence of discrete variables, each variable taking some value in a state space
E.

16
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• We always assume that E is countable. Often we assume that E ⊆ Z, but E can be any finite or
countably infinite set.

• Let K = card(E) (i.e. the number of elements in the set E). If the state space E is finite, then
K <∞, if it is countably infinite, then K =∞.

• We write N = {1, 2, 3, . . . } and N0 = N ∪ {0}.

• A collection of random variables denoted by X = {Xn}n∈N0
is called a discrete-time stochastic

process.

We already mentioned that, informally, a Markov process has the property that conditional on the
present value, the future is independent of the past. We will now describe this property mathematically.

Definition 3.1.1. A discrete-time stochastic process X = {Xn}n∈N0
taking values in a countable state

space E is a Markov chain if it satisfies the Markov condition

P(Xn = j|Xn−1 = i,Xn−2 = xn−2, . . . , X0 = x0) = P(Xn = j|Xn−1 = i),

for all n ∈ N and for all x0, . . . , xn−2, i, j ∈ E.

Here we see that the dependence, of Xn, conditional upon the sequence X0:n−1 = (X0, . . . , Xn−1),
is only on Xn−1.

An important point to note is that Xn is not in general independent of (say) Xn−2.
In the following, we will always work with time-homogeneous transition probabilities (unless stated

otherwise):

Definition 3.1.2. 1. The Markov chain {Xn}n∈N0
is time-homogeneous if

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i)

for every n ∈ N0, i, j ∈ E.

2. The transition matrix P = (pij)i,j∈E is the K ×K matrix of transition probabilities

pij = P(Xn+1 = j|Xn = i).

Note that, if Xn = i, we typically say that the Markov chain visits state i, or hits i, at time n.

Definition 3.1.3 (Stochastic matrix). A square matrix P is called a stochastic matrix if

1. P has non-negative entries, pij ≥ 0 for all i, j.

2. P has row sums equal to 1;
∑
j pij = 1 for all i.

Theorem 3.1.4. The transition matrix P is a stochastic matrix.

Proof. 1. pij is a conditional probability and hence it is trivially non-negative.

2. Note that for each i ∈ E, we have∑
j∈E

pij =
∑
j∈E

P(X1 = j|X0 = i) =
∑
j∈E

P(X1 = j,X0 = i)

P(X0 = i)
=
∑
j∈E

P(X0 = i|X1 = j)P(X1 = j)

P(X0 = i)

=
1

P(X0 = i)

∑
j∈E

P(X0 = i|X1 = j)P(X1 = j) =
1

P(X0 = i)
P(X0 = i) = 1,

where we used the law of total probability.

A useful tool in the context of Markov chains are so-called transition diagrams, where we draw a
node for each state in E and a directed edges between the nodes i and j (i, j ∈ E) if pij > 0.
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Example 3.1.5. Let us consider an example of a Markov chain with three possible states {1, 2, 3} and
strictly positive transition probabilities pij for i, j ∈ {1, 2, 3}. The corresponding transition diagram is
given by

1 2 3
p12 p23

p32p21

p13

p31

p11 p22 p33

1

Figure 3.2: Example of a transition diagram of a Markov chain with state space E = {1, 2, 3}.

Example 3.1.6. Let us assume that the weather in London can be modelled by a Markov chain (Xn)n∈{0,1,2,... },
and for simplicity we assume that there are only three possible states: E = {1, 2, 3}, where the three states
can be interpreted as follows: State 1: Rain; state 2: sun; state 3: fog. We assume the following:

• There are never two sunny days in a row. If it is a sunny day, then it is equally likely that the next day
will be rainy or foggy.

• If it is rainy or foggy, then there is a 50% chance of having the same weather condition the next day.

• If the weather changes from rain or fog, only half of the time is this a change to a sunny day.

Write down the transition matrix P.

P =

 0.5 0.25 0.25
0.5 0 0.5
0.25 0.25 0.5

 .

Example 3.1.7. Suppose that X = {Xn}n∈N0
is a sequence of independent and identically distributed

discrete random variables which take values in E = {1, . . . ,K}. We write

P(Xn = j) = pj , for all j ∈ E,n ∈ N0.

Then
∑K
j=1 pj = 1, and the transition probabilities are given by

pij = P(X1 = j|X0 = i) = P(X1 = j) = pj , for all i, j ∈ E,

by independence. Hence

P =


p1 p2 . . . pK
p1 p2 . . . pK
...

...
...

p1 p2 . . . pK

 .
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3.2 The n-step transition probabilities and Chapman-Kolmogorov
equations

We have looked at the 1-step transition dynamics of a Markov chain. However, it is often of interest to
consider the n-step transition dynamics, defined as follows.

Definition 3.2.1. Let n ∈ N. The n-step transition matrix Pn = (pij(n)) is the matrix of n-step transition
probabilities

pij(n) = P(Xm+n = j|Xm = i),

with m ∈ N0.

Note that pij(n) is the probability that a process which currently is in state i will be in state j after n
steps.

For a Markov chain, we know that, given the present, the future is independent of the past. We can show
that given the most recent past, the future is independent of the past. We will now describe this property
mathematically.

Lemma 3.2.2. For a discrete Markov chain (Xn)n≥0 on the state space E, we have

P(Xn+m = xn+m|Xn = xn, . . . , X0 = x0) = P(Xn+m = xn+m|Xn = xn),

for m ∈ N and for all xn+m, xn, . . . , x0 ∈ E.

Proof. See Exercise 1- 1.

We can now formulate the Chapman-Kolmogorov equations, which can be used for computing n–step
transition probabilities.

Theorem 3.2.3. Let m ∈ N0, n ∈ N. Then we have for any i, j ∈ E that

pij(m+ n) =
∑
l∈E

pil(m)plj(n)

that is

Pm+n = PmPn,

and

Pn = Pn.

Remark 3.2.4. Note that in the case that K < ∞ matrix multiplication is well–defined. For the general
case we extend the definition in the natural way: Let x be a K–dimensional row vector and let P be a
K ×K–matrix where K =∞. Then

(xP)j :=
∑
i∈E

xipij , (P2)ik :=
∑
j∈E

pijpjk,

for i, j, k ∈ N. Similarly, we define Pn for any n ≥ 0. Also P0 is the identity matrix, where (P0)ij = δij .

Proof of Theorem 3.2.3. First we show that Pm+n = PmPn for all m ∈ N0, n ∈ N:
For any i, j ∈ E and integers m ∈ N0, n ∈ N we have

pij(m+ n) = P(Xm+n = j|X0 = i)

(∗)
=
∑
l∈E

P(Xm+n = j|Xm = l,X0 = i)P(Xm = l|X0 = i)
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(∗∗)
=
∑
l∈E

P(Xm+n = j|Xm = l)P(Xm = l|X0 = i)

=
∑
l∈E

plj(n)pil(m) =
∑
l∈E

pil(m)plj(n).

where we applied the law of total probability with additional conditioning (Theorem 2.3.6) in (*) and the
Markov property in (**).

Next we show that Pn = Pn for all n ∈ N. We prove this by induction in n. For n = 1 the claim is
trivially true. For any i, j ∈ E and any n ∈ N we have

pij(n+ 1) = P(Xn+1 = j|X0 = i)

(∗)
=
∑
l∈E

P(Xn+1 = j|Xn = l,X0 = i)P(Xn = l|X0 = i)

(∗∗)
=
∑
l∈E

P(Xn+1 = j|Xn = l)P(Xn = l|X0 = i)

=
∑
l∈E

pljpil(n) =
∑
l∈E

pil(n)plj .

where we applied the law of total probability with additional conditioning (Theorem 2.3.6) in (*) and the
Markov property in (**). Now we can apply the induction hypothesis to conclude that Pn+1 = PnP =
PnP = Pn+1, which concludes the proof.

Example 3.2.5. Consider the following transition matrix of a two–state Markov chain on the state space
E = {0, 1},

P =

(
α 1− α
β 1− β

)
,

for α, β ∈ (0, 1). (Check whether this is indeed a transition matrix!). Let α = 0.7, β = 0.4. What is
p00(4)? Note that p00(4) is the probability, that we will be in state 0 in four steps given that we are in state
0 now. We need to compute P4. Then

P2 =

(
0.7 0.3
0.4 0.6

)(
0.7 0.3
0.4 0.6

)
=

(
0.61 0.39
0.52 0.48

)
,

P4 =

(
0.61 0.39
0.52 0.48

)(
0.61 0.39
0.52 0.48

)
=

(
0.5749 0.4251
0.5668 0.4332

)
.

Hence we have p00(4) = 0.5749.

End of lecture 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Dynamics of a Markov chain
The equations are called the Chapman-Kolmogorov (CK) equations and are the most basic ingredient of
Markov chains. They help to relate the long-term behaviour of the Markov chain, to the local transition
dynamics (or transition matrix) of the chain. We can also use the CK equations to describe the marginal
distribution of the chain X = {Xn}n∈N0

, for any time n ∈ N0.

Definition 3.3.1. We denote the probability mass function of Xn for n ∈ N0 by

ν
(n)
i = P(Xn = i), i ∈ E.

Let K = card(E). We denote by ν(n) the K-dimensional row vector with elements ν(n)
i for i ∈ E; it is

called the marginal distribution of the chain at time n ∈ N0.
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Clearly, ν(n)
i ≥ 0 for all i ∈ E and

∑
i∈E ν

(n)
i = 1.

Example 3.3.2. Let E = {1, . . . ,K}. Then

ν(n) =
(
ν

(n)
1 , . . . , ν

(n)
K

)
= (P(Xn = 1),P(Xn = 2), . . . ,P(Xn = K)).

Theorem 3.3.3. With the notation introduced above, we have

ν(m+n) = ν(m)Pn = ν(m)Pn, for all n ∈ N,m ∈ N0.

Hence

ν(n) = ν(0)Pn = ν(0)Pn, for all n ∈ N.

Proof. For any n ∈ N,m ∈ N0 and for any j ∈ E, we have

ν
(m+n)
j = P(Xm+n = j) =

∑
i∈E

P(Xm+n = j|Xm = i)P(Xm = i)

=
∑
i∈E

pij(n)ν
(m)
i =

∑
i∈E

ν
(m)
i pij(n).

By the CK equations we know that Pn = Pn hence we can conclude that ν(m+n) = ν(m)Pn = ν(m)Pn.

We have seen that the marginal distributions of the Markov chain are determined by the initial distribu-
tion ν(0) and the transition matrix P. Actually, an even stronger result holds.

Theorem 3.3.4. Let X = {Xn}n∈N0
denote a Markov chain on a countable state space E. Then its

initial distribution ν(0) and its transition matrix P determine all the finite dimensional distributions of the
Markov chain, i.e. for all 0 ≤ n1 < n2 < · · · < nk−1 < nk (ni ∈ N0, i = 1, . . . , k), k ∈ N and states
x1, . . . , xk ∈ E we have

P(Xn1 = x1, Xn2 = x2, . . . , Xnk = xk) = (ν(0)Pn1)x1(Pn2−n1)x1x2 · · · (Pnk−nk−1)xk−1xk

= (ν(0)Pn1)x1
px1x2

(n2 − n1) · · · pxk−1xk(nk − nk−1).

Proof. The result follows from applying the multiplication rule for intersections of events, see Theorem
2.3.1, and the Markov property and time-homogeneity of the Markov chain and finally Theorem 3.3.3:

P(Xnk = xk, Xnk−1
= xk−1, . . . , Xn2

= x2, Xn1
= x1)

= P(Xnk = xk|Xnk−1
= xk−1, . . . , Xn2

= x2, Xn1
= x1)×

P(Xnk−1
= xk−1|Xnk−2

= xk−2, . . . , Xn2
= x2, Xn1

= x1)×
· · ·P(Xn2

= x2|Xn1
= x1)P(Xn1

= x1)

= P(Xnk = xk|Xnk−1
= xk−1)P(Xnk−1

= xk−1|Xnk−2
= xk−2) · · ·P(Xn2

= x2|Xn1
= x1)P(Xn1

= x1)

= (Pnk−nk−1)xk−1xk · · · (Pn2−n1)x1x2(ν(0)Pn1)x1 .

The dynamics of a time-homogeneous Markov chain are determined by the initial probability mass
function ν(0) and the transition matrix P.

Remark 3.3.5. Note that the CK equations are necessary for the Markov property, but they are not suffi-
cient. This is related to the fact that pairwise independence of random variables is weaker than indepen-
dence. You can find an example of a stochastic process, which satisfies the CK equations, but which is not
a Markov chain in Grimmett & Stirzaker (2001b, p. 218–219).
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Example 3.3.6. Let us revisit Example 3.1.6. Here E = {1, 2, 3} where 1=rain, 2=sun, 3=fog.

P =

 0.5 0.25 0.25
0.5 0 0.5
0.25 0.25 0.5

 .

Suppose that ν(0) = (0.5, 0.5, 0). We would like to find ν(1) and ν(2).
Applying Theorem 3.3.3 leads to

ν(1) = ν(0)P = (0.5, 0.5, 0)

 0.5 0.25 0.25
0.5 0 0.5
0.25 0.25 0.5

 = (0.5, 0.125, 0.375),

and

ν(2) = ν(0)P2 = (0.5, 0.5, 0)

 0.5 0.25 0.25
0.5 0 0.5
0.25 0.25 0.5

 0.5 0.25 0.25
0.5 0 0.5
0.25 0.25 0.5


= (0.5, 0.5, 0)

 0.4375 0.1875 0.375
0.375 0.25 0.375
0.375 0.1875 0.4375


= (0.40625, 0.21875, 0.375).
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Figure 3.3: Marginal distribution ν(n) of the weather Markov chain, see Example 3.3.6, at times n =
0, 1, 2, 3, 10 in the first row and at times n = 20, 40, 60, 80, 100 in the second row.
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Figure 3.4: Three simulated sample paths (Xn(ωi))n∈{0,1,...,50}, for i = 1, 2, 3, of the weather Markov
chain, see Example 3.3.6.

Example 3.3.7. Suppose that E = Z. A famous Markov chain is the simple random walk:

pij =

 p if j = i+ 1
1− p if j = i− 1
0 o/w

for p ∈ (0, 1). Find the n-step transition probabilities.

Note that the simple random walk can be written as the sum

Xn =

n∑
i=0

Yi,

where Y1, Y2, . . . are independent random variables taking the values -1, 1 with probabilities (1 − p) and
p, respectively. Also X0 = Y0 denotes the initial value.

We want to find

pij(n) = P(Xn = j|X0 = i).
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Figure 3.5: Six simulated sample paths (Xn(ωi))n∈{0,1,...,20}, for i = 1, 2, 3, 4, 5, 6, of a simple random
walk with initial value X0 ≡ 0. The parameter p is chosen as 0.25, 0.5, 0.75 in the first, second and third
row, respectively, see Example 3.3.7.

In order to get from i to j in n steps, we could go up u times and down d times. Note that we require

n = u+ d, i+ u− d = j.

Solving for u and d we have

u =
1

2
(n− i+ j), d =

1

2
(n− j + i) for u, d ≥ 0.

There are
(
n
u

)
possibilities of going up u steps, hence, we have

pij(n) = P(Xn = j|X0 = i) =

(
n

u

)
pu(1− p)d

=

(
n

1
2 (n− i+ j)

)
p

1
2 (n−i+j)(1− p) 1

2 (n−j+i),

if n− i+ j is even and pij(n) = 0 otherwise.

End of lecture 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now discuss a variety of properties of Markov chains which will allow us to solve a number of
interesting questions associated to Markov chains.

We always denote the discrete-time, time-homogeneous Markov chain by X = {Xn}n∈N0
and its

countable state space by E unless stated otherwise.

24



A. E. D. Veraart Applied Probability Autumn 2022

3.4 First passage/hitting times
Definition 3.4.1. We define the first passage/hitting time of X for state j ∈ E as

Tj = min{n ∈ N : Xn = j}.

If Xn 6= j for all n ∈ N, then we set Tj =∞.

The first passage time Tj describes the first time (counting from 1 and not from 0!) that the chain ever
visits the state j. Note that, for n ∈ N, we have

{Tj = n} = {Xn = j,Xn−1 6= j, . . . , X1 6= j},

which implies that Tj is a stopping time, since Tj : Ω→ N ∪ {∞} and the event {Tj = n} only depends
on X1, X2, . . . , Xn, for n ∈ N.

Definition 3.4.2. For i, j ∈ E,n ∈ N we define the first passage probability

fij(n) = P(Tj = n|X0 = i) = P(Xn = j,Xn−1 6= j, . . . , X1 6= j|X0 = i),

which is the probability that the first time we visit state j, is at time n, given we started in state i at time 0.

Remark 3.4.3. We note that we define fij(0) = 0 for all i, j ∈ E. Also, fij(1) = pij for all i, j ∈ E.

Definition 3.4.4. We define

fij = P(Tj <∞|X0 = i).

For i 6= j, fij is the probability that the chain ever visits j, starting at i; for i = j, fii is the probability
that the chain ever returns to i, starting at i. We often call fii the return probability.

Proposition 3.4.5. For all i, j ∈ E, we have

fij =

∞∑
n=1

fij(n).

Proof. We use the law of total probability with additional conditioning, see Theorem 2.3.6, with partition
given by {{Tj = n}, n ∈ N ∪ {∞}}:

fij = P(Tj <∞|X0 = i)

=

∞∑
n=1

P(Tj <∞|Tj = n,X0 = i)P(Tj = n|X0 = i)

+ P(Tj <∞|Tj =∞, X0 = i)P(Tj =∞|X0 = i)

=

∞∑
n=1

P(Tj = n|X0 = i) =

∞∑
n=1

fij(n).

Example 3.4.6. Let E = {1, 2} and

P =

(
1
2

1
2

1
4

3
4

)
.

We want to find f11 and f22. We note that

f11(1) = p11 =
1

2
, f11(2) =

1

2

1

4
, f11(3) =

1

2

3

4

1

4
, . . . , i.e.f11(n) =

1

2

(
3

4

)n−2
1

4
, for n ≥ 2.
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Hence

f11 =

∞∑
n=1

f11(n) =
1

2
+

1

8

∑
n=2

(
3

4

)n−2

=
1

2
+

1

8

∑
n=0

(
3

4

)n
=

1

2
+

1

8

1

1− 3
4

= 1.

Similarly

f22(1) = p22 =
3

4
, f22(2) =

1

4

1

2
, f22(3) =

1

4

1

2

1

2
, . . . , i.e.f22(n) =

1

4

(
1

2

)n−2
1

2
, for n ≥ 2.

Hence

f22 =

∞∑
n=1

f22(n) =
3

4
+

1

8

∑
n=2

(
1

2

)n−2

=
3

4
+

1

8

∑
n=0

(
1

2

)n
=

3

4
+

1

8

1

1− 1
2

= 1.

Lemma 3.4.7. Show that for all i, j ∈ E,n ∈ N, we have

pij(n) =

n∑
l=0

fij(l)pjj(n− l) =

n∑
l=1

fij(l)pjj(n− l).

Proof. We note that fij(0) = 0 for all i, j ∈ E, hence the second identity holds trivially. For n = 1, note
that pij(1) = pij = fij(1)pjj(0) = fij(1).

For the general case, we consider the partition {{Tj = l}, l ∈ N ∪ {∞}}. Then, using the law of total
probability (LTP) with additional conditioning and the Markov property:

pij(n) = P(Xn = j|X0 = i)

LTP
=

n∑
l=1

P(Xn = j|Tj = l,X0 = i)P(Tj = l|X0 = i)

=

n∑
l=1

P(Xn = j|Xl = j,Xl−1 6= j, . . . , X1 6= j,X0 = i)P(Tj = l|X0 = i)

Markov
=

n∑
l=1

P(Xn = j|Xl = j)P(Tj = l|X0 = i)

=

n∑
l=1

pjj(n− l)fij(l)
fij(0)=0

=

n∑
l=0

fij(l)pjj(n− l).

3.5 Recurrence and transience
Definition 3.5.1. Let {Xn}n∈N0

be a Markov chain on a countable state-space E. A state j ∈ E is
recurrent if

P(Xn = j for some n ∈ N|X0 = j) = 1

that is, the probability of returning to j, starting from j is 1. If the probability is less than 1, the state j is
transient.

I.e. a state can either be recurrent or transient. Recurrence is of interest, if we want to answer questions
about eventual returns to given states of the Markov chain.

We note that

{Xn = j for some n ∈ N} = {∃n ∈ N : Xn = j} = {Tj <∞}
Hence, we note that state j is recurrent if fjj = 1 and it is transient if fjj < 1. We can now formulate a
very useful result for checking whether a given state is recurrent or transient.
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Theorem 3.5.2.

1. j ∈ E is recurrent if and only if
∑∞
n=1 pjj(n) =∞.

2. j ∈ E is transient if and only if
∑∞
n=1 pjj(n) <∞.

The two statements in the above theorem are equivalent, so one only needs to prove one of them.
We will provide the proof together with some related results, see Kirkwood (2015, p. 66-71).
Let Nj denote the number of periods that the chain is in state j:

Nj =

∞∑
n=0

I(j)
n , where I(j)

n = I{Xn=j} =

{
1, if Xn = j,
0, if Xn 6= j,

Theorem 3.5.3. Let j ∈ E denote a transient state. Then

1. P(Nj = n|X0 = j) = fn−1
jj (1− fjj) for n ∈ N (geometric distribution with parameter fjj),

2. Let i 6= j, then

P(Nj = n|X0 = i) =

{
1− fij , if n = 0,
fijf

n−1
jj (1− fjj), if n ∈ N.

Proof. 1. In order to get n ∈ N visits to state j provided that X0 = j, the chain needs to re-visit state
j (after the initial visit at time 0) n− 1 times, which happens with probability fjj each, hence fn−1

jj

is the probability of n− 1 return visits, and then there must be no further return to state j afterwards
which happens with probability 1− fjj . Hence P(Nj = n|X0 = j) = fn−1

jj (1− fjj) for n ∈ N.

2. Case n = 0: The probability that the chain never visits state j given that it starts in i is given by
1− fij . Hence P(Nj = 0|X0 = i) = 1− fij .
Case n ∈ N: The first visit to state j starting from i happens with probability fij , then there need to
be n−1 return visits, which happen with probability fn−1

jj , and there must be no further return to state
j afterwards which happens with probability 1−fjj . Hence P(Nj = n|X0 = i) = fijf

n−1
jj (1−fjj)

for n ∈ N.

End of lecture 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Corollary 3.5.4. Let j ∈ E denote a transient state. Then

1.

E(Nj |X0 = j) =
1

1− fjj
. (3.5.1)

2. For i 6= j, we have

E(Nj |X0 = i) =
fij

1− fjj
.

Proof. 1. We will use the following property of the geometric series: Let q ∈ R with |q| < 1. Set

f(q) :=

∞∑
n=0

qn =
1

1− q .

Then

f ′(q) =

∞∑
n=0

nqn−1 =

∞∑
n=1

nqn−1 =
1

(1− q)2
.
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Applying this result to q = fjj < 1 (since j is transient) leads to

E(Nj |X0 = j) =

∞∑
n=0

nP(Nj |X0 = j) =

∞∑
n=1

nfn−1
jj (1− fjj) =

1

1− fjj
.

2. For i 6= j, we have

E(Nj |X0 = i) =

∞∑
n=0

nP(Nj = n|X0 = i) =

∞∑
n=1

nfijf
n−1
jj (1− fjj)

= fij(1− fjj)
∞∑
n=1

nfn−1
jj =

fij
1− fjj

.

Theorem 3.5.5. Given that X0 = j, the expected number of visits to state j is given by

E(Nj |X0 = j) =

∞∑
n=0

pjj(n), (3.5.2)

where the infinite series might diverge to∞.

Proof. Recall that the so-called Tonelli’s theorem says that we are allowed to interchange the expectation
and infinite sum provided that all summands are nonnegative (even if we obtain the value∞).

Then

E(Nj |X0 = j) = E

( ∞∑
n=0

I(j)
n |X0 = j

)
=

∞∑
n=0

E
(
I(j)
n |X0 = j

)
=

∞∑
n=0

P(Xn = j|X0 = j) =

∞∑
n=0

pjj(n).

since

E(I(j)
n |X0 = j) = 0× P(I(j)

n = 0|X0 = j) + 1× P(I(j)
n = 1|X0 = j)

= P(Xn = j|X0 = j).

We can now provide the proof for Theorem 3.5.2.

Proof of Theorem 3.5.2. We need to prove two directions:

1. ” j transient⇒ ∑∞
n=1 pjj(n) < ∞”: Suppose that j is transient. Then we have, using equations

(3.5.1) and (3.5.2),

E (Nj |X0 = j) =

∞∑
n=0

pjj(n) =
1

(1− fjj)
<∞

since fjj < 1.

2. ”
∑∞
n=1 pjj(n) < ∞ ⇒ j transient ”: Conversely, suppose that

∑∞
n=0 pjj(n) < ∞. Then, con-

ditional on X0 = j, Nj is a nonnegative random variable with finite (conditional) mean and hence
must be finite. That implies that starting from state j, the chain returns to state j only finitely many
times. Hence, there is a positive probability, that starting from state j, the chain never returns to j.
I.e. 1− fjj > 0. Hence fjj < 1, hence j is transient.
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These results lead us to

Corollary 3.5.6. If j ∈ E is transient then pij(n)→ 0 as n→∞ for all i ∈ E.

Proof. If j ∈ E is transient, then
∑∞
n=1 pjj(n) <∞. Hence pjj(n)→ 0 as n→∞.

According to Lemma 3.4.7, we have for all i, j ∈ E,n ∈ N:

pij(n) =

n∑
l=0

fij(l)pjj(n− l) =

n∑
l=1

fij(l)pjj(n− l).

Hence

∞∑
n=0

pij(n) = pij(0) +

∞∑
n=1

pij(n)

= pij(0) +

∞∑
n=1

n∑
l=1

fij(l)pjj(n− l)

= δij +

∞∑
l=1

fij(l)

∞∑
n=l

pjj(n− l)

= δij +

∞∑
l=1

fij(l)

∞∑
m=0

pjj(m)

= δij +

∞∑
l=0

fij(l)

∞∑
m=0

pjj(m)

= δij + fij

∞∑
m=0

pjj(m)

≤ δij +

∞∑
l=0

pjj(l) <∞,

where we used that fij ≤ 1. The necessary condition for the convergence of the infinite series is pij(n)→ 0
as n→∞.

3.5.1 Mean recurrence time, null and positive recurrence
Recall that we define the first passage/hitting time of X as

Tj = min{n ∈ N : Xn = j}, for j ∈ E.

If Xn 6= j for all n ∈ N, then we set Tj =∞.

Definition 3.5.7. The mean recurrence time µi of a state i ∈ E is defined as µi = E[Ti|X0 = i].

Theorem 3.5.8. Let i ∈ E. We have P(Ti = ∞|X0 = i) > 0 if and only if i is transient; in that case
µi = E[Ti|X0 = i] =∞.

Proof. We have

P(Ti =∞|X0 = i) = P(Xn 6= i for all n ∈ N|X0 = i)

= 1− P(Xn = i for some n ∈ N|X0 = i) > 0

⇔P(Xn = i for some n ∈ N|X0 = i) < 1⇔ i is transient.
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Further, if i is transient, then

µi = E(Ti|X0 = i) =

∞∑
n=1

nP(Ti = n|X0 = i) +∞P(Ti =∞|X0 = i) =∞.

Theorem 3.5.9. For a recurrent state i ∈ E, we have

µi = E[Ti|X0 = i] =

∞∑
n=1

nfii(n),

which can be finite or infinite.

Proof. For a recurrent state i ∈ E, we have P(Ti =∞|X0 = i) = 0. Hence

µi = E[Ti|X0 = i] =

∞∑
n=1

nP(Ti = n|X0 = i) =

∞∑
n=1

nfii(n).

Summarising we can say that

µi = E[Ti|X0 = i] =

{ ∑∞
n=1 nfii(n) if i is recurrent

∞ if i is transient.

Definition 3.5.10. A recurrent state i ∈ E is called null if µi =∞ and positive (or non-null) if µi <∞.

Note that we will later show that, if the state space is finite, i.e. card(E) = K <∞, then all recurrent
states are positive. I.e. null recurrent states can only appear in the case when card(E) = K =∞.

Theorem 3.5.11. A recurrent state i ∈ E is null iff pii(n) → 0 as n → ∞; if this holds then pji(n) → 0
as n→∞ for all j ∈ E.

Proof. See Grimmett & Stirzaker (2001b, p. 222, 232).

Example 3.5.12. Let us re-visit Example 3.4.6. Here we have E = {1, 2} and

P =

(
1
2

1
2

1
4

3
4

)
.

We want to find the mean recurrence times µ1 and µ2.
We already showed that f11(1) = 1

2 , f11(n) = 1
8

(
3
4

)n−2
, for n ≥ 2, hence f11 = 1, and f22(1) =

p22 = 3
4 , f22(n) = 1

8

(
1
2

)n−2
, for n ≥ 2, Hence f22 = 1.

Recall that for |q| < 1 :
∑∞
n=0 q

n = (1− q)−1,
∑∞
n=1 nq

n−1 = (1− q)−2.

µ1 =

∞∑
n=1

nf11(n) =
1

2
+

1

8

∞∑
n=2

n

(
3

4

)n−2

=
1

2
+

1

8

4

3

[ ∞∑
n=1

n

(
3

4

)n−1

− 1

]

=
1

2
+

1

6

[(
1− 3

4

)−2

− 1

]
=

1

2
+

16

6
− 1

6
= 3,

µ2 =

∞∑
n=1

nf22(n) =
3

4
+

1

8

∞∑
n=2

n

(
1

2

)n−2

=
3

4
+

1

8
2

[ ∞∑
n=2

n

(
1

2

)n−1

− 1

]

=
3

4
+

1

4

[(
1− 1

2

)−2

− 1

]
=

3

4
+ 1− 1

4
=

3

2
.

End of lecture 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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3.5.2 Generating functions for pij(n) and fij(n) [Reading material]
Next we study the so-called generating functions of pij(n) and fij(n). Recall that you have studied so-
called probability generating functions in your Y1 probability course.

Definition 3.5.13 (Probability generating function (p.g.f.)). Let X denote a discrete random variable with
ImX ⊆ N ∪ {0}. We denote by

SX =

{
s ∈ R :

∞∑
x=0

|s|xP(X = x) <∞
}
.

Then the probability generating function (pgf) of X is defined as the function GX : SX → R given by

GX(s) = E(sX) =

∞∑
x=0

sxP(X = x).

We observe that the pgf is well-defined for |s| ≤ 1 since

∞∑
x=0

|s|xP(X = x) ≤
∞∑
x=0

P(X = x) = 1 <∞.

Also, GX(0) = P(X = 0) and GX(1) = 1. More generally, we can define generating functions for
any sequence (an)n ∈ N0 of real numbers:

Definition 3.5.14. For a sequence (an)n∈N0
of real numbers, we define its generating function

G(an)(s) := a0 + a1s+ a2s
2 + · · · =

∞∑
n=0

ans
n, (3.5.3)

for all s for which
∑∞
n=0 |an||s|n <∞.

One can show that a generating function of a real sequence specifies this sequence uniquely. I.e., given a
sequence (an)n∈N0

, one can compute its generating function 3.5.3. Conversely, given a generating function
G, one can Taylor-expand it around 0:

G(s) = a0 + a1s+ a2s
2 + · · · ,

for small s, which is a unique series expansion which characterises (an)n ∈ N0 uniquely.
Let us recall Abel’s theorem, which we will be applying later:

Theorem 3.5.15. If an ≥ 0 for all n ∈ N0 and G(an)(s) =
∑∞
n=0 ans

n is finite for |s| < 1, then

lim
s↑1

G(an)(s) =

∞∑
n=0

an,

whether the sum is finite of equals +∞.

Note that s ↑ 1 means that we are taking the left limit in 1, which is sometimes also denoted by s→ 1−.

Definition 3.5.16. For i, j ∈ E, we define the generating functions

G(pij(n))(s) =

∞∑
n=0

pij(n)sn,

G(fij(n))(s) =

∞∑
n=0

fij(n)sn,

for |s| < 1.
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Theorem 3.5.17. For i, j ∈ E, |s| < 1, we have

G(pij(n))(s) = δij +G(fij(n))(s)G(pjj(n))(s),

where δij = 1 if i = j and 0 otherwise.

Proof. From Lemma 3.4.7, we know that

pij(n) =

n∑
l=1

fij(l)pjj(n− l).

Multiply both sides by sn and take the sum from n = 1 to∞:

∞∑
n=1

snpij(n) =

∞∑
n=1

sn
n∑
l=1

fij(l)pjj(n− l).

For the left hand side, we get

∞∑
n=1

snpij(n) = −pij(0) +

∞∑
n=0

snpij(n) = −δij +G(pij(n))(s).

For the right hand side, we get by changing the order of summation (1 ≤ l ≤ n <∞):

∞∑
n=1

sn
n∑
l=1

fij(l)pjj(n− l) =

∞∑
n=1

n∑
l=1

slfij(l)s
n−lpjj(n− l)

=

∞∑
l=1

slfij(l)

∞∑
n=l

sn−lpjj(n− l) =

∞∑
l=1

slfij(l)

∞∑
m=0

smpjj(m)

= G(fij(n))(s)G(pjj(n))(s)

Combining the left and right hand side leads to

−δij +G(pij(n))(s) = G(fij(n))(s)G(pjj(n))(s),

which is equivalent to

G(pij(n))(s) = δij +G(fij(n))(s)G(pjj(n))(s).

We now provide an alternative proof of Theorem 3.5.2 using generating functions.

Alternative proof of Theorem 3.5.2 using generating functions. Recall

G(pjj(n))(s) =

∞∑
n=0

pjj(n)sn, G(fjj(n))(s) =

∞∑
n=0

fjj(n)sn, for |s| < 1.

Hence, taking the left limit when s tends to 1 (since |s| < 1) and applying Abel’s theorem (Theorem
3.5.15):

lim
s↑1

G(pjj(n))(s) =

∞∑
n=0

pjj(n), lim
s↑1

G(fjj(n))(s) =

∞∑
n=0

fjj(n) = fjj .

From Theorem 3.5.17 we deduce for |s| < 1:

G(pjj(n))(s) = 1 +G(fjj(n))(s)G(pjj(n))(s)⇔ G(pjj(n))(s) =
1

1−G(fjj(n))(s)
.
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Hence, taking the left limit when s tends to 1 leads to

∞∑
n=0

pjj(n) =
1

1− fjj
,

which could be of the form ∞ = ∞. Note that fjj is a probability and hence in [0, 1]. We can now
conclude:

1. j is recurrent⇔ fjj = 1⇔∑∞
n=0 pjj(n) =∞,

2. j is transient⇔ fjj < 1⇔∑∞
n=0 pjj(n) <∞,

3.5.3 Example: Null recurrence/transience of a simple random walk [Reading ma-
terial]

We return to the example of a simple random walk, see Example 3.3.7. We want to show that the state 0 is
null recurrent for p = 0.5 and transient otherwise.

From Example 3.3.7 we know that

p00(n) =

(
n
n
2

)
(p(1− p))n/2,

for even n and p00(n) = 0 otherwise.
We would like to find the generating function, for |s| < 1,

G(f00(n))(s) =

∞∑
n=0

snf00(n),
d

ds
G(f00(n))(s) =

∞∑
n=1

nsn−1f00(n).

Applying Abel’s theorem, leads to

lim
s↑1

G(f00(n))(s) = lim
s↑1

∞∑
n=0

snf00(n) =

∞∑
n=0

f00(n) = f00,

lim
s↑1

d

ds
G(f00(n))(s) = lim

s↑1

∞∑
n=1

nsn−1f00(n) =

∞∑
n=1

nf00(n) = µ0.

For the latter, note that the derivative of a power series has the same radius of convergence as the original
power series. Hence Abel’s theorem is applicable here. We use Theorem 3.5.17 to relate the generating
functions of (f00(n)) and (p00(n)): For |s| < 1, we have

G(p00(n))(s) = 1 +G(f00(n))(s)G(p00(n))(s).

Hence

G(f00(n))(s) = 1− 1

G(p00(n))(s)
,

where, for |s| < 1,

G(p00(n))(s) =

∞∑
n=0

snp00(n) =

∞∑
n=0

(
2n

n

)
(p(1− p))ns2n

=

∞∑
n=0

(
2n

n

)
(p(1− p)s2)n.
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Note that
∞∑
k=0

(
2k

k

)
xk =

1√
1− 4x

, for |x| < 1

4
.

Hence

G(p00(n))(s) =
1√

1− 4p(1− p)s2
,

and

G(f00(n))(s) = 1− 1

G(p00(n))(s)
= 1−

√
1− 4p(1− p)s2.

Taking the limit leads to

f00 = lim
s↑1

G(f00(n))(s) = 1−
√

1− 4p(1− p) = 1− 2

∣∣∣∣p− 1

2

∣∣∣∣ .
Hence f00 = 1 (and hence 0 is recurrent) for p = 1

2 , and f00 < 1 (and hence 0 is transient) for p 6= 1
2 .

Next we focus on the case when p = 1
2 and show that 0 is null recurrent. Note that

G(f00(n))(s) = 1−
√

1− s2,

and hence

d

ds
G(f00(n))(s) =

1

2
(1− s2)−1/22s =

s√
1− s2

,

and

µ0 = lim
s↑1

d

ds
G(f00(n))(s) =∞,

hence 0 is indeed null recurrent.

Exercise 3.5.18. Show that
∞∑
n=0

(
2n

n

)
xn =

1√
1− 4x

, for |x| < 1

4
. (3.5.4)

Note that this is the generating function of the sequence
((

2n
n

))
n∈N0

. Hint: Proceed in four steps:

1. Show that (
2(n+ 1)

n+ 1

)
=

4n+ 2

n+ 1

(
2n

n

)
, n ∈ N0

2. Show that ( − 1
2

n+ 1

)
= (−1)

n+ 1
2

n+ 1

(− 1
2

n

)
, n ∈ N0,

by using the definition of the general binomial coefficient.

3. Show that (
2n

n

)
= (−1)n4n

(− 1
2

n

)
, n ∈ N0.
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4. Use the generalise binomial theorem to show (3.5.4).

Remark 3.5.19. We have shown that the state 0 in a symmetric simple random walk on E = Z is (null)
recurrent. We will soon show that this is true for all other states inE. If one considers a symmetric random
walk on the plane Z2 where one can either move up, down, left or right with probability 1

4 each, one can
show that such a random walk (often called the drunkard’s walk) is also recurrent. However, a symmetric
random walk in Z3 is transient. Hence there is the famous quote by the mathematician Shizuo Kakutani
saying,

”A drunk man will find his way home, but a drunk bird may get lost forever.”

3.6 Aperiodicity and ergodicity
Definition 3.6.1. The period of a state i is defined by

d(i) = gcd{n : pii(n) > 0}

the greatest common divisor of the epochs at which return is possible. If d(i) > 1 then the state is periodic
otherwise it is aperiodic.

Example 3.6.2. Consider the Markov chain with state space E = {1, 2, 3, 4} and transition matrix

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

1 2 3 4
1 1

1

1

1

We
can easily see that for i ∈ {1, 2, 3, 4} we have pii(n) = 1 > 0 for n ∈ {4, 8, 12, . . . }. Hence d(i) = 4.

Exercise 3.6.3. Suppose that i ∈ E is a periodic state with period d(i) = gcd{n ∈ N : pii(n) > 0} > 1.
Do we always have that pii(d(i)) > 0? No! Counterexample: Consider a Markov chain with state space
E = {1, 2, 3, 4} and transition matrix

P =


0 1 0 0
0 0 1 0
0 0 0 1

0.5 0 0.5 0

 .

Then A1 := {n ∈ N : p11(n) > 0} = {4, 6, 8, 10, . . . } and d(1) = gcd(A1) = 2. However, p11(2) = 0.

Definition 3.6.4. A state is ergodic if it is positive recurrent and aperiodic.

3.7 Communicating classes
In this section we study how we can divide the state space of a Markov chain into equivalence classes,
where the states in each class share important properties.
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Definition 3.7.1. 1. We say that state j is accessible from state i, written i → j, if the chain may ever
visit state j, with positive probability, starting from i. In other words, i → j if there exist m ∈ N0

such that pij(m) > 0.

2. i and j communicate if i→ j and j → i, written i↔ j.

Clearly, if i 6= j, i→ j iff fij > 0.

Theorem 3.7.2. The concept of communication is an equivalence relation.

Proof. 1. Reflexivity (i↔ i): Note that we have pii(0) = 1 since

pij(0) = δij =

{
1, if i = j,
0, if i 6= j.

2. Symmetry (if i↔ j, then j ↔ i): This follows directly from the definition.

3. Transitivity (if i ↔ j and j ↔ k, then i ↔ k): i ↔ j and j ↔ k imply that there exist integers
n,m ≥ 0 such that pij(n) > 0 and pjk(m) > 0. Hence (using the CK equations and the positivity
of the transition probabilities)

pik(n+m) =
∑
l∈E

pil(n)plk(m) ≥ pij(n)pjk(m) > 0 ⇒ i→ k.

Similarly, one can show that i← k.

Remark 3.7.3. • The totality of states can be partitioned into equivalence classes, which are called
communicating classes. Note that the states in an equivalence class are those which communicate
with each other.

• Note that it may be possible starting in one equivalence class to enter another class with positive
probability. In that case, we could not return to the initial class (else the classes would form a single
equivalence class).

• These findings will be formalised in Theorem 3.7.9.

We will now show that states which communicate with each other share properties such as recurrence,
transience and periodicity.

Theorem 3.7.4. If i↔ j then

1. i and j have the same period

2. i is transient if and only if j is transient

3. i is recurrent if and only if j is recurrent.

4. i is null recurrent if and only if j is null recurrent.

Proof. We only show the recurrence and transience: Let i↔ j.
Then there exist integers n,m ≥ 0 such that

pij(n) > 0, pji(m) > 0.

For any integer l ≥ 0, we have (using the CK equations twice):

pjj((m+ l) + n) =
∑
k∈E

pjk(m+ l)pkj(n) ≥ pji(m+ l)pij(n),

pji(m+ l) =
∑
k∈E

pjk(m)pki(l) ≥ pji(m)pii(l).
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Hence

pjj(m+ l + n) ≥ pji(m)pii(l)pij(n),

where pji(m) > 0, pij(n) > 0.
Then

∞∑
l=1

pjj(l) ≥
∞∑
l=1

pjj(m+ l + n) ≥ pji(m)pij(n)

∞∑
l=1

pii(l)

Case 1: Suppose that i is recurrent. Then

∞∑
l=1

pjj(l) ≥
∞∑
l=1

pjj(m+ l + n) ≥ pji(m)pij(n)

∞∑
l=1

pii(l) =∞.

Hence, since pji(m) > 0, pij(n) > 0,
∑∞
l=1 pjj(l) = ∞ which is equivalent to j being recurrent by

Theorem 3.5.2.
Case 2: Suppose that j is transient. Then

∞ >

∞∑
l=1

pjj(l) ≥
∞∑
l=1

pjj(m+ l + n) ≥ pji(m)pij(n)

∞∑
l=1

pii(l).

Hence, since pji(m) > 0, pij(n) > 0,
∑∞
l=1 pii(l) <∞ which is equivalent to i being transient.

See Grimmett & Stirzaker (2001b, p. 224) for the complete proof.

Definition 3.7.5. A set of states C is

1. closed if it is impossible to leave the class, i.e. for all i ∈ C, j 6∈ C we have pij = 0.

2. irreducible if all states in the set communicate with each other, i.e. i↔ j for all i, j ∈ C.

What the definition tells us, is once we enter a closed set, we never leave; if a closed set only contains
one state, i.e. C = {i} for an i ∈ E, then i is called absorbing.

An irreducible set is aperiodic (or null recurrent etc) if all the states in C have this property; thanks to
Theorem 3.7.4, this makes sense.

Importantly, if the entire state-space E is irreducible, then we say that the Markov chain is irre-
ducible.

Theorem 3.7.6. Let C denote an closed communicating class. Then the transition matrix P restricted to
C is stochastic.

Often we write P(C) (or PC) for the restriction of P to C.

Proof. Since all elements of P are non-negative, this is also true for P(C). Further, we know that∑
j∈E pij = 1 for all i ∈ E. Let i ∈ C, then pil = 0 for l 6∈ C. Hence, we have

1 =
∑
j∈E

pij =
∑
j∈C

pij +
∑

j∈E\C

pij =
∑
j∈C

pij .

Example 3.7.7. Let E = {1, 2, 3} and

P =

 1
2

1
2 0

1
2

1
2 0

0 1
2

1
2

 .
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Find the communicating classes and determine whether they are closed. Write down the transition matrices
restricted to the communicating classes. We have two communicating classes: C1 = {1, 2}, C2 = {3}. We
observe that C1 is closed and C2 is not closed. Further, we find that

P(C1) =

(
1
2

1
2

1
2

1
2

)
, P(C2) =

(
1
2

)
.

We note that P(C1) is a stochastic matrix (since it is associated with a closed class), whereas P(C2) is not
a stochastic matrix.

3.7.1 The decomposition theorem
Theorem 3.7.8. Let C denote a communicating class consisting of recurrent states. Then C is closed.

Proof. We prove this statement by contradiction: Suppose there exists an i ∈ C, j 6∈ C, such that pij > 0.
Hence, i→ j, but j 6→ i. Then

P(Xn 6= i for all n ∈ N|X0 = i) ≥ P(X1 = j|X0 = i) = pij > 0,

which implies that

P(Xn = i for some n ∈ N|X0 = i) = 1− P(Xn 6= i for all n ∈ N|X0 = i) < 1.

This is a contradiction to the recurrence of i.

Theorem 3.7.9. The state-space E can be partitioned uniquely into

E = T ∪
(⋃

i

Ci

)
,

where T is the set of transient states, and the Ci are irreducible, closed sets of recurrent states.

Proof. From the properties of equivalence relations, we know that the equivalence classes of↔ partition
the state space uniquely. From Theorem 3.7.4, we know that transience and recurrence are class properties.
Hence it only remains to show that the recurrent equivalence classes are closed, and this follows from
Theorem 3.7.8.

Remark 3.7.10. Note that in the decomposition theorem above T is not assumed to be a communicating
class. More precisely, in general we can denote by T1, T2, . . . the transient communicating classes, then
T = ∪iTi is the collection of all transient states of the Markov chain.

This result helps us to understand what is going on, in terms of the Markov chain. If we start the chain
in any of the Ci then the chain never leaves, and, effectively this is the state-space. On the other hand, if
the chain starts in the transient set, the chain either stays there forever, or moves, and gets absorbed into
a closed class. Note, however, that in the case when card(E) < ∞, the chain will not be able to stay in
transient states forever, but will eventually move to a closed class.

End of lecture 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 3.7.11. Let K <∞. Then at least one state is recurrent and all recurrent states are positive.

Proof. Part 1: Suppose that all states are transient; then according to Corollary 3.5.6 limn→+∞ pij(n) = 0
for all i. Since the transition matrix is stochastic, we have

∑
j∈E pij(n) = 1. Since the state space is finite,

we can interchange limit operations and finite summation: Take the limit through the summation sign leads
the following contradiction:

1 = lim
n→∞

∑
j∈E

pij(n) =
∑
j∈E

lim
n→∞

pij(n) = 0.
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Part 2: Suppose there is a non-empty communicating class consisting of null recurrent states denoted
by Ci∗ . Then Ci∗ is closed and P(Ci∗) is stochastic. Hence, for all i ∈ Ci∗ , we have

1 =
∑
k∈E

pik(n) =
∑
k∈Ci∗

pik(n).

Since all states in the class Ci∗ are null recurrent, we have limn→∞ pik(n) = 0 for all k ∈ Ci∗ according
to Theorem 3.5.11. As before, we take the limit through the summation sign to obtain the contradiction

1 = lim
n→∞

∑
k∈Ci∗

pik(n) =
∑
k∈Ci∗

lim
n→∞

pik(n) = 0.

Theorem 3.7.12. Let C be a communicating class which is finite (i.e. card(C) <∞) and closed. Then all
states in C are positive recurrent.

Proof. We can argue exactly as in the proof of Theorem 3.7.11: Since C is closed P(C) is stochastic.
Hence, for all i ∈ C, we have

1 =
∑
k∈E

pik(n) =
∑
k∈C

pik(n).

Suppose that all states in C are transient. Then limn→∞ pik(n) = 0 for all k ∈ C according to Corollary
3.5.6. As before, we take the limit through the summation sign to obtain the contradiction

1 = lim
n→∞

∑
k∈C

pik(n) =
∑
k∈C

lim
n→∞

pik(n) = 0.

Hence all states inC must be recurrent, and in fact positive, since we have already shown that null recurrent
states do not exist on a finite state space.

3.7.2 Class properties

Type of class Finite Infinite

positive recurrent
Closed positive recurrent null recurrent

transient
Not closed transient transient

We can use the results listed in the table above to classify the states of a Markov chain. We will
demonstrate this in the following example.

Exercise 3.7.13. Suppose we have a Markov chain with state space E = {1, 2, 3, 4} and transition matrix

P =


1
2

1
2 0 0

3
4

1
4 0 0

0 1
4

1
2

1
4

0 0 0 1

 .

Draw a transition diagram an find the communicating classes! Determine whether the classes are (positive)
recurrent or transient.

Solution. The transition diagram is given by:
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Figure 3.6: Transition diagram for the Markov chain described in Exercise 3.7.13

We have three communicating classes:

1. C1 = {1, 2} is finite and closed, hence positive recurrent;

2. E1 = {3} is not closed, hence transient;

3. C2 = {4} is finite and closed, hence positive recurrent, and, in fact, absorbing.

3.8 Application: The gambler’s ruin problem

3.8.1 The problem and the results
Now we study a very famous example: The Gambler’s ruin problem.

Let N ≥ 2 be an integer. Consider a gambler with an initial fortune of i ∈ {0, 1, . . . , N}. At each play
of the game, the gambler has the

• probability p of winning one unit;

• probability q = 1− p of losing one unit;

• Assume that successive games are independent.

What is the probability, that if the gambler starts with i units, that the gambler’s fortune will
reach N before reaching 0?

Let Xn denote the gambler’s fortune at time n. Then {Xn}n∈N0
is a Markov chain with transition

probabilities

p00 = pNN = 1,

pi(i+1) = p = 1− pi(i−1), i = 1, 2, . . . , N − 1.

0 1 2 3 · · · N − 1 N1 1− p

p

1− p

p

1− p

p

1− p

p

1− p

p
1

1

Figure 3.7: Transition diagram for the gambler’s ruin problem.

This Markov chain has three communicating classes:

C1 = {0}, T1 = {1, 2, . . . , N − 1}, C2 = {N},
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where the classes C1 and C2) are positive recurrent (since they are finite and closed) and the class T1 is
transient (since it is not closed).

A transient class on a finite state space will only be visited finitely many times. Hence after some finite
amount of time, the gambler will either win N or be ruined.

Note the Markov chain describing the gambler’s fortune is a simple random walk with two absorbing
barriers, one at 0 and one at N .

For i = 0, 1, . . . , N , define the first time X visits state i when we consider all possible time points in
N0:

Vi = min{n ∈ N0 : Xn = i}.

[Note that this is different from the first passage time Ti which considers the minimum over the time points
in N rather than N0.]

We are interested in the event that the gambler’s fortune reaches N before reaching 0, i.e. {VN < V0}.
We define

hi = hi(N) = P(VN < V0|X0 = i),

which is the conditional probability of the gambler’s fortune reaching N before going bankrupt when
starting with i units.

Note that 1− hi(N) denotes the corresponding conditional probability of the gambler’s ruin.
From the definition of Vi, we deduce that

h0 = h0(N) = P(VN < V0|X0 = 0) = 0,

hN = hN (N) = P(VN < V0|X0 = N) = 1.

We would like to find hi(N) for 0 < i < N . In order to tackle this problem, we carry out a so-called
first step analysis, where we condition on the outcome of the first game. Define the events

F := gambler wins first game, P(F ) = p,

F c = gambler loses first game, P(F c) = q = 1− p.

If he wins, then he has i+ 1 otherwise he has i− 1.
By conditioning on the outcome of the initial game and applying the law of total probability (for con-

ditional probabilities), we get, for 0 < i < N ,

hi = P(VN < V0|X0 = i)

= P(VN < V0|{X0 = i} ∩ F )P(F |X0 = i) + P(VN < V0|{X0 = i} ∩ F c)P(F c|X0 = i)

= P(VN < V0|X0 = i,X1 = i+ 1)P(F ) + P(VN < V0|X0 = i,X1 = i− 1)P(F c)

= hi+1p+ hi−1(1− p),

where we used that the events F and {X0 = i} are independent and that X is a homogeneous Markov
chain. I.e. we have derived the recurrence relation

hi = hi+1p+ hi−1q, i = 1, 2, . . . , N − 1.

We get the following result:

Theorem 3.8.1. In the gambler’s ruin problem described above, we have

hi = hi(N) =

{
1−(q/p)i

1−(q/p)N
, if p 6= 1

2 ,
i
N if p = 1

2 .

We depict simulated sample paths of the gambler’s fortune in Figure 3.8. Moreover, we plot the proba-
bilities hi(N) for the symmetric case in Figure 3.9 and for the asymmetric case in Figure 3.10.
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Figure 3.8: Each of the four pictures depicts ten sample paths of the gambler’s fortune recorded at time
points 0, 1, . . . , 500 for N = 50. In the first column we set the initial wealth to i = 25 and consider two
choices for p ∈ {0.4, 0.6}. In the second column, we set p = 0.5 and vary the initial wealth i ∈ {25, 10}.
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Figure 3.9: We consider the symmetric case when p = q = 1
2 and depict the probability hi(N) = i

N , for
i,N ∈ {1, . . . , 20}.
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Figure 3.10: We consider the asymmetric case when p 6= q and depict the probability hi(N) = 1−(q/p)i

1−(q/p)N
,

for i,N ∈ {1, . . . , 20}.

Let us study the limit as N →∞.

Theorem 3.8.2. In the gambler’s ruin problem described above, we have

lim
N→∞

hi(N) = hi(∞) =

{
1− (q/p)i, if p > 1/2,

0 if p ≤ 1/2,

Proof. If p > 1
2 , then q

p < 1⇒ limN→∞

(
q
p

)N
= 0.

If p < 1
2 , then q

p > 1⇒ limN→∞

(
q
p

)N
=∞.

Note that hi(∞) describes the probability that the gambler will obtain an infinitely large fortune if he is
allowed to play forever unless ruined. We find that if p > 0.5 (i.e. the gamble has to be strictly better than
a fair game), there is a positive probability that the gambler’s fortune will increase indefinitely. However,
if p ≤ 0.5, then the gambler will be ruined with probability 1 (assuming he plays against an infinitely rich
adversary).

3.8.2 Proof
We still need to prove Theorem 3.8.1. We will show two approaches.

Method 1

We need to solve the difference equation

hi = hi+1p+ hi−1q, i = 1, 2, . . . , N − 1.
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We guess a solution to the difference equation. In particular, let us try the choice hi = cxi. Then

cxi = cpxi+1 + cqxi−1.

Hence we get the auxiliary/characteristic equations:

x = px2 + q ⇔ 0 = px2 − x+ q,

The solutions are x = q/p and x = 1. We need to distinguish the two cases when we have two distinct
roots, i.e. when p 6= q, and the case when we have one root, i.e. when p = q = 1

2 .
The general solution is given by

hi =

{
c1

(
q
p

)i
+ c2, if p 6= 1

2 ,

c1i+ c2 if p = 1
2 ,

for constants c1, c2 and for i = 0, 1, . . . , N .
Next we use the boundary conditions h0 = 0 and hN = 1 to find the constants c1, c2.

For p 6= q: hi = c1

(
q
p

)i
+ c2, we find

0 = h0 = c1 + c2 ⇔ c1 = −c2,

1 = hN = c1

(
q

p

)N
+ c2 = c1

[(
q

p

)N
− 1

]
⇔ c1 =

[(
q

p

)N
− 1

]−1

.

Hence, we have

c1 =

[(
q

p

)N
− 1

]−1

, c2 =

[
1−

(
q

p

)N]−1

.

For p = q = 1
2 : hi = c1i+ c2, we have

0 = h0 = c10 + c2 ⇔ c2 = 0,

1 = hN = c1N + c2 = c1N ⇔ c1 =
1

N
.

This concludes the first proof.

Method 2

Next we show how we can solve the recurrence equation directly. For i = 1, 2 . . . , N − 1 we have

hi = hi+1p+ hi−1q.

Since p+ q = 1, the above equation is equivalent to

phi + qhi = hi+1p+ hi−1q ⇔ q(hi − hi−1) = p(hi+1 − hi)⇔ (hi+1 − hi) =
p

q
(hi − hi−1).

Recall the boundary conditions h0 = 0, hN = 1. Hence we get

h2 − h1 =
q

p
(h1 − h0) =

q

p
h1,

h3 − h2 =
q

p
(h2 − h1) =

(
q

p

)2

h1, . . . ,

hk+1 − hk =
q

p
(hk − hk−1) =

(
q

p

)k
h1,
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for k = 1, . . . , N − 1.
Next we sum the left and right hand side over all k = 1, . . . , i for i = 1, . . . , N − 1 and get, using

results for telescoping sums,

i∑
k=1

(hk+1 − hk) = hi+1 − h1 =

i∑
k=1

(
q

p

)k
h1 ⇔ hi+1 =

i∑
k=0

(
q

p

)k
h1,

where we note that the last equation trivially also holds for i = 0.
Case 1: p 6= q: We use the finite geometric series expansion:

hi+1 =

i∑
k=0

(
q

p

)k
h1 = h1

1−
(
q
p

)i+1

1− q
p

.

Next choose i = N − 1 and use the boundary condition hN = 1, which leads to

1 = hN = h1

1−
(
q
p

)N
1− q

p

⇔ h1 =
1− q

p

1−
(
q
p

)N .
Hence

hi+1 =
1−

(
q
p

)i+1

1− q
p

1− q
p

1−
(
q
p

)N =
1−

(
q
p

)i+1

1−
(
q
p

)N ,

for i = 0, 1, . . . , N − 1. Including the boundary cases, we have

hi =
1−

(
q
p

)i
1−

(
q
p

)N , for i = 0, 1, . . . , N.

Case 2: p = q = 1
2 : Here we have

1− h1 =

N−1∑
i=1

h1 = (N − 1)h1 ⇔ h1 =
1

N
.

Hence, for all i = 0, . . . , N , we have hi = i
N .

End of lecture 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.9 Stationarity
We will (finally) start to use the theory that we have been building up on Markov chains. The question
we look to answer here is the following: ‘what can we say about the probabilistic behaviour of the chain;
is there a ‘stationary’ behaviour?’ To answer this question, we begin with the concept of a stationary
distribution.

Definition 3.9.1. 1. A row vector λ is called a distribution on E if

∀ j ∈ E, λj ≥ 0, and
∑
j∈E

λj = 1.
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2. A row vector λ with non-negative entries is called invariant for the transition matrix P if

λP = λ.

3. A row vector π is a invariant/stationary/equilibrium distribution of a Markov chain on E with
transition matrix P if:

(a) it is a distribution: for each j ∈ E, πj ≥ 0 and
∑
j∈E πj = 1.

(b) it is invariant: π = πP, that is, ∀ j ∈ E, πj =
∑
i∈E πipij .

The term stationarity is used for the following reason:

πP2 = (πP)P = πP = π

that is

πPn = π (3.9.1)

for any n ∈ N. Also, if ν(0) = π, then using Theorem 3.3.3 and (3.9.1) we get that

ν(n) = ν(0)Pn = πPn = π ∀n ∈ N0.

That is to say, if π is the initial distribution of the Markov chain, then the marginal distribution for any
subsequent time instant is also π.

3.9.1 Stationarity distribution for irreducible Markov chains
We formulate a very important theorem, which we will prove in detail.

Theorem 3.9.2. An irreducible chain has a stationary distribution π if and only if all the states are positive
recurrent; in this case π is the unique stationary distribution of the chain and is given by πi = µ−1

i for
each i ∈ E and where µi is the mean recurrence time.

We will divide the proof into several parts and formulate intermediate lemmas to structure the presen-
tation of the rather long proof.

Lemma 3.9.3. For a Markov chain X , we have for all j ∈ E and for all n,m ∈ N

fjj(m+ n) =
∑

i∈E,i6=j

lji(m)fij(n), (3.9.2)

where

lji(n) = P(Xn = i, Tj ≥ n|X0 = j), i 6= j, (3.9.3)

denotes the probability that the chain reaches state i in n steps without intermediate return to its starting
point j.

Proof. Let j ∈ E and n,m ∈ N. Then, using the law of total probability,

fjj(m+ n) = P(Tj = m+ n|X0 = j) = P(Tj = m+ n,X0 = j)[P(X0 = j)]−1

= P(Xm+n = j,Xm+n−1 6= j, . . . , X1 6= j,X0 = j)[P(X0 = j)]−1

=
∑

i∈E,i6=j

P(Xm+n = j,Xm+n−1 6= j, . . . , X1 6= j,X0 = j,Xm = i)[P(X0 = j)]−1

=
∑

i∈E,i6=j

P(Xm+n = j,Xm+n−1 6= j, . . . , Xm+1 6= j|Xm = i,Xm−1 6= j, . . .X1 6= j,X0 = j)

P(Xm = i,Xm−1 6= j, . . .X1 6= j,X0 = j)[P(X0 = j)]−1
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Markov
=

∑
i∈E,i6=j

P(Xm+n = j,Xm+n−1 6= j, . . . , Xm+1 6= j|Xm = i)

P(Xm = i,Xm−1 6= j, . . .X1 6= j|X0 = j)

time−hom.
=

∑
i∈E,i6=j

P(Xn = j,Xn−1 6= j, . . . , X1 6= j|X0 = i)

P(Xm = i,Xm−1 6= j, . . .X1 6= j|X0 = j)

def. of Tj
=

∑
i∈E,i6=j

P(Tj = n|X0 = i)P(Xm = i, Tj ≥ m|X0 = j)

=
∑

i∈E,i6=j

fij(n)lji(m).

Since the lji(m) and fij(n) are probabilities and hence non-negative we get the following result.

Corollary 3.9.4. For a Markov chain X , we have for all i, j ∈ E, i 6= j and for all n,m ∈ N

fjj(m+ n) ≥ lji(m)fij(n). (3.9.4)

We formulate a recursive formula for lji(n) which will be useful in the proof of the main theorem.

Lemma 3.9.5. Let i 6= j. Then lji(1) = pji, and for integers n ≥ 2,

lji(n) =
∑

r∈E:r 6=j

priljr(n− 1). (3.9.5)

Proof. Let i 6= j. Clearly, lji(1) = pji, and for n ≥ 2, by the law of total probability and the Markov
property, we get

lji(n) =
∑

r∈E:r 6=j

P(Xn = i,Xn−1 = r, Tj ≥ n|X0 = j)

=
∑

r∈E:r 6=j

P(Xn = i|Xn−1 = r, Tj ≥ n,X0 = j)P(Xn−1 = r, Tj ≥ n|X0 = j)

=
∑

r∈E:r 6=j

P(Xn = i|Xn−1 = r)P(Xn−1 = r, Tj ≥ n− 1|X0 = j)

=
∑

r∈E:r 6=j

priljr(n− 1).

Construction of an invariant vector for irreducible, recurrent chains:

Fix a state j ∈ E and define for any i ∈ E by Ni(j) the number of visits to the state i before visiting
state j (when counting from time n = 1 onwards), i.e.

Ni(j) =

∞∑
n=1

I{Xn=i}∩{Tj≥n} =

Tj∑
n=1

I{Xn=i}.

Clearly, Nj(j) = 1. Note that

∑
i∈E

Ni(j) =
∑
i∈E

∞∑
n=1

I{Xn=i}I{Tj≥n}
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Tonelli
=

∞∑
n=1

I{Tj≥n}
∑
i∈E

I{Xn=i} =

∞∑
n=1

I{Tj≥n} =

Tj∑
n=1

1 = Tj , (3.9.6)

where we used Tonelli’s theorem to justify swapping the sums for non-negative addends.
Next we define ρi(j) to be the expected number of visits to the state i between two successive visits

to state j, i.e.

ρi(j) = E[Ni(j)|X0 = j], (3.9.7)

where ρj(j) = 1. From the definition of the mean recurrence time and equation 3.9.6 we deduce that

µj = E(Tj |X0 = j) = E

[∑
i∈E

Ni(j)|X0 = j

]
Tonelli

=
∑
i∈E

E [Ni(j)|X0 = j] =
∑
i∈E

ρi(j). (3.9.8)

We write ρ(j) for the the row vector consisting of elements ρi(j) for i ∈ E with µj =
∑
i∈E ρi(j).

Recall that, if the chain is positive recurrent, then µj <∞ and if it is null recurrent, then µj =∞.
We can now prove that the elements ρi(j) are finite and ρ(j) is invariant for P:

Lemma 3.9.6. For any state j ∈ E of an irreducible, recurrent chain, the vector ρ(j) satisfies ρi(j) <∞
for all i, and furthermore ρ(j) = ρ(j)P.

Proof. First we prove that ρi(j) <∞ for all i 6= j (recall that ρj(j) = 1).
Applying Tonelli’s theorem and using the fact that the conditional expectation of an indicator variable

is equal to the conditional probability that the indicator variable is equal to one, we get

ρi(j) = E[Ni(j)|X0 = j] = E

[ ∞∑
n=1

I{Xn=i}∩{Tj≥n}

∣∣∣∣∣X0 = j

]
Tonelli

=

∞∑
n=1

E
[
I{Xn=i}∩{Tj≥n}

∣∣X0 = j
]

=

∞∑
n=1

P(Xn = i, Tj ≥ n|X0 = j)

=

∞∑
n=1

lji(n).

Since the chain is irreducible, there exists an n∗ ∈ N such that fij(n∗) > 0. Hence, by equation (3.9.4)
we have, for all m ∈ N,

fjj(m+ n∗) ≥ lji(m)fij(n
∗)⇔ lji(m) ≤ fjj(m+ n∗)

fij(n∗)
,

Hence

ρi(j) =

∞∑
m=1

lji(m) ≤ 1

fij(n∗)

∞∑
m=1

fjj(m+ n∗)

≤ 1

fij(n∗)

∞∑
m=1

fjj(m) =
1

fij(n∗)
fjj =

1

fij(n∗)
<∞.

Next, we prove that ρ(j) = ρ(j)P, which is equivalent to showing that for all i ∈ E we have ρi(j) =∑
r∈E ρr(j)pri. Recall that

ρi(j) =

∞∑
n=1

lji(n).
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Also, by Lemma 3.9.5, we have lji(1) = pji, and for n ≥ 2, we get

lji(n) =
∑

r∈E:r 6=j

priljr(n− 1).

Hence, for all i ∈ E, we have

ρi(j) =

∞∑
n=1

lji(n) = lji(1) +

∞∑
n=2

lji(n)

= pji +

∞∑
n=2

∑
r∈E:r 6=j

priljr(n− 1)

ρj(j)=1,Tonelli
= ρj(j)pji +

∑
r∈E:r 6=j

pri

∞∑
n=2

ljr(n− 1)

= ρj(j)pji +
∑

r∈E:r 6=j

pri

∞∑
n=1

ljr(n)

= ρj(j)pji +
∑

r∈E:r 6=j

priρr(j) =
∑
r∈E

ρr(j)pri,

which concludes the proof.
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Lemma 3.9.7. Every irreducible, positive recurrent chain has a stationary distribution.

Proof. From Lemma 3.9.6 we get the representation result ρ(j) = ρ(j)P. From equation (3.9.8) we know
that µj =

∑
i∈E ρi(j), which is clearly nonnegative. Also the µj are finite for any positive recurrent chain.

Define

πi :=
ρi(j)

µj
.

Then πi ≥ 0 for all i and
∑
i∈E πi = 1 and π = πP, hence π is a stationary distribution.

We can now summarise our findings in the following theorem.

Theorem 3.9.8. If the chain is irreducible and recurrent, then there exists a positive root x of the equation
x = xP, which is unique up to a multiplicative constant. Moreover, the chain is positive recurrent if∑
i xi <∞ and null if

∑
i xi =∞.

Proof. The existence of the root is an immediate consequence of Lemma 3.9.6. This root is always non–
negative and can in fact to be taken strictly positive (this can be shown using similar arguments as the
ones used in the context of equation (3.9.9) below). The proof of the uniqueness is left as an exercise, see
Exercise 2- 16.

Lemma 3.9.9. Let T be a nonnegative integer-valued random variable on a probability space (Ω,F ,P)
and let A ∈ F be an event with P(A) > 0. Show that

E(T |A) =

∞∑
n=1

P(T ≥ n|A).

Proof. The proof is left as an exercise, see Exercise 2- 17.
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We are now in a position to prove Theorem 3.9.2.
Recall that we already proved that any irreducible, positive recurrent chain has a stationary distribution.
Hence, we need to show:

• If an irreducible chain has a stationary distribution, then the chain is positive recurrent.

• πi = 1/µi.

Note that the uniqueness of the stationary distribution will follow from Theorem 3.9.8.

Proof of Theorem 3.9.2. Suppose that π is the stationary distribution of the chain. Assume there exists
a transient state. Since the chain is irreducible that implies that all states are transient. If all states are
transient then pij(n)→ 0, as n→∞, for all i, j, by Corollary 3.5.6. Since πPn = π, for any j

πj = lim
n→∞

πj = lim
n→∞

∑
i∈E

πipij(n)
DOM

=
∑
i∈E

πi lim
n→∞

pij(n) = 0,

thus, π could not be a stationary vector (see Definition 3.9.1); all states are recurrent. This follows from
switching the order of summation and limits using the dominated convergence theorem. Recall Theorem
2.8.2:

Theorem (Dominated Convergence Theorem). Let I denote a countable index set. If
∑
i∈I ai(n) is an

absolutely convergent series for all n ∈ N such that

1. for all i ∈ I the limit limn→∞ ai(n) = ai exists,

2. there exists a sequence (bi)i∈I , such that bi ≥ 0 for all i ∈ I and
∑
i∈I bi < ∞ such that for all

n, i : |ai(n)| ≤ bi.

Then
∑
i∈I |ai| <∞ and ∑

i∈I
ai =

∑
i∈I

lim
n→∞

ai(n) = lim
n→∞

∑
i∈I

ai(n).

Here we have ai(n) = πipij(n). Clearly,
∑
i ai(n) is absolutely convergent for all n since

∑
i |πipij(n)| =∑

i πipij(n) = πj ≤ 1 <∞.
Also limn→∞ ai(n) = 0 =: ai for all i.
Next, |ai(n)| = πipij(n) ≤ πi =: bi ≥ 0 and

∑
i bi =

∑
i πi = 1 < ∞. Applying Theorem 2.8.2

concludes the proof.
Now, we show that the existence of π implies that all states are positive (recurrent) and that πi = µ−1

i

for each i. Suppose that X0 ∼ π (i.e. P(X0 = i) = πi for each i), using Lemma 3.9.9,

πjµj = P(X0 = j)E(Tj |X0 = j) =

∞∑
n=1

P(Tj ≥ n|X0 = j)P(X0 = j)

=

∞∑
n=1

P(Tj ≥ n,X0 = j).

But, P(Tj ≥ 1, X0 = j) = P(X0 = j) (since Tj ≥ 1 by definition). Then for n ≥ 2, we have

P(Tj ≥ n,X0 = j) = P(X0 = j,Xm 6= j, 1 ≤ m ≤ n− 1)

= P(Xm 6= j, 1 ≤ m ≤ n− 1)− P(Xm 6= j, 0 ≤ m ≤ n− 1)

= P(Xm 6= j, 0 ≤ m ≤ n− 2)− P(Xm 6= j, 0 ≤ m ≤ n− 1)

= an−2 − an−1,

where we have used homogeneity and define

an = P(Xm 6= j, 0 ≤ m ≤ n).
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Note that we have used the law of total probability again:

P(Xm 6= j, 1 ≤ m ≤ n− 1) = P(X0 = j,Xm 6= j, 1 ≤ m ≤ n− 1) + P(X0 6= j,Xm 6= j, 1 ≤ m ≤ n− 1),

hence

P(X0 = j,Xm 6= j, 1 ≤ m ≤ n− 1) = P(Xm 6= j, 1 ≤ m ≤ n− 1)− P(X0 6= j,Xm 6= j, 1 ≤ m ≤ n− 1).

Then, summing over n (telescoping sum!)

πjµj = P(X0 = j) +

∞∑
n=2

(an−2 − an−1)

= P(X0 = j) + P(X0 6= j)− lim
n→∞

an

= 1− lim
n→∞

an.

However,

lim
n→∞

an = P(Xm 6= j, ∀m) = 0

by recurrence of j. That is, π−1
j = µj if πj > 0.

To see that πj > 0 for all j, suppose the converse; then

0 = πj =
∑
i∈E

πipij(n) ≥ πipij(n), (3.9.9)

for all i, n, yielding that πi = 0 whenever i→ j. However, the chain is irreducible, so that πi = 0 for each
i - a contradiction to the fact that π is a stationary vector. Thus µi <∞ and all states are positive.

To finish, if π exists then it is unique and all states are positive recurrent. Conversely, if the states of
the chain are positive recurrent then the chain has a stationary distribution from Lemma 3.9.6.

Remark 3.9.10. Note that Theorem 3.9.2 provides a very useful criterion for checking whether an irre-
ducible chain is positive recurrent: You just have to look for a stationary distribution!

Note that the stationary distribution is a left eigenvector of the transition matrix.

π = πP.

Example 3.9.11. Let E = {1, 2} and the transition matrix is given by

P =

(
0.5 0.5
0.25 0.75

)
.

Find the stationary distribution. We need to find a solution to the following equation

(π1, π2) = (π1, π2)P.

We get the following system of equations:

π1 =
1

2
π1 +

1

4
π2, π2 =

1

2
π1 +

3

4
π2.

Also, we can use the ‘probability condition’ that π1 + π2 = 1. We obtain (π1, π2) =
(

1
3 ,

2
3

)
. Compute the

mean recurrent times. µ1 = 1/π1 = 3, µ2 = 1/π2 = 3/2.
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3.9.2 Limiting distribution
Definition 3.9.12. A distribution π is the limiting distribution of a discrete-time Markov chain if, for all
states i, j ∈ E, we have

lim
n→∞

pij(n) = πj .

An important question to answer is, when is the limiting distribution (as the time parameter goes to∞)
also the stationary distribution?

A problem arises when the chain is periodic:

Example 3.9.13. Let E = {1, 2} and transition matrix P with p12 = p21 = 1, p11 = p22 = 0. Then the
Markov chain is irreducible and periodic with d(1) = d(2) = 2. Then we get that

P2n = I2×2, P2n+1 = P, ∀n ∈ N0.

Hence Pn does not converge as n → ∞. So this Markov chain does not have a limiting distribution.
However, it has a unique stationary distribution given by π = (0.5, 0.5).

Theorem 3.9.14. For an irreducible aperiodic chain we have

lim
n→∞

pij(n) =
1

µj
.

The proof is quite long and can be seen in Grimmett & Stirzaker (2001b, p. 232–235). We conclude
this section with some important remarks:

Remark 3.9.15. • If the irreducible chain is transient or null recurrent, then µj =∞ and

lim
n→∞

pij(n) = 0, ∀ i, j ∈ E.

• If the chain is irreducible aperiodic and positive recurrent then we have:

lim
n→∞

pij(n) = πj =
1

µj
∀i, j ∈ E,

where π is the unique stationary distribution.

• The limiting distribution of an irreducible aperiodic chain does not depend on the starting point
(X0 = i)/the initial distribution ν(0), but forgets its origin, hence we have by Theorems 3.3.3 and
2.8.2,

lim
n→∞

P(Xn = j) = lim
n→∞

ν
(n)
j

= lim
n→∞

∑
i∈E

P(X0 = i)pij(n) = lim
n→∞

∑
i∈E

ν
(0)
i pij(n)

DOM
=

∑
i∈E

ν
(0)
i lim

n→∞
pij(n) =

∑
i∈E

ν
(0)
i

1

µj
=

1

µj
.

3.9.3 Ergodic theorem
Now we formulate the ergodic theorem which is concerned with limiting behaviour of averages over time.

Theorem 3.9.16 (Ergodic Theorem). Suppose we are given an irreducible Markov chain {Xn}n∈N0
with

state space E. Let µi denote the mean recurrence time to state i ∈ E and let

Vi(n) =

n−1∑
k=0

1{Xk=i},
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denote the number of visits to i before n. Then Vi(n)/n denotes the proportion of time before n spent in
state i. Then

P

(
Vi(n)

n
→ 1

µi
, as n→∞

)
= 1.

See Norris (1998, Chapter 1.10) for a proof.
Altogether, we get the following results. If the chain is irreducible and positive recurrent, then Vi(n)/n→

πi (the unique stationary distribution) as n → ∞. If it is irreducible and null recurrent or transient, we
have Vi(n)/n→ 0 as n→∞.

Summary: Properties of irreducible Markov chains

There are three kinds of irreducible Markov chains:

1. Positive recurrent

(a) Stationary distribution π exists.

(b) Stationary distribution is unique.

(c) All mean recurrence times are finite and µi = 1
πi

(d) Vi(n)/n → πi as (n → ∞), where Vi(n)/n denotes the proportion of time before n spent in
state i.

(e) If the chain is aperiodic, then

lim
n→∞

P(Xn = i) = πi, ∀ i ∈ E.

2. Null recurrent

(a) Recurrent, but all mean recurrence times are infinite.

(b) No stationary distribution exists.

(c) Vi(n)/n→ 0 as (n→∞)

(d)

lim
n→∞

P(Xn = i) = 0, ∀ i ∈ E.

3. Transient

(a) Any particular state is eventually never visited.

(b) No stationary distribution exists.

(c) Vi(n)/n→ 0 as (n→∞)

(d)

lim
n→∞

P(Xn = i) = 0, ∀ i ∈ E.

3.9.4 Properties of the elements of a stationary distribution associated with tran-
sient or null-recurrent states

Before moving on to Markov chains on a finite state space, we formulate an important result which can
be derived using the same arguments as in the proof of Theorem 3.9.2, where we applied the dominated
convergence theorem.

Theorem 3.9.17. Let X denote a time-homogeneous Markov chain on a countable state space E. If π is
a stationary distribution of this Markov chain and a state i ∈ E is either transient or null-recurrent, then
πi = 0.

53



A. E. D. Veraart Applied Probability Autumn 2022

We note that the theorem above does not claim the existence of a stationary distribution for general
Markov chains, but states that if there is one (or possibly many) stationary distribution(s) of the Markov
chain, then the elements of the stationary distribution associated with transient and null-recurrent states are
equal to 0.

This is a very useful result, since it means that, in practice, when computing stationary distributions,
we can focus on the states which are positive recurrent and set the remaining elements of the stationary
distribution to 0 (provided it exists).

Proof. Suppose that π is a stationary distribution of the chain. Assume that state j ∈ E is either transient
or null-recurrent. Then pij(n) → 0, as n → ∞, for all i, by Corollary 3.5.6 and Theorem 3.5.11. Since
πPn = π, we have

πj = lim
n→∞

πj = lim
n→∞

∑
i∈E

πipij(n)
DOM

=
∑
i∈E

πi lim
n→∞

pij(n) = 0.

This follows from switching the order of summation and limits using the dominated convergence theorem
(DOM, Theorem 2.8.2). For the DOM, note that we can set ai(n) = πipij(n). Clearly,

∑
i ai(n) is abso-

lutely convergent for all n since
∑
i |πipij(n)| =

∑
i πipij(n) = πj ≤ 1 < ∞. Also limn→∞ ai(n) =

0 =: ai for all i. Next, |ai(n)| = πipij(n) ≤ πi =: bi ≥ 0 and
∑
i bi =

∑
i πi = 1 <∞.

Remark 3.9.18. We note that in the case of a finite state-space, the proof of Theorem 3.9.17 simplifies. In
that case, null-recurrent states do not exist, so only transient states need to be considered. We are allowed
to interchange the limit and the finite sum in the above proof, without the need to appeal to the dominated
convergence theorem.

End of lecture 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.9.5 Existence of a stationary distribution on a finite state space
So far, we have studied general Markov chains in discrete time with a countable state space. As mentioned
before, the state space E could be any countably infinite set, e.g. E = N. There are however, many
examples where the state space is indeed finite, i.e. K = card(E) = |E| < ∞, e.g. E = {1, 2, 3} or
E = {sunny, rainy} etc.. In that case, the theory simplifies and we obtain some very nice results which are
very useful in applications.

The main results we will establish in this subsection are the following ones:

Existence: A discrete-time Markov chain on a finite state space always has (at least) one stationary distri-
bution.

Uniqueness: Every Markov chain with a finite state space has a unique stationary distribution unless the
chain has two or more closed communicating classes.

We already proved that on a finite state space there is at least one positive recurrent class.

Theorem 3.9.19. If the state space is finite, then there is at least one positive recurrent communicating
class.

Proof. This is an immediate consequence of Theorems 3.7.11, 3.7.8, 3.7.12.

We can now formulate an important result.

Theorem 3.9.20. Suppose we have a finite state space. The stationary distribution π for a transition matrix
P is unique if and only if there is a unique closed communicating class.
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Proof of Theorem 3.9.20. First suppose there is a unique closed communicating class C. Write P(C) for
the restriction of the matrix P to the states in C. From Theorem 3.7.6, we concluded that P(C) is a
stochastic matrix, and from Theorem 3.7.11 we obtain that all states in C are positive recurrent, hence we
can apply Theorem 3.9.2 to conclude that there exists a unique stationary distribution πC1:|C| for P(C). Let
π be a stationary distribution on E satisfying π = πP. Theorem 3.9.17 tells us that πi = 0 whenever
i 6∈ C. Hence π is supported on C only.

Consequently, for i ∈ C, we have

πi =
∑
j∈E

πjpji =
∑
j∈C

πjpji =
∑
j∈C

πjp
C
ji,

where π restricted to C is stationary for P(C). Since the stationary distribution for P(C) is unique, we
get πi = πCi for all i ∈ C. Altogether we have

πi =

{
πCi , if i ∈ C,
0, if i 6∈ C. , (3.9.10)

and the solution π = πP is unique.
Now suppose that there is a unique stationary distribution and two distinct closed communicating

classes for P, say C1 and C2. Clearly, the restriction of P to each of these classes is irreducible. Therefore,
for each i = 1, 2 there exists a distribution π(i) supported on Ci which is stationary for P(Ci). We can see
(check it!) that each π(i) is stationary for P. Hence P has a stationary distribution, but it is not unique.

The arguments presented in the above proof, allow us to deduce the following useful result. Consider
a Markov chain with a finite state space and at least two closed classes. Then every stationary distribution
can be represented as a linear combination of the stationary distributions associated with the closed classes
and extended to the whole space.

Corollary 3.9.21. Consider a Markov chain with a finite state space and N ≥ 2 closed classes. Let Ci
denote the closed classes of the Markov chain and we denote by π(i) the stationary distribution associated
with class Ci using the construction

π
(i)
j =

{
πCij , if j ∈ Ci,
0, if j 6∈ Ci.

, (3.9.11)

Then every stationary distribution of the Markov chain can be represented as

N∑
i=1

wiπ
(i),

for weights wi ≥ 0,
∑n
i=1 wi = 1.

Finding the stationary distributions for Markov chains with a finite state space

Suppose we have a Markov chain with a finite state space. Then:

• A stationary distribution always exists.

• The stationary distribution is unique. ⇔ There is a unique closed communicating class. ⇔ There is
a unique positive recurrent communicating class.

If you need to find a stationary distribution, proceed as follows:

• Find all (N , say) closed communicating classes Ci (e.g. by looking at the transition diagram or by
examining the transition matrix P).
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• For each closed communicating class Ci, i = 1, 2, . . . , you need to solve a system of equations.
I.e. if Ci is such a closed communicating class, let πCi denote a card(Ci)-dimensional row vector
with non-negative entries. Solve πCiP(Ci) = πCi such that all elements of πCi are non-negative
and sum up to 1.

• One possible stationary distribution is then given by the row vector π(i) which consists of the cor-
responding elements of the vectors πCi and of zeros corresponding to the transient states, see the
construction (3.9.11). You need to be careful to get the order of the elements right. We often study
”nicely blocked Markov chains” in this course, but that does not need to be the case in a real appli-
cation!

• In a final step, you can represent all possible stationary distributions by

N∑
i=1

wiπ
(i),

for weights wi ≥ 0,
∑n
i=1 wi = 1.

• You might also want to check, that if you only found one closed class, the above conditions should
lead to a unique stationary distribution. If you still have some free parameters, then there has to be a
mistake in your calculations!

As homework, try using the strategy described above to answer the following exam question.

Exercise 3.9.22 (Exam question 2020). Consider a discrete-time homogeneous Markov chain {Xn}n∈N0

with state space E = {1, 2, 3, 4, 5, 6, 7, 8} and transition matrix given by

P =



1
4 0 3

4 0 0 0 0 0
0 1 0 0 0 0 0 0
1
3

1
3

1
3 0 0 0 0 0

0 0 0 1
4

3
4 0 0 0

0 0 0 1
3

2
3 0 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


.

1. Draw the transition diagram.

2. Specify the communicating classes and determine whether they are transient, null recurrent or posi-
tive recurrent. Please note that you need to justify your answers.

3. Find all stationary distributions.

Solution. 1. The transition diagram is given by

1 23 4 5 6 7 8

3
4

1
4 1

1
3

1
3

1
3

3
4

1
4

1
3

2
3

1

1

1

1

Figure 3.11: Transition diagram for the Markov chain described in Exercise 3.9.22

2. We have a finite state space which can be divided into five communicating classes: The classes
T1 = {1, 3}, T2 = {8} are not closed and hence transient.

The classes C1 = {2}, C2 = {4, 5}, C3 = {6, 7} are finite and closed and hence positive recurrent.
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3. This Markov chain does not have a unique stationary distribution π since we have three closed
communicating classes. For the transient states we know from the lectures that πi = 0 for i = 1, 3, 8.

For the positive recurrent states, we solve π2·1 = π2, (π4, π5) = (π4, π5)

(
1
4

3
4

1
3

2
3

)
and (π6, π7) =

(π6, π7)

(
0 1
1 0

)
, which leads to π2 = π2, π5 = 9

4π4 and π6 = π7.

There are various ways of representing all possible stationary distributions (only one is needed!),
e.g.:

• π = (0, π2, 0, π4,
9
4π4, π6, π6, 0) for all π2, π4, π6 ≥ 0 with π2 + 13

4 π4 + 2π6 = 1,

• π = (0, π2, 0,
4
9π5, π5, π6, π6, 0) for all π2, π5, π6 ≥ 0 with π2 + 13

9 π5 + 2π6 = 1,

• π = a(0, 1, 0, 0, 0, 0, 0, 0) + b(0, 0, 0, 4
13 ,

9
13 , 0, 0, 0) + c(0, 0, 0, 0, 0, 1

2 ,
1
2 , 0) for all a, b, c ≥ 0

with a+ b+ c = 1.

3.9.6 Limiting distributions on a finite state space
We have already discussed that limiting distributions might not always exist. We can show, however, that
if there is a limiting distribution on a finite state space, then the limiting distribution is a also a stationary
distribution.

Theorem 3.9.23. Let K = |E| <∞. Suppose for some i ∈ E that

lim
n→∞

pij(n) = πj , ∀j ∈ E.

Then π is a stationary distribution.

Proof. Homework, see Exercise 2- 20.

End of lecture 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.10 Time reversibility
An interesting concept in the study of Markov chains is that of time reversibility. The idea is to reverse the
time scale of the Markov chain; such a concept, as we will see in a moment, is very useful for constructing
Markov chains with a pre-specified stationary distribution. This is important, for example for Markov chain
Monte Carlo (MCMC) algorithms.

Define an irreducible, positive recurrent Markov chain {Xn}n∈{0,1,...,N} for an N ∈ N. We assume
that π is the stationary distribution, and P is the transition matrix, and that for any n ∈ {0, 1, . . . , N} the
marginal distribution ν(n) is equal to π. The reversed chain is defined to be, for any n ∈ {0, 1, . . . , N}

Yn = XN−n.

Theorem 3.10.1. The sequence Y is a Markov chain which satisfies

P(Yn+1 = j|Yn = i) =
πj
πi
pji.

Proof.

P(Yn+1 = in+1|Yn = in, Yn−1 = in−1, . . . , Y0 = i0)

=
P(Yk = ik, 0 ≤ k ≤ n+ 1)

P(Yk = ik, 0 ≤ k ≤ n)
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=
P(XN−k = ik, 0 ≤ k ≤ n+ 1)

P(XN−k = ik, 0 ≤ k ≤ n)
.

Now we apply Bayes theorem and the Markov property to deduce that

P(XN−k = ik, 0 ≤ k ≤ n+ 1)

= P(XN = i0|XN−k = ik, 1 ≤ k ≤ n+ 1)P(XN−k = ik, 1 ≤ k ≤ n+ 1)

= P(XN = i0|XN−1 = i1)P(XN−k = ik, 1 ≤ k ≤ n+ 1)

= P(XN = i0|XN−1 = i1)P(XN−1 = i1|XN−2 = i2) · · ·P(XN−n = in|XN−n−1 = in+1)

P(XN−n−1 = in+1)

= πin+1pin+1in . . . pi1i0 .

Hence

P(Yn+1 = in+1|Yn = in, Yn−1 = in−1, . . . , Y0 = i0) =
πin+1

pin+1in . . . pi1i0
πinpinin−1

. . . pi1i0

=
πin+1

pin+1in

πin
.

Similarly, we get that

P(Yn+1 = in+1|Yn = in) =
P(Yn+1 = in+1, Yn = in)

P(Yn = in)
=

P(XN−n−1 = in+1, XN−n = in)

P(XN−n = in)

=
P(XN−n = in|XN−n−1 = in+1)P(XN−n−1 = in+1)

P(XN−n = in)
=
πin+1

pin+1in

πin
.

So overall we have shown that for any n ∈ N and for any states i0, . . . , in+1 ∈ E we have that

P(Yn+1 = in+1|Yn = in, Yn−1 = in−1, . . . , Y0 = i0) = P(Yn+1 = in+1|Yn = in)

=
πin+1

pin+1in

πin
,

which completes the proof.

Definition 3.10.2. Let X = {Xn : n ∈ {0, 1, . . . , N}} be an irreducible Markov chain with stationary
distribution π and the marginal distributions are given by ν(n) = π for all n ∈ {0, 1, . . . , N}. The Markov
chain X is called time-reversible if the transition matrices of X and its time-reversal Y are the same.

Theorem 3.10.3. {Xn}n∈{0,1,...,N} is time–reversible if and only if for any i, j ∈ E

πipij = πjpji. (3.10.1)

Note that the condition (3.10.1) is often referred to as detailed–balance.

Proof. Let Q be the transition matrix of {Yn}n∈{0,1,...,N}. Then from the above arguments, we have

qij = pji
πj
πi

thus qij = pij iff (3.10.1) holds.

Theorem 3.10.4. For an irreducible chain, if there exist a probability vector π such that (3.10.1) holds, for
any i, j ∈ E, then the chain is time–reversible (once it is in its stationary regime) and positive recurrent,
with stationary distribution π.
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Proof. Given the detailed balance condition and any j ∈ E, we have∑
i∈E

πipij =
∑
i∈E

πjpji = πj
∑
i∈E

pji = πj

thus π is stationary. The remainder of the result follows from Theorem 3.9.2.

Essentially, the result tells us, if we want to construct a chain with stationary distribution π, then one
way is through the detailed balance condition.

Remark 3.10.5. Note that it is possible to extend the definition of time reversibility to an infinite time set
{0, 1, 2, . . . }, or even to a doubly–infinite time set {. . . ,−2,−1, 0, 1, 2, . . . }.

Exercise 3.10.6. Let {Xn}n∈N0
denote a Markov chain with state space E = {1, 2, 3} with transition

matrix

P =

 0 p 1− p
1− p 0 p
p 1− p 0

 , for 0 < p < 1.

Is the Markov chain reversible?

Solution. The Markov chain is irreducible, with finite state space. Hence there is a unique stationary
distribution, which is given by π = (1/3, 1/3, 1/3). [Since the transition matrix is doubly-stochastic, the
uniform distribution is the stationary distribution.]

Now we check the detailed balance equations: πipij = πjpji. Here we need 1
3pij = 1

3pji, i.e. pij =
pji, for any i, j ∈ {1, 2, 3}. These equations only hold if and only if p = 1− p⇔ p = 1/2. So, the chain
is reversible if and only if p = 1/2.
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Chapter 4

Properties of the exponential
distribution

In this chapter we will discuss various important properties of the exponential distribution which will play
a central role in our study of Poisson processes and, more generally, continuous-time Markov chains.

4.1 Definition and basic properties
Let us briefly recall the definition of the exponential distribution.

Definition 4.1.1 (Exponential distribution). A continuous random variable X is said to have the exponen-
tial distribution with parameter λ > 0, i.e. X ∼ Exp(λ), if its density function is given by

fX(x) =

{
λe−λx, if x > 0,

0, otherwise.

Its cumulative distribution function is given by

FX(x) =

{
0, if x ≤ 0,

1− e−λx, if x > 0.

We observe that the so-called survival function of the exponential distribution is given by

P(X > x) =

{
1, if x ≤ 0,

e−λx, if x > 0.

The probability density function and cumulative distribution function of an exponential variable with
various choices of the rate parameter λ are depicted in Figure 4.1.

Theorem 4.1.2. Let X ∼ Exp(λ) for λ > 0. Then

1. E(X) = 1
λ .

2. λX ∼ Exp(1).

Proof. 1. Using integration by parts or the Gamma function, we deduce that

E(X) =

∫ ∞
0

xλe−λxdx =
1

λ

∫ ∞
0

xλe−λxλdx =
1

λ
Γ(2) =

1

λ
.

2. Let x < 0, then P(λX ≤ x) = 0, for x ≥ 0, we have

P(λX ≤ x) = P(X ≤ x/λ) = FX(x/λ) = 1− e−x,
which is the cdf of an Exp(1) random variable.
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Figure 4.1: Plot of the p.d.f. (left) and the c.d.f. (right) of a random variable X ∼ Exp(λ) for λ ∈
{0.5, 1, 2}.

Theorem 4.1.3. Let n ∈ N and λ > 0. Consider independent and identically distributed random variables
Hi ∼ Exp(λ) for i = 1, . . . , n. Let Jn :=

∑n
i=1Hi. Then Jn follows the Gamma(n, λ) distribution, i.e.

fJn(t) =
λn

Γ(n)
tn−1e−λt, t > 0.

Proof. There are a few ways to prove this, but the simplest, is to use the uniqueness of the Laplace trans-
form.

Let u > 0. By definition

E(e−uJn) = E(e−u
∑n
i=1Hi)

independence
=

n∏
i=1

E(e−uHi)

identical distribution
= [E(e−uH1)]n.

For u > 0, we have

E(e−uH1) =

∫ ∞
0

e−uxλe−λxdx =
λ

λ+ u
,

and hence

E(e−uJn) =

(
λ

λ+ u

)n
,

which is the Laplace transform of a Gamma(n, λ) random variable.
To see this, note that if Y ∼ Gamma(n, λ), then for u > 0,

E(e−uY ) =

∫ ∞
0

e−uy
λn

Γ(n)
yn−1e−λydy
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=
λn

Γ(n)

∫ ∞
0

e−(u+λ)yyn−1dy

=
λn

Γ(n)

1

(u+ λ)n

∫ ∞
0

e−(u+λ)y[(u+ λ)y]n−1(u+ λ)dy

=
λn

Γ(n)

1

(u+ λ)n

∫ ∞
0

e−zzn−1dz

=
λn

Γ(n)

1

(u+ λ)n
Γ(n) =

λn

(u+ λ)n
.

End of lecture 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We state some additional useful properties of the exponential distribution, which are fundamental for
continuous-time Markov chains.

Theorem 4.1.4. Let n ∈ N and λ1, . . . , λn > 0. Consider independent random variables Hi ∼ Exp(λi)
for i = 1, . . . , n. Let H := min{H1, . . . ,Hn}. Then

1. H ∼ Exp(
∑n
i=1 λi).

2. For any k = 1, . . . , n, P(H = Hk) = λk/(
∑n
i=1 λi).

Proof. See Exercise 3- 22 on the problem sheet.

The result in Theorem 4.1.4 can be strengthened to the case of countably many random variables, see
Norris (1998, p.72).

Theorem 4.1.5. Consider a countable index set E (later this will be the state space) and {Hi : i ∈ E}
independent random variables with Hi ∼ Exp(λi) for all i ∈ E. Suppose that

∑
i∈E λi < ∞ and set

H := infi∈E Hi.
Then the infimum is attained at a unique random value I of E with probability 1. Moreover, H and I

are independent, with H ∼ Exp(
∑
i∈E λi) and P(I = i) = λi/

∑
k∈E λk.

Proof. We set I = i if Hi < Hj for all j 6= i, otherwise let I be undefined. Then, using the continuous
law of total probability, see (2.7.2),

P(I = i,H ≥ y) = P(Hi ≥ y,Hj > Hi ∀j 6= i)

=

∫ ∞
0

P(Hi ≥ y,Hj > Hi ∀j 6= i|Hi = xi)fHi(xi)dxi

(Hi) indep.
=

∫ ∞
y

P(Hj > xi ∀j 6= i)fHi(xi)dxi

(Hi) indep.
=

∫ ∞
y

∏
j∈E,j 6=i

e−λjxiλie
−λixidxi

=
λi∑
k∈E λk

e−
∑
k∈E λky.

Hence P(I = i for some i) =
∑∞
i=1

λi∑
k∈E λk

= 1 and H and I have the claimed joint distribution.

Exercise 4.1.6. Suppose that blue and red cars arrive at a petrol station. Let X denote the waiting time to
the arrival of the next red car and assume that X ∼ Exp(λX). Also, let Y denote the waiting time to the
arrival of the next blue car and assume that Y ∼ Exp(λY ). What is the probability that a red car arrives
before a blue?
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Solution to Exercise 4.1.6. Using the (continuous) law of total probability:

P(X < Y ) =

∫ ∞
−∞

P(X < Y |Y = y)fY (y)dy

=

∫ ∞
−∞

P(X < y|Y = y)fY (y)dy

X,Y independent
=

∫ ∞
−∞

P(X < y)fY (y)dy

=

∫ ∞
−∞

FX(y)fY (y)dy

=

∫ ∞
0

[∫ y

0

λXe
−λXxdx

]
λY e

−λY ydy

=
λX

λX + λY
.

Remark 4.1.7. Note that, rather than doing the computations in Exercise 4.1.6 above, we could have
applied Theorem 4.1.4 to conclude that

P(X < Y ) = P(min{X,Y } = X) =
λX

λX + λY
.

4.2 Lack of memory property
Theorem 4.2.1 (Lack of memory property). A continuous random variable X : Ω → (0,∞) has an
exponential distribution if and only if it has the lack of memory property:

P(X > x+ y|X > x) = P(X > y), ∀x, y > 0.

Proof [Reading material. ]
Suppose X ∼ Exp(λ), then we have for all x, y > 0,

P(X > x+ y|X > x) =
P(X > x+ y,X > x)

P(X > x)

=
P(X > x+ y)

P(X > x)
=
e−λ(x+y)

e−λx

= e−λy = P(X > y).

Now suppose that X has the lack of memory property whenever P(X > x) > 0. Set G(x) = P(X >
x), thenG is continuous (sinceX is continuous) and monotonically decreasing. Moreover, for all x, y > 0,

G(x+ y) = P(X > x+ y) = P(X > x+ y|X > x)P(X > x)

lack of mem.
= P(X > y)P(X > x) = G(x)G(y). (4.2.1)

Using equation (4.2.1) and induction, we can then show that

G(2) = G(1 + 1) = [G(1)]2,

and

G(n) = [G(1)]n.
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Also, since X is assumed to be positive, i.e. X > 0, there exists an m ∈ N such that G(1/m) =
P(X > 1/m) > 0.

G(1) = G

(
1

m
+ · · ·+ 1

m

)
=

[
G

(
1

m

)]m
> 0,

hence

G

(
1

m

)
= [G(1)]1/m.

So

G
( n
m

)
= G

(
1

m
+ · · ·+ 1

m

)
=

[
G

(
1

m

)]n
= [G(1)]

n/m
.

Hence, we obtain, by the same arguments, that, for all positive rational numbers x = n
m ,

G(x) = G
( n
m

)
= [G(1)]

n/m
= [G(1)]x.

Hence, for rational x > 0

P(X > x) = G(x) = [G(1)]x = ex log(G(1)) = e−λx, for λ = − log(G(1)).

Since G(1) is a probability, we note that λ = − log(G(1)) > 0. Now, consider an irrational positive
number x > 0 and any rational numbers u, v such that v ≤ x ≤ u. Since G is non-increasing

G(u) ≤ G(x) ≤ G(v)⇔ [G(1)]u ≤ G(x) ≤ [G(1)]v.

Now we take the limits (through the rational numbers) as v ↑ x and u ↓ x to conclude that, for all x > 0

P(X > x) = G(x) = [G(1)]x = ex log(G(1)) = e−λx, for λ = − log(G(1)).

Hence G is the survival function of the exponential distribution with parameter λ, which concludes the
proof.

Remark 4.2.2. Note that the continuity assumption in the above theorem can be dropped and one can
show the following stronger result: A random variable X : Ω→ (0,∞) has an exponential distribution if
and only if it has the lack of memory property:

P(X > x+ y|X > x) = P(X > y), ∀x, y > 0.

This can be proved using a very mild modification of the above proof, see e.g. (Norris 1998, p. 70-71) or
Nelsen (1987) for details.

4.3 Criterion for the convergence/divergence of an infinite sum of
independent exponentially distributed random variables

We will now study a criterion for the convergence/divergence of an infinite sum of independent exponen-
tially distributed random variables. This result will be fundamental when we study birth processes, which
are special cases of continuous-time Markov chains. In particular, we would like to know when such pro-
cesses explode. In particular, we will describe how explosion relates to the convergence/divergence of the
sum of the expected inter-arrival times of such processes.

Theorem 4.3.1. Consider a sequence of independent random variables Hi ∼ Exp(λi), for 0 < λi < ∞
for all i ∈ N and let J∞ =

∑∞
i=1Hi. Then:
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1. If
∑∞
i=1

1
λi
<∞, then P(J∞ <∞) = 1;

2. If
∑∞
i=1

1
λi

=∞, then P(J∞ =∞) = 1.

Proof of Theorem 4.3.1 (1.) Suppose that
∑∞
i=1

1
λi
<∞. Let Jn =

∑n
i=1Hi. Note that Jn ↑ J∞, i.e. Jn

monotonically increases to J∞ as n → ∞. Hence by the monotone convergence theorem (MON), see
Theorem 2.8.3, we can interchange the limit and expectation and get

E(J∞) = E

(
lim
n→∞

n∑
i=1

Hi

)
MON

= lim
n→∞

n∑
i=1

E(Hi) =

∞∑
i=1

1

λi

by assumption
< ∞.

E(J∞) <∞ implies that P(J∞ <∞) = 1.
To see this note that, using the continuity property of the probability measure (Theorem 2.5.2) and the

Markov inequality, we have

P(J∞ =∞) = P

( ∞⋂
K=1

{J∞ ≥ K}
)

= P

(
lim
N→∞

N⋂
K=1

{J∞ ≥ K}
)

= P
(

lim
N→∞

{J∞ ≥ N}
)

Theorem 2.5.2
= lim

N→∞
P (J∞ ≥ N)

Markov inequality

≤ lim
N→∞

E(J∞)

N
= 0.

Alternatively, we could write,

∞ > E(J∞) = E(J∞|J∞ <∞)P(J∞ <∞) + E(J∞|J∞ =∞)P(J∞ =∞)

J∞>0
≥ E(J∞|J∞ =∞)P(J∞ =∞),

which implies that P(J∞ =∞) = 0.
[Note that E(J∞) =∞ does not imply that P(J∞ =∞) > 0.]

Proof of Theorem 4.3.1 (2.) We show that E (exp(−J∞)) = 0 since this will imply P(J∞ =∞) = 1.
We can apply the monotone convergence theorem for decreasing sequences, see Theorem 2.8.3, use the

result for the Laplace transform E(exp(−Hi)) = (1 + 1/λi)
−1, and the independence of Hi, to deduce

that

E (exp(−J∞)) = E

( ∞∏
i=1

exp(−Hi)

)
MON2

= lim
n→∞

E

(
n∏
i=1

exp(−Hi)

)
(Hi) independent

= lim
n→∞

n∏
i=1

E (exp(−Hi))

use Laplace transform of Hi
=

∞∏
i=1

1

1 + 1/λi
.

Taking logs, we get

− log (E (exp(−J∞))) =

∞∑
i=1

log

(
1 +

1

λi

)
. (4.3.1)

We will now show that − log (E (exp(−J∞))) = ∞, which implies that E (exp(−J∞)) = 0. So we can
conclude that P(J∞ =∞) = 1.

Consider
∑∞
i=1 log

(
1 + 1

λi

)
. Two cases are possible:
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• Either λi ≤ 1 for infinitely many i, in which case log(1 + 1/λi) ≥ log(2) for each such i and the
sum in (4.3.1) diverges,

• or λi ≤ 1 for only finitely many i. Note that if λi ≥ 1, then log(1 + 1/λi) ≥ log(2) 1
λi

. Since
the series

∑∞
i=0

1
λi

diverges, the sum
∑∞
i=0

1
λi
I{λi≥1}, which is obtained by omitting finitely many

terms, must also diverge. Hence the sum (4.3.1) diverges, too.

Note that

I{λi≥1} =

{
1, if λi ≥ 1,
0, otherwise.

In the proof above we used the fact that if λi ≥ 1, then log(1 + 1/λi) ≥ log(2) 1
λi

. This can be checked
using standard methods from analysis:

Lemma 4.3.2. For x ≥ 1, we have

log

(
1 +

1

x

)
≥ log(2)

1

x
. (4.3.2)

Recall the following inequality for the logarithm:

log(1 + x) >
x

x+ 1
, for x > −1. (4.3.3)

Proof of Lemma 4.3.2. Note that proving inequality (4.3.2) is equivalent to showing that

f(x) := x log

(
1 +

1

x

)
− log(2) ≥ 0, forx ≥ 1.

We note that f(1) = 0 and

f ′(x) = − 1

1 + x
+ log

(
1 + x

x

)
> − 1

1 + x
+

1
x

1
x + 1

= 0,

for x ≥ 1, where we used (4.3.3), which implies that f(1) = 0 and then is monotonically increasing for
x ≥ 1, which concludes the proof.

Alternatively, one could argue as follows: Inequality (4.3.3) implies that for λi ≥ 1, we have

log

(
1 +

1

λi

)
>

1/λi
1/λi + 1

=
1

1 + λi
≥ 1

2λi
.

The simpler inequality above would also lead to a divergent series.

End of lecture 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Chapter 5

Poisson processes

We will now start our discussion of continuous-time stochastic processes, where, as in the discrete-time
case, we will (mainly) focus on processes taking values in a countable state space. We will start with some
general remarks before introducing Poisson processes formally.

5.1 Remarks on continuous-time stochastic processes on a countable
state space

The following summary is based on Norris (1998, p.67–70).
As in discrete-time, we denote by E a countable set (the state space). We recall that a continuous-time

stochastic process denoted by X = (Xt)t≥0 with values in E is a collection of random variables. How
can we characterise the law, i.e. the probabilistic behaviour, of such a process? For instance, we might
be interested in computing probabilities such as P(Xt = i), P(Xt0 = i0, . . . , Xtn = in) or P(Xt =
i for some t).

We have the sigma-additivity property of the probability measure that for disjoint (Ai), the probability
of the countable union satisfies

P(∪iAi) =
∑
i

P(Ai).

However, as soon as the union is not countable such as ∪t≥0At, the sigma-additivity property is not appli-
cable.

In order to overcome this problem, we typically work with right-continuous processes. One can show
that any event depending on a right-continuous process can be determined from its finite-dimensional
distributions, which are the probabilities

P(Xt0 = i0, . . . , Xtn = in),

for n ∈ N0, 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn and i0, . . . , in ∈ E.
A path/realisation t 7→ Xt(ω) of a right continuous process on a countable state space resembles a

step-function, i.e. it stays constant for some time before jumping to a new state. More precisely, there are
three possible scenarios:

1. The path has infinitely many jumps, but only finitely many in any finite time interval [0, t]
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2

4

J0 J1 J2 J3 J4H1 H2 H3 H4

t

Xt(ω)

1

Figure 5.1: Scenario 1: One realisation of a continuous-time process with infinitely many jumps, but only
finitely many on any finite interval.

2. Absorption: The path has only finitely many jumps and gets absorbed in one state where it stays
forever:

2

4

J0 J1 J2H1 H2 H3 =∞

t

Xt(ω)

1

Figure 5.2: Scenario 2: One realisation of a continuous-time process with absorption.

3. Explosion: The path has infinitely many jumps in a finite time interval [0, t], i.e. the process explodes.
Afterwards the process starts again and might explode again or it might not.
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2

4

J0 J1 J2 J3 J∞
H1 H2 H3 H4

t

Xt(ω)

1

Figure 5.3: Scenario 3: One realisation fo a continuous-time process with explosion.

We call J0, J1, . . . the jump times of X = {Xt}t≥0 and H1, H2, . . . the holding times. They can be
derived from X as follows:

J0 = 0, Jn+1 = inf{t ≥ Jn : Xt 6= XJn}, n ∈ N0,

where inf ∅ =∞. Moreover, for n ∈ N,

Hn =

{
Jn − Jn−1, if Jn−1 <∞,
∞, otherwise.

Due to right-continuity we have that Hn > 0 for all n ∈ N. If Jn+1 = ∞ for some n, then we define
X∞ := XJn , i.e. we set it to the final value of the chain, otherwise X∞ is undefined.

Note that

Jn =

n∑
i=1

Hi.

The (first) explosion time is defined as

J∞ := sup
n∈N0

Jn =

∞∑
n=1

Hn.

We can define the jump process associated withX = (Xt)t≥0, or jump chain ifX is a Markov chain,
as the discrete-time process (Zn)n∈N0 with Zn := XJn . (Note that you will sometimes see the notation
Zn := XJn+ which indicates that we are working with the right limit if right-continuity is not explicitly
assumed.) The jump chain is just the sequence of all the values X takes up to explosion.

We are typically not interested in what happens to the process after explosion, but consider minimal
processes: We can extend the state space E by adding the state∞, say, and set Xt = ∞ if t > J∞. The
term ”minimal” here means that we are looking at a process which is active only for a minimal time, since
its activities cease after the time of explosion.

We remark that a minimal process can be constructed from its holding times and jump process. In
particular, this enables us to compute probabilities associated withX = (Xt)t≥0 via countable unions. For
instance,

P(Xt = i) =

∞∑
n=0

P(Zn = i, Jn ≤ t < Jn+1),
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and

P(Xt = i for some t ∈ [0,∞)) = P(Zn = i for some n ∈ N0).

This will turn out to be very useful when proving properties for continuous-time Markov chains, since we
will often relate them to the properties of the corresponding jump chain, where we have already derived
many important results.

5.2 Introduction to Poisson processes
After having studied Markov chains in discrete time, we want to study Markov chains in continuous time.
The general theory will be introduced in the next chapter. Here we start off with one particular example of
a Markov process in continuous-time, the Poisson process. As a digression, the Poisson process (as well as
Brownian motion) is a Lévy process.

(a) (b)

Figure 5.4: The Poisson process is named after Siméon-Denis Poisson, see Figure (5.4a), a French math-
ematician, geometer, and physicist who lived from 21 June 1781 to 25 April 1840. Lévy processes are
named after Paul Pierre Lévy, see Figure (5.4b), a French mathematician who lived from 15.09.1886 to
15.12.1971.

Poisson processes are the most basic form of continuous-time stochastic processes. Informally, we
have a process that, starting at zero, counts events that occur during some time period; a realisation of the
process is displayed in the following figure.
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Figure 5.5: One realisation (Nt(ω))t∈[0,10] (left) and ten realisations (for ten different choices of ω) (right)
of a Poisson process with rate λ = 0.7.

Such a process is very useful in practice: it can be used as a model for earthquakes, queues, traffic etc.
More interestingly, it can be combined with more complex processes to describe: jumps in the value of a
stock and a process for mutations on a genealogical tree.

During this chapter we will prove a variety of properties associated to a Poisson process including:

• The number of events that occur in some interval [0, t] is a Poisson random variable of rate λt.

• The time to the next event is independent of all previous times and is exponentially distributed of
parameter λ.

• The time to the nth event is a Gamma random variable.

One of the key points to remember throughout is that a Poisson process is not a Poisson random vari-
able: this sounds obvious but many students confuse this issue.

There will be many extensions/aspects to (the basic) Poisson processes including:

• Thinning

• Non-Homogeneity

• Birth Processes

These ideas are important extensions of Poisson processes.

5.3 Some definitions
We begin by introducing the notion of a counting process. This will help to define the basic idea of the
Poisson process. A first rather informal definition is given as follows.

A first definition: A stochastic process {Nt}t≥0 is said to be a counting process if Nt represents the
total number of ‘events’ that have occurred up to time t.

That is a counting process has the following properties:

1. N0 = 0,

2. ∀t ≥ 0, Nt ∈ N0,

3. If 0 ≤ s < t, Ns ≤ Nt.
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4. For s < t, Nt −Ns equals the number of events that occur in the time interval (s, t].

5. The process is piecewise constant and has upward jumps of size 1 (i.e. Nt −Nt− ∈ {0, 1}).

Note that Nt− = lims↑tNs, which is the left limit at time t.
You can formalise the above definition in terms of the arrival times of events:

Definition 5.3.1. Let (Jn)n∈N0 be a strictly increasing sequence of positive random variables with J0 = 0
almost surely. The process {Nt}t≥0 defined by

Nt =

∞∑
n=1

I{Jn≤t},

which takes values in N0 is called the counting process associated to the sequence (Jn)n∈N0
.

Recall that

I{Jn≤t} = I{w∈Ω:Jn(w)≤t}(ω) =

{
1, if Jn(ω) ≤ t,
0, if Jn(ω) > t.

You can interpret Jn as the (random) time at which the nth event occurs or, equivalently, as the nth jump
time.

Note that we typically add further assumptions, e.g. we are interested in stochastic processes which
have independent and/or stationary increments.

5.3.1 Poisson process: First definition
We would like to give a first definition of a Poisson process. For this, we need to recall the so-called o(·)
notation:

A function, f , is o(δ) if

lim
δ↓0

f(δ)

δ
= 0.

Example 5.3.2. 1. Show that the function f(x) = x2 is o(δ).

2. Show that if f(·) and g(·) are o(δ), then so is f(·) + g(·).

3. Show that if f(·) is o(δ) and c ∈ R, then cf(·) is o(δ).

Definition 5.3.3. A Poisson process {Nt}t≥0 of rate λ > 0 is a non-decreasing stochastic process with
values in N0 satisfying:

1. N0 = 01.

2. The increments are independent, that is, given any choice n ∈ N and 0 ≤ t0 < t1 < t2 < · · · < tn,
the random variables Nt0 , Nt1 −Nt0 , Nt2 −Nt1 , Nt3 −Nt2 , . . . , Ntn −Ntn−1

are independent.

3. The increments are stationary: Given any two distinct times 0 ≤ s < t and for any k ∈ N0:

P(Nt −Ns = k) = P(Nt−s = k).

4. There is a ‘single arrival’, i.e. for any t ≥ 0 and δ > 0, δ → 0:

P(Nt+δ −Nt = 1) = λδ + o(δ),

P(Nt+δ −Nt ≥ 2) = o(δ),

1Technically, we only require that N0 = 0 almost surely, i.e. P(N0 = 0) = 1.
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A simple interpretation of the conditions:

• Condition (1) means that the process starts at 0.

• Condition (2) means that the increase of the number of events, in disjoint intervals of time:

[0, t0], (t0, t1], . . . , (tn−1 − tn]

are independent.

• Condition (3) means that the probability law is not affected by translation of the time parameter.

• Informally, condition (4) means that in an infinitesimal period of time there is either one or no event.

Also note that the single arrival property implies that

P(Nt+δ −Nt = 0) = 1− λδ + o(δ).

Note that a Poisson process is a counting process.

5.3.2 Poisson process: Second definition
If that definition is a little unclear, let us consider a second definition.

Definition 5.3.4. A Poisson process {Nt}t≥0 of rate λ > 0 is a stochastic process with values in N0

satisfying:

1. N0 = 0.

2. The increments are independent, that is, given any choice n ∈ N and 0 ≤ t0 < t1 < t2 < · · · < tn,
the random variables Nt0 , Nt1 −Nt0 , Nt2 −Nt1 , Nt3 −Nt2 , . . . , Ntn −Ntn−1

are independent.

3. The increments are stationary: Given any two distinct times 0 ≤ s < t and for any k ∈ N0:

P(Nt −Ns = k) = P(Nt−s = k).

4. For any t ≥ 0, Nt ∼ Poi(λt), i.e. for all t ≥ 0 and for all k ∈ N0 we have

P(Nt = k) =
(λt)k

k!
e−λt.

This definition is a little more concrete, as the probability distribution of the increments of the process
is now explicitly given. In most rigorous probability work, the first definition is, essentially, a by-product
of the definition of a Lévy process. However, perhaps, here, the second helps us to understand what is
happening.

We note that in the second definition we do not need to add the assumption that the process is non-
decreasing since this is implied by conditions 3.) and 4.).

Note that, in the definition above, we could combine the 3.) and 4.) conditions and assume the equiva-
lent condition that, for any 0 ≤ s < t, k ∈ N0, we have

P(Nt −Ns = k) =
(λ(t− s))ke−λ(t−s)

k!
.

That is, the number of events in [s, t] is a Poisson random variable, of mean λ(t− s).
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5.3.3 Right-continuous modification
Note that when we have two stochastic processes {Xt}t≥0 and {Yt}t≥0, we say that X is a modification
of Y if

Xt = Yt, almost surely for each t ≥ 0,

i.e.

P(Xt = Yt) = 1, for each t ≥ 0.

One can show that for each Poisson process there exists a unique modification which is càdlàg and
which is also a Poisson process.

The term “càdlàg”comes from the French expression: continue à droite, limitée à gauche, which means
right continuous with left limits.

Throughout the course, we always work with the càdlàg modification of a Poisson process.
In fact one can show that for each Lévy process there exists a unique modification which is càdlàg and

which is also a Lévy process.

2 4 6 8 10

1

2

3

4

5

t

Nt(ω)

1

Figure 5.6: A right-continuous path of a Poisson process (Nt(ω))t∈[0,10].

Remark 5.3.5. We note that the jump chain of the Poisson process is given by Z = (Zn)n∈N0
, where

Zn = n, for n ∈ N0.

5.3.4 Equivalence of definitions
Clearly, we cannot have two definitions for a process that do not coincide. We have the first main result of
the chapter.

Theorem 5.3.6. Definitions 5.3.3 and 5.3.4 are equivalent.

End of lecture 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof that Definition 5.3.3 implies Definition 5.3.4
We will introduce two methods for proving that Definition 5.3.3 implies Definition 5.3.4, the other

direction will be left as an exercise.
The first method uses the Laplace transform of a Poisson random variable. Recall that, for a random

variable X with discrete support X, the Laplace transform is, for u > 0

LX(u) = E[e−uX ] =
∑
x∈X

e−uxP(X = x).

Let us derive the Laplace transform of a Poisson random variable first.
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Lemma 5.3.7. The Laplace transform of a Poisson random variable of mean λt (i.e. X ∼ Poi(λt)) for
λ > 0, t > 0 is given by

LX(u) = exp{λt[e−u − 1]}, ∀u > 0.

Proof. For u > 0, we have

LX(u) = E[e−uX ] =

∞∑
x=0

e−uxP(X = x)

=

∞∑
x=0

e−ux
(λt)x

x!
exp(−λt)

= exp(−λt)
∞∑
x=0

(e−uλt)
x

x!

= exp(−λt) exp
(
e−uλt

)
= exp

(
λt(e−u − 1)

)
.

We prove the direction that Definition 5.3.3 implies Definition 5.3.4. We note that conditions (1), (2)
and (3) are identical in both definitions, so they are trivially satisfied. Hence we only need to show that
condition (4) holds. I.e. we need to prove that Nt ∼ Poi(λt).

Proof of Theorem 5.3.6 (using Laplace transforms). We begin by deriving a differential equation for LN
as follows. For δ > 0, t ≥ 0 and for u > 0,

LN (t+ δ, u) := E[e−uNt+δ ] (multiply by 1 inside E(·))
= E[e−u[Nt+δ−Nt]e−uNt ] (use independent incr.)

= E[e−u[Nt+δ−Nt]]E[e−uNt ] (use stationary incr.)

= E[e−uNδ ]LN (t, u). (5.3.1)

The third line follows via the independent increments property and the last by the stationarity.
Now consider

E[e−uNδ ] =

∞∑
x=0

e−uxP(Nδ = x)

= e−u·0P(Nδ = 0) + e−uP(Nδ = 1) +

∞∑
x=2

e−uxP(Nδ = x)

Recall the single-arrival property: P(Nt+δ−Nt = 0) = 1−λδ+o(δ) and P(Nt+δ−Nt = 1) = λδ+o(δ),
P(Nt+δ −Nt ≥ 2) = o(δ). Also, for u > 0:

0 ≤
∞∑
x=2

e−uxP(Nδ = x) <

∞∑
x=2

P(Nδ = x) = P(Nδ ≥ 2) = o(δ).

Hence:

E[e−uNδ ] = 1 · (1− λδ + o(δ)) + e−u(λδ + o(δ)) + o(δ)

= 1− λδ + e−uλδ + o(δ). (5.3.2)

Combining (5.3.1) and (5.3.2) yields

LN (t+ δ, u) = LN (t, u)[1− λδ + e−uλδ] + o(δ)
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then it follows that

LN (t+ δ, u)− LN (t, u) = LN (t, u)λδ[−1 + e−u] + o(δ),

then

LN (t+ δ, u)− LN (t, u)

δ
= LN (t, u)λ[e−u − 1] +

o(δ)

δ

taking limits as δ ↓ 0 yields

∂LN (t, u)

∂t
= LN (t, u)λ[e−u − 1]

that is

∂LN (t, u)

∂t

1

LN (t, u)
= λ[e−u − 1].

Since LN (0, u) = E(e−uN0) = E(e−u·0) = 1, and integrating both sides w.r.t t we obtain

log[LN (t, u)] = λt[e−u − 1]

i.e.

LN (t, u) = exp{λt[e−u − 1]}

this is the Laplace transform of a Poisson random variable of mean λt. That is (due to the uniqueness
property of Laplace transforms) Nt is a Poisson random variable, as specified in (3) of Definition 2.2.4.
Note that we have shown that Nt ∼ Poi(λt).

Remark 5.3.8. In the proof above, we showed that the Laplace transform of Nt (when considered as
a function in t) is differentiable from the right. Strictly speaking, we should check the continuity and
differentiability from the left and the right. These results follow easily from our computations above. Please
convince yourself that this is true!

Proof of Theorem 5.3.6 (using forward equations). An alternative way is via the forward equations. It is
very important to understand this concept. Again, we prove the direction that Definition 5.3.3 implies
Definition 5.3.4.

Define, for n ∈ N0, t ≥ 0

pn(t) = P(Nt = n).

Using the properties of Definition 3.2.3, it must be that the probabilities will coincide with that of a Poisson
random variable. Let n = 0, t ≥ 0, δ > 0, then

p0(t+ δ) = P(Nt+δ = 0) = P(no event in [0, t+ δ])

= P(no event in[0, t] and no event in(t, t+ δ])

= P(Nt = 0, Nt+δ −Nt = 0)

ind. incr.
= P(Nt = 0)P(Nt+δ −Nt = 0)

stat. incr.
= P(Nt = 0)P(Nδ = 0)

singl. arrival
= p0(t)[1− λδ + o(δ)].

Hence we have

p0(t+ δ)− p0(t)

δ
= −λp0(t) +

o(δ)

δ
.
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Letting δ ↓ 0, we get

dp0(t)

dt
= −λp0(t),

with p0(0) = P(N0 = 0) = 1. Using the same approach as above, it clearly follows that

p0(t) = e−λt.

For n ∈ N, t ≥ 0, δ > 0, we have

pn(t+ δ) = P(Nt+δ = n)

=

n∑
k=0

P(Nt+δ = n|Nt = k)P(Nt = k) (Law of total probability)

Note that

P(Nt+δ = n|Nt = k) = P(Nt+δ −Nt = n− k|Nt = k)

indep. incr.
= P(Nt+δ −Nt = n− k)

stat. incr.
= P(Nδ −N0 = n− k)

N0=0
= P(Nδ = n− k)

single arrival
=

 o(δ) k = 0, 1, . . . , n− 2,
λδ + o(δ), k = n− 1,
1− λδ + o(δ), k = n.

Hence

pn(t+ δ) =

n∑
k=0

P(Nt+δ = n|Nt = k)P(Nt = k)

=

n−2∑
k=0

o(δ)P(Nt = k) + (λδ + o(δ))P(Nt = n− 1) + (1− λδ + o(δ))P(Nt = n)

= (1− λδ)pn(t) + λδpn−1(t) + o(δ).

Hence we have

pn(t+ δ)− pn(t)

δ
= −λpn(t) + λpn−1(t) +

o(δ)

δ
.

Letting δ ↓ 0 we have

dpn(t)

dt
= −λpn(t) + λpn−1(t).

The probabilities can then be obtained by induction. Let n = 1, then we have the ODE

dp1(t)

dt
+ λp1(t) = λe−λt.

Recall to solve the (1-d, positive x) ODE

df

dx
+ α(x)f(x) = g(x),
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we have

f(x) =

∫ x
0
g(u)M(u)du+ C

M(x)
,

where M is the integrating factor

M(x) = exp

(∫ x

0

α(u)du

)
.

In the case when α and g are continuous functions (on an open interval), we also know that the solution to
the ODE is unique.

In our case, the integrating factor is

M(t) = eλt

and the solution is

p1(t) =

∫ t
0
λds+ C

eλt

since p1(0) = P(N0 = 1) = 0 we have the solution

p1(t) = λte−λt.

We can easily complete a proof by induction, solving the ODE as above and using the induction hypothesis:

pn(t) =
(λt)n

n!
e−λt

(exercise).
Hence we have shown the required property.

Remark 5.3.9. As before, in the proof above, we showed that the pmf ofNt (when considered as a function
in t) is differentiable from the right. Strictly speaking, we should check the continuity and differentiability
from the left and the right. These results follow easily from our computations above. Please convince
yourself that this is true and possibly consult (Norris 1998, p. 76-77) if you get stuck.

Proof that Definition 5.3.4 implies Definition 5.3.3
It remains to prove that Definition 5.3.4 implies Definition 5.3.3, which we leave as an exercise.

Exercise 5.3.10. Prove that Definition 5.3.4 implies Definition 5.3.3.

It is important that you try this exercise yourself! After you have completed it, you can compare your
proof with the following model solution:

Solution to Exercise 5.3.10. We need to check the four conditions in Definition 5.3.3:
Conditions (1), (2) and (3): Conditions (1), (2) and (3) are trivially satisfied. Hence we only have to show
that there is a single arrival.
Single arrival: We apply conditions (3) and (4) of Definition 5.3.4. For k ∈ N0, t ≥ 0 and δ > 0:

P(Nt+δ −Nt = k) =
1

k!
(λδ)ke−λδ.

Recall the Taylor series expansion of the exponential function:

e−λδ =

∞∑
n=0

(−λδ)n
n!

= 1 +

∞∑
n=1

(−λδ)n
n!

.
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The case k = 1: Hence for k = 1, we have

P(Nt+δ −Nt = 1) = λδe−λδ = λδ

(
1 +

∞∑
n=1

(−λδ)n
n!

)
= λδ + o(δ),

since

lim
δ→0

λδ
∑∞
n=1

(−λδ)n
n!

δ
= lim
δ→0

λ

∞∑
n=1

(−λδ)n
n!

= 0.

The case k ≥ 2: Also, we have

P(Nt+δ −Nt ≥ 2) = o(δ),

since

lim
δ→0

P(Nt+δ −Nt ≥ 2)

δ
= lim
δ→0

∑∞
k=2 P(Nt+δ −Nt = k)

δ
= lim
δ→0

∑∞
k=2

1
k! (λδ)

ke−λδ

δ

= lim
δ→0

∞∑
k=2

1

k!
λkδ(k−1)e−λδ = 0.

Alternatively, you could argue as follows:

P(Nt+δ −Nt = 0) = exp(−λδ) = 1− λδ +

∞∑
n=2

(−λδ)n
n!

= 1− λδ + o(δ),

since

lim
δ→0

1

δ

∞∑
n=2

(−λδ)n
n!

= lim
δ→0

∞∑
n=2

(−λ)nδn−1

n!
.

Then:

P(Nt+δ −Nt ≥ 2) = 1− P(Nt+δ −Nt < 2) = 1− P(Nt+δ −Nt = 0)− P(Nt+δ −Nt = 1)

= 1− (1− λδ + o(δ))− (λδ + o(δ)) = o(δ).

End of lecture 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4 Some properties of Poisson processes
Now that we have a definition of our stochastic process, let us consider some properties of it.

5.4.1 Inter-arrival time distribution
We have a process that counts events. A natural question is then: ‘What is the time between events?’. To
help answer this question, we derive the inter-arrival time distribution. That is, the distribution of the time
to the next event.

Theorem 5.4.1. Let {Nt}t≥0 be a Poisson process of rate λ > 0. Then the inter-arrival times are inde-
pendently and identically distributed exponential random variables with rate parameter λ.
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Recall, that a continuous random variable taking non-negative values has the lack-of-memory property
if and only if it follows the exponential distribution. We will re-visit this result on the problem sheet. In-
tuitively speaking, the fact that the inter-arrival times are independent and exponentially distributed means
that the Poisson process has no memory and restarts itself every time an event occurs. We will come back
to that concept when we study general Markov processes in continuous time in the next chapter.

Proof of Theorem 5.4.1. Let (H1, . . . ,Hn) := H1:n be the inter-arrival times for the first n events. Now
consider, for t > 0

P(H1 > t) = P(no events in[0, t]) = P(Nt = 0)

= e−λt.

P(H1 > t) is sometimes called the survival function of H1. We can now easily compute the cumulative
distribution function of H1:

FH1
(t) = P(H1 ≤ t) = 1− P(H1 > t) = 1− e−λt.

Hence the density function is:

fH1
(t) = λe−λt,

which we recognise as an exponential density function, of rate λ, i.e. H1 ∼ Exp(λ).
Consider the second inter-arrival time, for t > 0, by the continuous law of total probability, we have

P(H2 > t) =

∫ ∞
0

P(H2 > t|H1 = t1)fH1
(t1)dt1.

P(H2 > t|H1 = t1) = P(no events in (t1, t1 + t]|H1 = t1)

= P(Nt1+t −Nt1 = 0|H1 = t1)

indep. incr.
= P(Nt1+t −Nt1 = 0)

stat. incr.
= P(Nt = 0)

= e−λt.

I.e. H2 is independent of H1 and

P(H2 > t) =

∫ ∞
0

P(H2 > t|H1 = t1)fH1
(t1)dt1

= e−λt
∫ ∞

0

fH1(t1)dt1 = e−λt.

That is, the random variable H2 is exponentially distributed with parameter λ, i.e. H2 ∼ Exp(λ).
Here we have used the independent and stationary increment property of the Poisson process (also note

that we consider inter-arrival times, so we consider the number of events in the interval (t1, t1 + t])2.
This construction can be repeated for any n ∈ N with n ≥ 2 (conditioning on H1:n−1). In particular,

set T = t1 + · · ·+ tn−1. Then for t > 0

P(Hn > t|H1 = t1, . . . ,Hn−1 = tn−1)

= P(no events in (T, T + t]|H1 = t1, . . . ,Hn−1 = tn−1)

= P(NT+t −NT = 0|H1 = t1, . . . ,Hn−1 = tn−1)

indep. incr.
= P(NT+t −NT = 0)

stat. incr.
= P(Nt = 0) = e−λt.

Using induction on n leads the result.

2Note that we can consider the interpret P(H2 > t|H1 = t1) as P(H2 > t|H1 = t1) = limε↓0 P(H2 > t|H1 ∈ [t1 −
ε, t1]) = limε↓0 P(H2 > t|Nt1 = 1, N(t1−ε)− = 0) = limε↓0 P(H2 > t|Nt1 −N(t1−ε)− = 1, N(t1−ε)− −N0 = 0).
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5.4.2 Time to the nth event
Let {Nt}t≥0 be a Poisson process of rate λ > 0. Define J0 = 0, and, for n ∈ N,

Jn =

n∑
i=1

Hi,

denotes the time to the nth event (also called the time of the nth jump).

Theorem 5.4.2. Then, for any n ∈ N, the time to the nth event Jn follows a Gamma(n, λ) distribution,
i.e. its density is given by

fJn(t) =
λn

Γ(n)
tn−1e−λt, t > 0.

1

2

3

4

5

J0(ω) J1(ω) J2(ω) J3(ω)J4(ω)

H1(ω)

H2(ω)

H3(ω)

H4(ω)

t

Nt(ω)

1

Figure 5.7: Sample path of a Poisson process with corresponding realisations of the inter-arrival times
H1, H2, H3, H4 and jump times J0, J1, J2, J3, J4.

Proof. This follows directly from Theorem 4.1.3.

An alternative proof is based upon considering the quantity P(Jn ≤ t), and using the properties of the
Poisson process.

Alternative proof of Theorem 5.4.2. Note that, for t > 0, n ∈ N0,

Jn ≤ t⇔ Nt ≥ n.

Hence

FJn(t) = P(Jn ≤ t) = P(Nt ≥ n) =

∞∑
k=n

e−λt
(λt)k

k!
.

Now you only need to differentiate with respect to t to obtain the density fJn : In particular, we have3

fJn(t) =
d

dt

∞∑
k=n

e−λt
(λt)k

k!
=

∞∑
k=n

(
e−λt(−λ)

(λt)k

k!
+ e−λt

(λt)k−1λ

(k − 1)!

)
3The interchange of the derivative and the infinite sequence d

dt

∑∞
k=n e

−λt (λt)k
k!

=
∑∞
k=n

d
dt
e−λt (λt)

k

k!
can be justified by

noting that the latter sum converges uniformly.
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= e−λtλ

( ∞∑
k=n

(−1)
(λt)k

k!
+

(λt)k−1

(k − 1)!

)

= e−λtλ

(
−
∞∑
k=n

(λt)k

k!
+

∞∑
k=n−1

(λt)k

k!

)

= e−λt
λntn−1

(n− 1)!
= e−λt

λntn−1

Γ(n)
, ∀t > 0,

which is the density of a Gamma(n, λ) random variable.

Example 5.4.3. You call a telephone hot-line, and ‘service’ occurs according to a Poisson process of rate
λ per minute. You are told that you are the nth customer in line (n ≥ 1):

1. How long, on average, will you have to wait to be served?

2. What is the probability that you have to wait longer than 1 hour?

1. The mean of the time to the nth event is:

n

λ
.

2. The probability that you have to wait more than 1 hour is∫ ∞
60

λn

Γ(n)
tn−1e−λtdt.

This integral is not available analytically and needs to be approximated numerically.

5.4.3 Poisson process: Third definition
The properties we just derived can actually be used to define a Poisson process, which leads us to a third
definition of a Poisson process

Definition 5.4.4. A Poisson process {Nt}t≥0 of rate λ > 0 is a stochastic process with values in N0

defined as follows:

1. Let H1, H2, . . . denote independent and identically exponentially distributed random variables with
parameter λ > 0.

2. Let J0 = 0 and Jn =
∑n
i=1Hi

3. Define

Nt = sup{n ∈ N0 : Jn ≤ t}, ∀t ≥ 0.

Theorem 5.4.5. Definitions 5.3.3, 5.3.4 and 5.4.4 are equivalent.

Proof. The derivations in the previous section (Theorem 5.4.1) contain the proof that a Poisson process
according to Definition 5.3.4 is also a Poisson process according to Definition 5.4.4. It remains to show
that Definition 5.4.4 implies Definition 5.3.4, which is left as an exercise, see Exercise 3- 25 on the problem
sheet.
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5.4.4 Conditional distribution of the arrival times
Let Jn denote the time of the nth event. We now derive the conditional distribution of J1, . . . , Jn given
that Nt = n (i.e. that n events have occurred on an interval [0, t]).

Theorem 5.4.6. Let {Nt}t≥0 be a Poisson process of rate λ > 0. Then for any n ∈ N, t > 0 the
conditional density of (J1, . . . , Jn), given Nt = n is given by:

f(J1,...,Jn)(t1, . . . , tn|Nt = n) =

{
n!
tn if 0 < t1 < · · · < tn ≤ t,
0, otherwise.

I.e. the arrival times conditional on Nt = n have the same joint distribution as the order statistics
corresponding to n independent random variables uniformly distributed on the interval [0, t].

Proof. We prove the case: n = 1. I.e. we know that one event has happened on an interval [0, t]. Given
this information, what is the distribution of the time (J1) at which the first event occurred?

Let t1 ≤ t. Then

P(J1 ≤ t1|Nt = 1) =
P(J1 ≤ t1, Nt = 1)

P(Nt = 1)

=
P(1 event in [0, t1], 0 events in (t1, t])

P(Nt = 1)

=
P(Nt1 = 1, Nt −Nt1 = 0)

P(Nt = 1)

indep. incr.
=

P(Nt1 = 1)P(Nt −Nt1 = 0)

P(Nt = 1)

stat. incr.
=

P(Nt1 = 1)P(Nt−t1 = 0)

P(Nt = 1)

=
λt1e

−λt1 e−λ(t−t1)

e−λtλt
=
t1
t
.

Hence we see that the time of the first event, given that there has been one event in [0, t], is uniformly
distributed over [0, t].

Suppose that 0 < t1 < · · · < tn. Then we have

P(J1 ∈ [0, t1], J2 ∈ (t1, t2], . . . , Jn ∈ (tn−1, tn]|Nt = n)

P(J1 ≤ t1, t1 < J2 ≤ t2, . . . , tn−1 < Jn ≤ tn|Nt = n)

=
P(J1 ≤ t1, t1 < J2 ≤ t2 . . . , tn−1 < Jn ≤ tn, Nt = n)

P(Nt = n)

=
n!eλt

(λt)n
P(N[0,t1] = 1, . . . , N(tn−1,tn] = 1, N(tn,t] = 0),

where we have written the number of events upon an interval (ti, ti+1] for i = 1, . . . , n − 1 as N(ti,ti+1].
Note that N(ti,ti+1] = Nti+1

−Nti and N(tn,t] = Nt −Ntn .
Using the independent increments property of a Poisson process we obtain

P(J1 ≤ t1, t1 < J2 ≤ t2, . . . , tn−1 < Jn ≤ tn|Nt = n)

=
n!eλt

(λt)n
λt1e

−λt1 × · · · × λ[tn − tn−1]e−λ[tn−tn−1]e−λ[t−tn]

=
n!eλt

(λt)n

[
n∏
i=1

λ(ti − ti−1)

]
exp

[
−λ

n+1∑
i=1

(ti − ti−1)

]
,
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where t0 = 0, tn+1 = t. Thus it clearly follows that

P(J1 ≤ t1, t1 < J2 ≤ t2, . . . , tn−1 < Jn ≤ tn|Nt = n) =
n!

tn

n∏
i=1

(ti − ti−1).

Computing the partial derivative w.r.t tn then tn−1 etc. gives the desired result.
To see that, define

G(t1, . . . , tn) := P(J1 ≤ t1, t1 < J2 ≤ t2, . . . , tn−1 < Jn ≤ tn|Nt = n) =
n!

tn

n∏
i=1

(ti − ti−1),

which is differentiable. To simplify the exposition, let us write f(t1, . . . , tn) := f(J1,...,Jn)(t1, . . . , tn|Nt =
n) and consider the representation

G(t1, . . . , tn) =

∫ t1

0

∫ t2

t1

· · ·
∫ tn

tn−1

f(x1, . . . , xn)dxn · · · dx1.

Then

∂G(t1, . . . , tn)

∂tn
=

∫ t1

0

∫ t2

t1

· · ·
∫ tn−1

tn−2

f(x1, . . . , xn−1, tn)dxn−1 · · · dx1,

∂2G(t1, . . . , tn)

∂tn∂tn−1
=

∫ t1

0

∫ t2

t1

· · ·
∫ tn−2

tn−3

f(x1, . . . , xn−2, tn−1, tn)dxn−2 · · · dx1, . . . ,

∂nG(t1, . . . , tn)

∂tn · · · ∂t1
= f(t1, . . . , , tn).

So we get indeed the conditional density function from partially differentiating the function G.

Remark 5.4.7. The above theorem says that conditional on the fact that n events have occurred in [0, t], the
times J1, . . . , Jn at which events occur when considered as unordered random variables are independently
and uniformly distributed on [0, t].

Exercise 5.4.8. Show that the expectation of the kth value (1 ≤ k ≤ n) of n uniformly distributed order
statistics4 on [0, t] is

tk

n+ 1
.

Exercise 5.4.9. Individuals arrive at a train station according to a Poisson process of rate λ per-unit time.
The train departs at time t; what is the expected time that all the individuals (arriving in (0, t)) have to
wait?

Solution to Exercise 5.4.9. The problem asks us to calculate E[
∑Nt
i=1[t− Ji]]. Conditioning upon Nt = n

we have that

E

[
n∑
i=1

[t− Ji]
∣∣∣∣∣Nt = n

]
= nt−

n∑
i=1

E[Ji|Nt = n] = nt−
n∑
i=1

it

n+ 1

= nt− t

n+ 1

n∑
i=1

i = nt− t

n+ 1

n(n+ 1)

2
= nt− nt

2
,

where we have used Theorem 5.4.6 and Exercise 5.4.8. Thus we conclude

E

[
Nt∑
i=1

[t− Ji]
]

=
t

2
E[Nt],

4Probably you have studied order statistics in Y2
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that is,

E

[
Nt∑
i=1

[t− Ji]
]

=
λt2

2
.

End of lecture 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5 Some extensions to Poisson processes

5.5.1 Superposition

Suppose now, that we are given two independent Poisson processes {N (1)
t }t≥0 and {N (2)

t }t≥0 (of rates
λ1 > 0 and λ2 > 0), and we define a new stochastic process

Nt = N
(1)
t +N

(2)
t .

Exercise 5.5.1. Show that {Nt}t≥0 is a Poisson process of rate λ1 + λ2.

Proof. See Exercise 3- 26 on the problem sheet.

More generally, we have the following result.

Theorem 5.5.2. Given n independent Poisson processes {N (1)
t }t≥0, . . . , {N (n)

t }t≥0 with respective rates
λ1, . . . , λn > 0, define

Nt =

n∑
i=1

N
(i)
t , for t ≥ 0.

Then {Nt}t≥0 is a Poisson process with rate λ =
∑n
i=1 λi and is called a superposition of Poisson

processes.

We revisit Example 4.1.6.

Exercise 5.5.3. Suppose that blue cars arrive at a petrol station according to a Poisson process of rate λY
and red cars arrive, independently, according to a Poisson process of rate λX . What is the probability that
N cars arrive in [0, t]?

Solution to Exercise 5.5.3. Here, Nt ∼ Poi((λX + λY )t). I.e.

P(Nt = N) =
[(λX + λY )t]N

N !
e−(λX+λY )t.

5.5.2 Thinning
Now, suppose in the context of Example 5.5.3, that we know that all cars arrive according to a Poisson
process (of rate λ), but, that we are only interested in the process, of (say) green cars, which are observed
independently of the Poisson process, with probability p ∈ (0, 1); what can we say about this process?
Writing {Ng

t } as this process, we have the following result.

Exercise 5.5.4. Show that {Ng
t } is a Poisson process of rate λp.

Proof. See Exercise 3- 28 on the a problem sheet.
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More generally, we have the following result.

Theorem 5.5.5. Let {Nt}t≥0 denote a Poisson process with rate λ > 0. Assume that each arrival, in-
dependent of other arrivals, is marked as a type k event with probability pk, for k = 1, . . . , n, where∑n
i=1 pi = 1. Let N (k)

t denote the number of type k events in [0, t]. Then {N (k)
t }t≥0 is a Poisson process

with rate λpk, and the processes

{N (1)
t }t≥0, . . . , {N (n)

t }t≥0

are independent. Each process is called a thinned Poisson process.

We illustrate the concept of thinning of a Poisson process in the Figure 5.8. Here we first simulated
one sample path (which is the same as a realisation) of a Poisson process {Nt}t∈[0,10] of rate λ = 2. We
then thinned the process using p1 = 0.4 and p2 = 1 − p1 = 0.6. We obtain two new (independent)
thinned Poisson processes: the Poisson process {N (1)

t }t∈[0,10] with rate λp1 = 0.8 and the Poisson process
{N (2)

t }t∈[0,10] with rate λp2 = 1.2. We note that Nt = N
(1)
t +N

(2)
t , for all t ∈ [0, 10].

0
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15

0.0 2.5 5.0 7.5 10.0
t

 

Nt(ω) 

0
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0.0 2.5 5.0 7.5 10.0
t

 

Nt
(1)(ω) 

0
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t

 

Nt
(2)(ω) 

Figure 5.8: Left: Sample path of a Poisson process {Nt(ω)}t∈[0,10] with rate λ = 2. We thin the Poisson
process (with probabilities p1 = 0.4, p2 = 0.6) and split it into two parts such that Nt(ω) = N

(1)
t (ω) +

N
(2)
t (ω). Middle: Sample path of the thinned Poisson process {N (1)

t (ω)}t∈[0,10] with rate λp1 = 0.8.
Right: Sample path of the thinned Poisson process {N (2)

t (ω)}t∈[0,10] with rate λp2 = 1.2.

5.5.3 Non-homogeneous Poisson processes
Definition 5.5.6. Let λ : [0,∞) 7→ (0,∞) denote a non-negative and locally integrable function, called
the intensity function. A non-decreasing stochastic process N = {Nt}t≥0 with values in N0 is called a
non-homogeneous Poisson process with intensity function (λ(t))t≥0 if it satisfies the following properties:

1. N0 = 0.

2. N has independent increments.
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3. ‘Single arrival’ property: For t ≥ 0, δ > 0:

P(Nt+δ −Nt = 1) = λ(t)δ + o(δ),

P(Nt+δ −Nt ≥ 2) = o(δ),

that is, the rate/intensity is now dependent upon the time parameter.

Also note that the single arrival property implies that

P(Nt+δ −Nt = 0) = 1− λ(t)δ + o(δ).

We would like to derive the marginal distribution of Nt. More specifically, we would like to prove the
following result.

Theorem 5.5.7. Let N = {Nt}t≥0 denote a non-homogeneous Poisson process with continuous intensity
function (λ(t))t≥0. Then

Nt ∼ Poi(m(t)), where m(t) =

∫ t

0

λ(s)ds,

i.e., for all t ≥ 0 and n ∈ N0,

P(Nt = n) =
[m(t)]n

n!
e−m(t).

Remark 5.5.8. Please note that, in the Poisson distribution above, you need to work with the integrated
intensity functionm(t) and not with the intensity function λ(t) directly. This is a common source for errors
in calculations. Hence, if you would like to compute probabilities involving non-homogeneous Poisson
processes, make sure that you integrate the intensity function over the time interval of interest first before
”plugging” it into the Poisson probability mass function.

Proof of Theorem 5.5.7. We prove the result using forward equations and induction in n. First we derive
the forward equations. Define, for n ∈ N0, t ≥ 0

pn(t) = P(Nt = n).

We want to show that, for all t ≥ 0 and n ∈ N0,

P(Nt = n) =
[m(t)]n

n!
e−m(t). (5.5.1)

We check the base case n = 0. Then, for t ≥ 0, δ > 0,

p0(t+ δ) = P(Nt+δ = 0) = P(Nt = 0, Nt+δ −Nt = 0)

ind. incr.
= P(Nt = 0)P(Nt+δ −Nt = 0)

single arrival
= p0(t)[1− λ(t)δ + o(δ)].

Hence we have

p0(t+ δ)− p0(t)

δ
= −λ(t)p0(t) +

o(δ)

δ
.

Letting δ ↓ 0 we get

dp0(t)

dt
= −λ(t)p0(t),

with boundary condition p0(0) = P(N0 = 0) = 1.
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Hence, we obtain

p0(t) = exp

(
−
∫ t

0

λ(s)ds

)
=

[m(t)]0

0!
e−m(t).

Next, we consider the case when n ∈ N. For t ≥ 0, δ > 0, we have

pn(t+ δ) = P(Nt+δ = n)

=

n∑
k=0

P(Nt+δ = n|Nt = k)P(Nt = k) (Law of total probability)

Note that

P(Nt+δ = n|Nt = k) = P(Nt+δ −Nt = n− k|Nt = k)

indep. incr.
= P(Nt+δ −Nt = n− k)

single arrival
=

 o(δ) k = 0, 1, . . . , n− 2,
λ(t)δ + o(δ), k = n− 1,
1− λ(t)δ + o(δ), k = n.

Hence

pn(t+ δ) =

n∑
k=0

P(Nt+δ = n|Nt = k)P(Nt = k)

=

n−2∑
k=0

o(δ)P(Nt = k) + (λ(t)δ + o(δ))P(Nt = n− 1)

+ (1− λ(t)δ + o(δ))P(Nt = n)

= (1− λ(t)δ)pn(t) + λ(t)δpn−1(t) + o(δ).

Hence we have

pn(t+ δ)− pn(t)

δ
= −λ(t)pn(t) + λ(t)pn−1(t) +

o(δ)

δ
.

Letting δ ↓ 0 we have

dpn(t)

dt
= −λ(t)pn(t) + λ(t)pn−1(t). (5.5.2)

If we define p−1 = 0, then equation (5.5.2) describes the forward equations for all n ∈ N0.
Now we do the induction step. Suppose that (5.5.1) holds for an n ∈ N0, then we want to show that it

also holds for n+ 1.
From the forward equations, we get for n+ 1:

dpn+1(t)

dt
= −λ(t)pn+1(t) + λ(t)pn(t).

From the induction hypotheses we get

pn(t) =
[m(t)]

n

n!
e−m(t),

and hence

dpn+1(t)

dt
+ λ(t)pn+1(t) = λ(t)

[m(t)]
n

n!
e−m(t) =: g(t).
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Recall that in order to solve the (one-dimensional) ordinary differential equation

df

dx
+ α(x)f(x) = g(x), x > 0,

we have

f(x) =

∫ x
0
g(u)M(u)du+ C

M(x)
,

where M is the integrating factor

M(x) = exp

(∫ x

0

α(u)du

)
.

Here the integrating factor is given by

M(x) = exp

(∫ x

0

λ(u)du

)
= exp(m(x)).

Then

pn+1(t) =

(∫ t

0

g(u)M(u)du+ C

)
M(t)−1

=

(∫ t

0

g(u)M(u)du

)
M(t)−1

=

∫ t

0

λ(u)
[m(u)]n

n!
du e−m(t).

Since pn+1(0) = P(N0 = n+ 1) = 0, we have that C = 0.
I.e. it remains to show that∫ t

0

λ(u)
[m(u)]n

n!
du =

1

(n+ 1)!

(∫ t

0

λ(s)ds

)n+1

.

This is an application of the chain rule: Define

f(u) :=
1

n!
un, m(u) =

∫ u

0

λ(s)ds.

Note that m′(u) = λ(u). Let

F (t) :=

∫ t

0

f(u)du =
1

(n+ 1)!
tn+1.

Then, since m(0) = 0,∫ t

0

f(m(u))m′(u)du = F (m(u))|t0 = F (m(t)) =
1

(n+ 1)!
[m(t)]n+1,

which concludes the proof.

Remark 5.5.9. We note that we have again focused on right-differentiability in our proof above. The
case of considering left-limits follows similarly. We added the assumption that the intensity function is
continuous to avoid complications when considering the left and right-limits of the intensity function λ
(which are identical for continuous functions).
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Exercise 5.5.10. Derive the distribution of the increment Nt − Ns, for 0 ≤ s < t. Does a non–
homogeneous Poisson process have stationary increments?

Solution to Exercise 5.5.10. Let 0 ≤ s < t. We have shown thatNt ∼ Poi(m(t)). Also,Ns ∼ Poi(m(s)).
Observe that

Nt = (Nt −Ns) + (Ns −N0),

since N0 = 0. Now, use the Laplace transform. We know that for u > 0

E (exp(−uNt)) = exp(m(t)(exp(−u)− 1)).

Also,

E (exp(−uNs)) = exp(m(s)(exp(−u)− 1)).

Using the independence increment property, we get

E (exp(−uNt)) = E (exp(−u(Nt −Ns +Ns −N0))) = E (exp(−u(Nt −Ns))) E (exp(−u(Ns −N0)))

Hence

E (exp(−uNt)) [E (exp(−u(Ns −N0)))]−1 = E (exp(−u(Nt −Ns)))

Now we only have to plug in the results for the Laplace transform of Nt, and Ns and we get

E (exp(−u(Nt −Ns))) = exp(m(t)(exp(−u)− 1)) exp(−m(s)(exp(−u)− 1))

= exp((m(t)−m(s))(exp(−u)− 1)),

which is the Laplace transform of a Poisson random variable with rate

m(t)−m(s) =

∫ t

s

λ(u)du.

Hence, we see that the increments are generally not stationary.

Exercise 5.5.11. Revise the material on conditional distribution, mass, density and conditional expectation
from your first and second year probability courses. E.g. you can read Grimmett & Stirzaker (2001b, p. 67–
68 (Section 3.7) and p. 104–106 (Section 4.6)).

End of lecture 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5.4 Compound Poisson processes
An interesting extension of the Poisson process (which is also a Lévy process) is called the compound
Poisson process.

Definition 5.5.12. Let {Nt}t≥0 be a Poisson process of rate λ > 0. In addition, let Y1, Y2, . . . be a
sequence of independent and identically distributed random variables, that are independent of {Nt}t≥0.
Then the process {St}t≥0 with

St =

Nt∑
i=1

Yi, t ≥ 0,

is a compound Poisson process.
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Figure 5.9: Left: Sample path of a Poisson process {Nt(ω)}t∈[0,10] with rate λ = 2. Right: Sample path
of a compound Poisson process {St(ω)}t∈[0,10] with St(ω) =

∑Nt(ω)
i=1 Yi(ω). We use the same realisation

of N as in the left picture and consider jump sizes Yi ∼ N(1, 5). Note that a compound Poisson process is
not in general a counting process and it can take values in R (if Yi take values in R).

Theorem 5.5.13. Let {St}t≥0 denote a compound Poisson process as defined in Definition 5.5.12. Then
for t ≥ 0,

E(St) = λtE(Y1), Var(St) = λtE(Y 2
1 ).

Proof. When proving results for the compound Poisson process, we typically condition on Nt in the first
step. Here we will use the law of total expectation:

Using the law of total expectation, we have

E(St) =

∞∑
n=0

E(St|Nt = n)P(Nt = n),

where for n ∈ N0

E(St|Nt = n) = E

(
Nt∑
i=1

Yi|Nt = n

)
= E

(
n∑
i=1

Yi|Nt = n

)
(Yi),N indep.

= E

(
n∑
i=1

Yi

)
(Yi) identically distr.

= nE(Y1),

Hence

E(St) =

∞∑
n=0

E(St|Nt = n)P(Nt = n) =

∞∑
n=0

nE(Y1)P(Nt = n)
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=

∞∑
n=0

nP(Nt = n)E(Y1) = E(Nt)E(Y1)
Nt∼Poi(λt)

= λtE(Y1).

Note that we can shorten the proof slightly, by using the short-hand notation for the law of total expec-
tation, where we write

E(St) = E[E(St|Nt)]

instead of the long version

E(St) =

∞∑
n=0

E(St|Nt = n)P(Nt = n).

Since we have shown that E(St|Nt = n) = nE(Y1) for all n ∈ N0, we can conclude that

E(St|Nt) = NtE(Y1),

and then, by the linearity of the expectation,

E(St) = E[E(St|Nt)] = E[NtE(Y1)] = E[Nt]E(Y1) = λtE(Y1).

Similarly, for the variance, we use the law of total variance, which (using the short-hand notation) reads
as follows:

Var(St) = Var (E (St|Nt)) + E (Var (St|Nt)) . (5.5.3)

(If formula (5.5.3) is new to you, then prove it at home as an exercise!
Let us compute the conditional variance first: For all n ∈ N0, we have

Var(St|Nt = n) = Var

(
Nt∑
i=1

Yi|Nt = n

)
= Var

(
n∑
i=1

Yi|Nt = n

)
(Yi),N indep.

= Var

(
n∑
i=1

Yi

)
(Yi) ind. & identically distr.

= nVar(Y1).

Then

E (Var (St|Nt)) =

∞∑
n=0

Var(St|Nt = n)P(Nt = n)

=
∞∑
n=0

nVar(Y1)P(Nt = n)

= Var(Y1)

∞∑
n=0

nP(Nt = n) = Var(Y1)E(Nt)

Nt∼Poi(λt)
= λtVar(Y1).

Alternatively, we can argue that, since Var(St|Nt = n) = nVar(Y1) for all n ∈ N0, we have

Var(St|Nt) = NtVar(Y1),

and, hence,

E (Var (St|Nt)) = E[NtVar(Y1)] = E[Nt]Var(Y1) = λtVar(Y1).
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Also, using the short-hand proof only, we have

Var(E(St|Nt)) = Var(NtE(Y1)) = Var(Nt)(E(Y1))2 = λt(E(Y1))2.

Recall that if you take constants (in our case E(Y1)) out of the variance, you need to square them!
Using formula (5.5.3), we get

Var(St) = λtVar(Y1) + λt(E(Y1))2 = λtE(Y 2
1 ).

Exercise 5.5.14. Suppose that asteroids fall to the earth according to a Poisson process of rate λ > 0.
In addition, and independent of the arrival of the asteroid (and other asteroids), the asteroid will cause a
human fatality with probability p ∈ (0, 1). Let St denote number of human fatalities at time t. Find the
probability generating function (pgf) of St, and, using the pgf, show that the expected number of human
fatalities is λtp.

Solution to Exercise 5.5.14 . From the problem, a convenient model is

St =

Nt∑
i=1

Yi,

where each Yi is a Bernoulli random variable with parameter p.
By the law of total expectation we have, for t ≥ 0,

GSt(u) = E(uSt) = E[E(uSt |Nt)],

where we have for all n ∈ N0

E(uSt |Nt = n) = E
(
u
∑Nt
i=1 Yi

∣∣∣Nt = n
)

= E
(
u
∑n
i=1 Yi

∣∣∣Nt = n
)

(Yi),N indep.
= E

(
u
∑n
i=1 Yi

)
(Yi) independent

=

n∏
i=1

E(uY1)

(Yi) identically distr.
=

[
E(uY1)

]n
= [GY1

(u)]
n
.

Hence

E(uSt |Nt) = [GY1
(u)]

Nt

and

GSt(u) = E[E(uSt |Nt)] = E[[GY1
(u)]

Nt ] = GNt(GY1
(u)).

Next we need to derive the pgfs of Y1 and Nt (or recall them from Y1!): We have

GY1(u) = E(uY1) = u0P(Y1 = 0) + u1P(Y1 = 1)

= 1− p+ up = 1 + p(u− 1) =: z,

and

GNt(z) =

∞∑
n=0

znP(Nt = n) =

∞∑
n=0

zn
(λt)n

n!
e−λt =

∞∑
n=0

(zλt)n

n!
e−λt
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= exp(λt(z − 1)).

Hence

GSt(u) = GNt(GY1
(u)) = exp(λt(z − 1)) = exp(λtp(u− 1)).

We deduce that St follows the Poisson distribution with parameter λtp. Also,

E(St) =
d

du
GSt(u)

∣∣∣∣
u=1

= eλtp(u−1)λtp
∣∣∣
u=1

= λtp.

Remark 5.5.15. In the exercise above, we could have worked with a thinned Poisson process instead of
the compound Poisson process with Bernoulli jumps. Both processes are equivalent.

Whilst this application is perhaps a little ‘unrealistic’, compound Poisson processes are used in a variety
of important applications in insurance and finance (for example). In financial applications, they are often
used in stochastic volatility models, to help reflect jumps in a volatility (standard deviation of financial
instruments) process. We will study an example from insurance mathematics in the following.

5.6 The Cramér-Lundberg model in insurance mathematics
The compound Poisson process is often used in insurance mathematics to model the total amount of insur-
ance claims. Let us study the Cramér-Lundberg model, which can be regarded as the basic insurance risk
model.

Note that you can find more details in the excellent textbooks Embrechts et al. (1997) and Mikosch
(2009).

Definition 5.6.1. The Cramér-Lundberg model is given by the following five conditions.

1. The claim size process is denoted by Y = (Yk)k∈N, where the Yk denote positive i.i.d. random
variables with finite mean µ = E(Y1), and variance σ2 = Var(Y1) ≤ ∞.

2. The claim times occur at the random instants of time

0 < J1 < J2 < · · · a.s..

3. The claim arrival process is denoted by

Nt = sup{n ∈ N : Jn ≤ t}, t ≥ 0,

which is the number of claims in the interval [0, t]. (Note that sup ∅ := 0).

4. The inter-arrival times are denoted by

H1 = J1, Hk = Jk − Jk−1, k = 2, 3, . . . ,

and are independent and exponentially distributed with parameter λ.

5. The sequences (Yk) and (Hk) are independent of each other.

Exercise 5.6.2. Convince yourself that the process {N}t≥0 defined above is a equivalent to the Poisson
process defined in the (third) Definition 5.4.4.

Definition 5.6.3. The total claim amount is defined as the process (St)t≥0 satisfying

St =

{ ∑Nt
i=1 Yi, Nt > 0,

0, Nt = 0.
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We observe that the total claim amount is modelled as a compound Poisson process.
We can derive the total claim amount distribution.

Theorem 5.6.4. The total claim amount distribution is given by

P(St ≤ x) =

∞∑
n=0

e−λt
(λt)n

n!
P

(
n∑
i=1

Yi ≤ x
)
, x ≥ 0, t ≥ 0,

and P(St ≤ x) = 0 for x < 0.

Proof. Let x ≥ 0, then

P(St ≤ x)
Law of total prob.

=

∞∑
n=0

P(St ≤ x,Nt = n)

=

∞∑
n=0

P

(
n∑
i=1

Yi ≤ x,Nt = n

)
(Yi),N independent

=

∞∑
n=0

P

(
n∑
i=1

Yi ≤ x
)

P(Nt = n)

Nt∼Poi(λt)
=

∞∑
n=0

e−λt
(λt)n

n!
P

(
n∑
i=1

Yi ≤ x
)
.

Definition 5.6.5. The risk process {Ut}t≥0 is defined as

Ut = u+ ct− St, t ≥ 0,

where u ≥ 0 stands for the initial capital and c > 0 denotes the premium income rate.

Exercise 5.6.6. Draw a sample path of the risk process U !

Now we can define the ruin probability.

Definition 5.6.7. 1. The ruin probability in finite time is given by

ψ(u, T ) = P(Ut < 0 for some t ≤ T ), 0 < T <∞, u ≥ 0.

2. The ruin probability in infinite time is given by

ψ(u) := ψ(u,∞), u ≥ 0.

We can derive a useful result:

Theorem 5.6.8.

E(Ut) = u+ ct− λtµ = u+ (c− λµ)t.

We can use the above result in order to come up with a first guess on how to choose the premium rate
c: Note that we wish to choose c such that the ruin probability ψ(u, T ) (for given u and T ) is “small”.

A minimal requirement when choosing the premium could be

c > λµ,

which is often referred to as the net profit condition.
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It implies that the risk process has positive mean (for all t ≥ 0), i.e. the premium income is sufficiently
high to cover the claim payments. Also

lim
t→∞

E(Ut)

t
= c− λµ > 0.

One can show that if the net profit condition is not satisfied, then ruin is certain (i.e. the ruin probability is
1) in the Cramér-Lundberg model.

We illustrate the importance of the net profit condition in Figure 5.10. Here we simulate 10 sample
paths of the risk process U when the net profit condition is not satisfied (left) and when it is satisfied
(right). We observe a strikingly different behaviour of the sample paths, where ruin happens for all 10
sample paths considered in the time interval of interest (on the left), whereas we do not observe a ruin on
the right hand side when the net profit condition is satisfied. We note that a simulation with only 10 paths
is very small and you should typically consider many more paths before drawing any conclusions!
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Figure 5.10: Each picture depicts 10 realisations of the risk process Ut = u+ ct− St, where in both cases
we have that λ = 3, E(Y1) = 10 (where the Yi follow an exponential distribution), u = 50. The premium
income rate varies and is set to c = 10 on the left and to c = 50 on the right. The corresponding net profits
are given by −20 and 20, respectively.

5.7 The coalescent process
To finish the chapter, we will look at a genuine application of the Poisson process, which is used in popula-
tion genetics. Due to the complexities of such models, we will look at the most basic ideas, but hopefully,
it is clear that Poisson processes play a vital role in stochastic modelling of real processes.
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5.7.1 Problem
• We are given a collection of n individuals, for which we have observed (for example) a DNA se-

quence from that individual.

• A DNA sequence is a collection of letters A, C, T and G, for simplicity, we assume that only one
letter (base) is observed.

• The coalescent process helps to provide a genealogical tree representation of this data. That is, a
tree like structure that, probabilistically represents the history of the individuals backward in time,
where individuals join together (coalesce) until there is only one individual: the most recent common
ancestor.

A coalescent tree can be seen in Figure 5.11, which also describes mutation (although we do not con-
sider this below).

A

A→ G

A→ C

C A G

Figure 5.11: A Coalescent graph. The letters denote the types of the three observed chromosomes. Going
up the figure (backward in time), the points where the graph join are coalescent events and the arrows
denote a mutation of the type of a chromosome to another (forward in time).

5.7.2 Process
We will describe a very water-downed version of the coalescent process see for example the article Nord-
borg (2000), and also Nordborg (2004), for a detailed introduction.

• At the beginning of the process there are n (n ∈ N, n ≥ 2) individuals (all of the same DNA base),
and

• each pair of individuals coalesce according to an (independent) Poisson process of rate 1.

• Since there are (
n

2

)
pairs, the time to the first coalescent event is an exponential random variable of rate

(
n
2

)
, since we

are considering the minimum of
(
n
2

)
independent Exp(1)-distributed random variables, see Theorem

4.1.4.
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• At the first event, two individuals are picked uniformly at random and combined.

• This continues until there is only one individual (the most recent common ancestor);

• hence there are n− 1 coalescent events.

• The model, assumes all individuals have the same DNA base, so clearly another mechanism is needed
for real data - a mutation process.

• Note that in this process the number of individuals decreases, and is our first example of a death
process.

5.7.3 Time to the most recent common ancestor
The time to the most recent common ancestor, i.e. the height of the tree, can be estimated by

E

(
n−1∑
k=1

Hk

)
, for n ∈ N, n ≥ 2,

where Hk is the time to kth coalescence.
Since

Hk ∼ Exp

((
n− (k − 1)

2

))
⇒ E(Hk) =

((
n− (k − 1)

2

))−1

,

it follows that

E

(
n−1∑
k=1

Hk

)
=

n−1∑
k=1

E(Hk)

=

n−1∑
k=1

(
(n− k + 1)!

(n− k − 1)!2!

)−1

=

n−1∑
k=1

2(n− k − 1)!

(n− k + 1)!

=

n−1∑
k=1

2

(n− k + 1)(n− k)
=

n−1∑
k=1

2

k(k + 1)
.

Note that

n−1∑
k=1

2

k(k + 1)
= 2

(
1− 1

n

)
.

Further, since Hn−1 ∼ Exp(
(

2
2

)
), we find that

E(Hn−1) = 1.

We interpret this finding as follows: The expected time during which there are only two branches is greater
than half of the expected total tree height.

End of lecture 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Chapter 6

Continuous-time Markov chains

We now look at Markov chains in continuous time, i.e. T = [0,∞), but on a countable state-space E,
where often E ⊂ Z with K = Card(E). As in the discrete case, we could in fact choose any finite or
countably infinite set as the state space. These processes are much more complex than in discrete time (in
particular if K = ∞), and it will take much more sophisticated machinery to deal with such processes
rigorously. As a result, we will sometimes only discuss the intuition behind some proofs rather than all
technical details. This chapter is based on Grimmett & Stirzaker (2001b, Chapters 6.9 & 6.11).

6.1 Some definitions
We begin with a basic definition. Throughout, we assume that E is a countable state space.

Definition 6.1.1. A continuous-time process {Xt}t∈[0,∞) satisfies the Markov property if

P(Xtn = j|Xt1 = i1, . . . , Xtn−1
= in−1) = P(Xtn = j|Xtn−1

= in−1)

for all j, i1, . . . , in−1 ∈ E and for any sequence 0 ≤ t1 < · · · < tn <∞ of times (with n ∈ N).

Comparing with the definition of Markov chains in discrete time, we can see that the main modification
is with the inclusion of the process at a finite number of times. If we think, intuitively, the process is a path
and hence we consider the dependence upon the path on a finite number of points up-to tn−1; there is a
technical way to describe this dependence through filtrations, again, we do not explore this definition, and
we restrict ourselves to finite dimensional behaviour.

In discrete-time, we looked at the mechanics of the chain via the transition matrix. However, in
continuous-time, there is no direct analogue; there is no notion of unit time. The way out is to use the
idea of the generator, and we now look to introduce this concept.

Definition 6.1.2. The transition probability pij(s, t) is, for s ≤ t, i, j ∈ E

pij(s, t) = P(Xt = j|Xs = i)

and, in addition, the chain is homogeneous if

pij(s, t) = pij(0, t− s)

writing pij(t− s) = pij(s, t) in this case.

From herein, it is assumed that the chain is homogeneous and the probabilities are con-
tinuous in t.

Let Pt = (pij(t))). Then we have the following result:

Theorem 6.1.3. The family {Pt : t ≥ 0} is a stochastic semigroup; that is, it satisfies
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1. P0 = IK×K , the identity

2. Pt is stochastic, that is Pt has non-negative entries with rows summing to 1.

3. the Chapman-Kolmogorov equations hold: Ps+t = PsPt for all s, t ≥ 0.

Proof. 1. Part 1 follows since for i, j ∈ E, pii(0) = 1 and pij(0) = 0 for i 6= j.

2. Then (using the law of total probability), for all i ∈ E,∑
j∈E

pij(t) =
∑
j∈E

P(Xt = j,X0 = i)

P(X0 = i)
=

P(X0 = i)

P(X0 = i)
= 1.

3. Using the law of total probability (with additional conditioning) and the Markov property, we have,
for all i, j ∈ E, s, t ≥ 0,

pij(s+ t) = P(Xs+t = j|X0 = i)

=
∑
k∈E

P(Xs+t = j|Xs = k,X0 = i)P(Xs = k|X0 = i)

=
∑
k∈E

P(Xs+t = j|Xs = k)P(Xs = k|X0 = i)

=
∑
k∈E

pik(s)pkj(t).

As in the discrete-time case, the evolution of the Markov chain is specified by the stochastic semigroup
{Pt} and the distribution of X0.

Warning: We will not study the general theory of continuous-time Markov chains in this course in
detail, but rather focus on some applications. Hence, we only sketch some important results in the following
without giving all technical conditions and rigorous proofs!

We have not yet defined the generator, but note that much of the transition dynamics of the Markov
chain can be expressed in terms of the semigroup. The continuity assumption can be expressed as follows:

Definition 6.1.4. The semigroup {Pt} is called standard if

lim
t↓0

Pt = I (= P0),

where I = IK×K denotes the K ×K-dimensional identity matrix.

Note that a semigroup is standard if and only if its elements pij(t) are continuous functions in t,
cf. Exercise 4- 35. (Recall: A function f is continuous in y ∈ R if, ∀ε > 0, ∃δ > 0 such that ∀x ∈ R with
|x− y| < δ, we have |f(x)− f(y)| < ε).

In the following, we only consider Markov chains with standard semigroups of transition proba-
bilities.

Exercise 6.1.5. Show that a Poisson process {Nt}t≥0 with rate λ > 0 is a Markov chain in continuous
time.

Solution to Exercise 6.1.5. This result is an immediate consequence of the independent increment property.
To see this, note that for any j, i1, . . . , in−1 ∈ E and for any sequence 0 ≤ t1 < · · · < tn < ∞ of times
(with n ∈ N), we have

P(Ntn = j|Nt1 = i1, . . . , Ntn−1 = in−1)

=
P(Ntn = j,Ntn−1 = in−1, . . . , Nt1 = i1)

P(Ntn−1 = in−1, . . . , Nt1 = i1)
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=
P(Ntn −Ntn−1 = j − in−1, Ntn−1 −Ntn−2 = in−1 − in−2, . . . , Nt2 −Nt1 = i2 − i1, Nt1 = i1)

P(Ntn−1 −Ntn−2 = in−1 − in−2, . . . , Nt2 −Nt1 = i2 − i1, Nt1 = i1)

indep. incr.
=

P(Ntn −Ntn−1 = j − in−1)P(Ntn−1 −Ntn−2 = in−1 − in−2) · · ·P(Nt2 −Nt1 = i2 − i1)P(Nt1 = i1)

P(Ntn−1 −Ntn−2 = in−1 − in−2) · · ·P(Nt2 −Nt1 = i2 − i1)P(Nt1 = i1)

= P(Ntn −Ntn−1 = j − in−1).

Also,

P(Ntn = j|Ntn−1 = in−1) =
P(Ntn = j,Ntn−1 = in−1)

P(Ntn−1 = in−1)
=

P(Ntn −Ntn−1 = j − in−1, Ntn−1 = in−1)

P(Ntn−1 = in−1)

indep. incr.
=

P(Ntn −Ntn−1 = j − in−1)P(Ntn−1 = in−1)

P(Ntn−1 = in−1)
= P(Ntn −Ntn−1 = j − in−1).

Hence, the Markov condition is satisfied.

Example 6.1.6. Let us consider a Poisson process {Nt}t≥0 with rate λ > 0. Let i, j ∈ N0. The transition
probabilities are given by pij(t) = 0 for i > j, and for i ≤ j by

pij(t) = P(Ns+t = j|Ns = i) = P(Ns+t −Ns = j − i)
stat. incr.

= P(Nt = j − i) =
(λt)j−i

(j − i)!e
−λ(j−i).

I.e. the stochastic semigroup of the Poisson process with rate λ is given by

Pt =

0 1 2 · · ·


0 e−λt (λt)e−λt (λt)2e−λt/2 . . .

1 0 e−λt (λt)e−λt
...

2 0 0 e−λt
. . .

...
...

...
. . .

...

.

6.2 Holding times and alarm clocks

6.2.1 Holding times
We will now introduce the concept of holding times and show that they are exponentially distributed.
Suppose {Xt}t≥0 is a continuous-time homogeneous Markov chain.

Suppose that t ≥ 0 and, for i ∈ E, we have Xt = i. Given Xt = i, define

H|i = inf{s ≥ 0 : Xt+s 6= i}

to be the holding time at state i, that is the length of time that a continuous-time Markov chain started in
state i stays in state i before transitioning to a new state. Note that the holding time does not depend on t
since we work under the time-homogeneity assumption. I.e.

inf{s ≥ 0 : Xt+s 6= i}|Xt = i
distr.
= inf{s ≥ 0 : Xs 6= i}|X0 = i.

Remark 6.2.1. Note that we denote by Hi the ith holding time (in time) and by H|i the holding time
associated with state i which are not in general the same objects. E.g. for a Poisson process (starting at
0), we would have that H1 = H|0, H2 = H|1, . . ., for a birth process starting in k say, i.e. N0 = k, we
would have, H1 = H|k, H2 = H|k+1, . . .. For a general Markov chain we have for n ∈ N, given that
XJn−1+ = i (which is the right-limit of X at time Jn−1), that Hn = H|XJn−1+

= H|i for i ∈ N, i.e. we
associate

Hn|XJn−1+ = H|XJn−1+
.
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1
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3
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J0 J1 J2 J3 J4

H1 = H|3

H2 = H|1

H3 = H|4

H4 = H|3

t

Xt(ω)

1

Figure 6.1: This picture clarifies the notation we use for holding times: We depict a path of a Markov chain
with its corresponding holding times and jump times (where we suppress the ωs to make the picture easier
to read).

Theorem 6.2.2. The holding time H|i, for i ∈ E, follows an exponential distribution.

Proof. By time homogeneity assume without loss of generality that X0 = i. Note that for x, y ≥ 0, we
have

{H|i > x} distr.
= {Xt = i, for 0 ≤ t ≤ x},

{H|i > x+ y} distr.
= {Xt = i, for 0 ≤ t ≤ x+ y}.

Then

P(H|i > x+ y|H|i > x)

= P(Xt = i, for 0 ≤ t ≤ x+ y|Xt = i, for 0 ≤ t ≤ x)

=
P(Xt = i, for 0 ≤ t ≤ x,Xt = i, for x < t ≤ x+ y)

P(Xt = i, for 0 ≤ t ≤ x)

= P(Xt = i, for x < t ≤ x+ y|Xt = i, for 0 ≤ t ≤ x)

Markov
= P(Xt = i, for x < t ≤ x+ y|Xx = i)

time−hom.
= P(Xt = i, for 0 < t ≤ y|X0 = i) = P(H|i > y).

Hence H|i has a continuous distribution satisfying the lack of memory property, hence it follows the
exponential distribution.

End of lecture 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2.2 Describing the evolution of a Markov chain using exponential holding times
Let us now describe how a continuous-time Markov chain evolves in time using the concept of exponential
alarm clocks. The following presentation follows closely Dobrow (2016, p.269–272).
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For each i ∈ E, let us denote by qi > 0, the parameter of the exponential distribution associated with
H|i. We shall assume that 0 < qi <∞.

Technically, the boundary cases could be considered, but we will not do so in the following: If qi = 0,
then that would mean that i is an absorbing state, i.e. when i gets visited, the process stays there forever.
If qi = ∞, then i would be an instantaneous state, meaning that the process would leave i immediately
after visiting it. This would allow for infinitely many transitions in a finite time interval and hence would
lead to explosion.

Assuming that the Markov chain is neither absorbing nor explosive, then its evolution in time can be
described as follows.

• Suppose the process starts in state i.

• It stays in i for an exponentially distributed length of time with parameter qi, i.e. the mean length of
stay in state i is E(H|i) = 1/qi time units.

• Then it transitions into a state j 6= i, with some probability which we denote by pZij .

• It stays in j for an exponentially distributed length of time with parameter qj , i.e. the mean length of
stay in state j is E(H|j) = 1/qj time units.

• Then it transitions into a state k 6= j, with some probability which we denote by pZjk.

If we ignore time, we see a sequence Z0, Z1, Z2, . . ., where Zn denotes the nth state visited by the
continuous-time Markov chain X . As mentioned earlier Z = (Zn)n∈N0 denotes the jump chain, which is
sometimes also called the embedded chain associated withX . The jump chainZ is a discrete-time Markov
chain with transition matrix PZ = (pZij)i,j∈E , where the diagonal elements are all zero, i.e. pZii = 0 for all
i ∈ E.

[In the case of i being an absorbing state, we would have that pZii = 1. ]

Example 6.2.3. Let us consider a Poisson process with rate λ > 0. Here, qi = λ for all i ∈ N0. The jump
chain is given by Zn = n for n ∈ N0 and the transition matrix of the jump chain is given by

PZ =

0 1 2 · · ·


0 0 1 0 . . .

1 0 0 1
...

2 0 0 0 1
. . .

...
...

...
. . .

. . .

.

6.2.3 Describing the evolution of a Markov chain using exponential alarm clocks
and transition rates

Another way of describing the evolution of continuous-time Markov chains is by specifying transition
rates between states and using the concept of exponential alarm clocks:

• For each state i ∈ E, we denote by ni the number of states which can be reached from state i.

• We associate ni independent, exponential alarm clocks with rates qij provided that state j can be
reached from state i.

• When the chain first visits state i, all ni exponential alarm clocks will be set simultaneously.

• The first alarm clock which rings, determines which state the chain transitions to. Suppose the clock
with rate qij rings first, then the chain moves to state j.

• As soon as state j has been reached, we set the nj independent exponential alarm clocks associated
with state j and continue as before.
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We call the qij the transition rates of the process.
We will now describe how we can derive the holding time parameters and the transition probabilities

of the embedded chain from the transition rates.

• Let i 6= j and let qij > 0 denote the transition rates when state j can be reached from state i.

• Let i 6= j, set qij = 0 if j cannot be reached from i.

• Also, we set qii = 0 for all i ∈ E.

• Suppose the process starts in state i. We set the ni exponential alarm clocks and wait for the first one
to ring.

• According to Theorems 4.1.4 and 4.1.5, the minimum/infimum of these exponential alarm clocks
follows an exponential distribution with rate

qi =
∑
j∈E

qij .

• The probability that the chain moves from i to j is the probability that the minimum/infimum of the
exponential waiting times until the first alarm clocks rings is equal to the waiting time until the alarm
clocks associated with rate qij rings. According to Theorems 4.1.4 and 4.1.5, this probability is equal
to

qij
qi
.

• Hence, the transition probabilities of the embedded chain Z are given by

pZij =
qij
qi
.

In the above construction, we assumed again that 0 < qi < ∞. In the case of qi = 0 (i.e. when i is an
absorbing state), then pZii = 1.

Similar to the transition diagrams for discrete-time Markov chains, we can draw transition diagrams
using the transition rates of the continuous-time Markov chains:

Example 6.2.4. Consider the three-state Markov chain withE = {1, 2, 3} and transition rates and holding
time parameters given by

(q1, q2, q3) = (q12 + q13, q21 + q23, q31 + q32).

We assume that qi 6= 0 for all i = 1, 2, 3.

1

2 3

q13

q12

q23

q21

q31

q32

1

Figure 6.2: Transition diagram displaying the transition rates of a three state continuous-time Markov
chain.
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The transition matrix of the embedded chain is given by

PZ =

1 2 3( )1 0 q12/q1 q13/q1

2 q21/q2 0 q23/q2

3 q31/q3 q32/q3 0

.

6.3 The generator
We will now link the notion of transition rates to the concept of a generator for continuous-time Markov
chains, see Dobrow (2016, p. 273-275).

Recall that the derivative of a function describes its rate of change. In the case of continuous-time
Markov chains the derivative of the matrix of the transition probabilities is hence closely linked to the
transition rates as we shall see in the following.

Recall that, as in discrete time, we also have that P0 = I, which is the card(E) × card(E)-identity
matrix.

Definition 6.3.1. The generator G = (gij)i,j∈E of the Markov chain with stochastic semigroup Pt is
defined as the card(E)× card(E)-matrix given by

G := lim
δ↓0

1

δ
[Pδ − I] = lim

δ↓0

1

δ
[Pδ −P0],

that is, Pt is differentiable at t = 0.

We will now provide some heuristic arguments, to link the elements of the generator to the transition
rates we studied earlier. Please note that the following discussion is not completely rigorous.

Suppose that Xt = i, then the instantaneous transition rate of hitting state j 6= i is given by

lim
δ↓0

E(number of transitions to j in (t, t+ δ]|Xt = i)

δ

(?)
= lim

δ↓0

P(Xt+δ = j|Xt = i)

δ
= lim

δ↓0

P(Xδ = j|X0 = i)

δ

= lim
δ↓0

pij(δ)

δ
= lim

δ↓0

pij(δ)− pij(0)

δ
= p′ij(0),

where equality (?) can be justified as follows: If δ is very small, then the number of transitions in a time
interval of length δ is either 0 or 1. The p′ij(0) instantaneous transition rates are identical to the transition
rates qij we introduced above. I.e.

gij = qij = p′ij(0).

Note that we can also say that, for i 6= j,

pij(δ) ≈ gijδ.

Also, we have, for all i ∈ E,

gii = p′ii(0) = lim
δ↓0

pii(δ)− pii(0)

δ
= lim

δ↓0

pii(δ)− 1

δ

= lim
δ↓0

−∑j∈E,j 6=i pij(δ)

δ

(??)
= −

∑
j∈E,j 6=i

lim
δ↓0

pij(δ)

δ
= −

∑
j∈E,j 6=i

p′ij(0)

= −
∑

j∈E,j 6=i

qij = −
∑
j∈E

qij = −qi,
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where we assume for our heuristic discussion that the interchange of limit and (potentially infinite) sum in
(??) is valid. Note that we can also conclude that

pii(δ) ≈ 1 + giiδ.

6.3.1 Transition probabilities of the associated jump chain
We can now derive the transition probabilities of the embedded/jump chain and express them in terms of
the generator:

If Xt = i it stays there for an exponentially distributed time with rate −gii = qi (assuming qi 6= 0),
and then moves to some other state j. The probability that the chain jumps to j 6= i is −gij/gii. To see
this, note that we have for δ > 0 and i 6= j that

P(Xt+δ = j|Xt = i,Xt+δ 6= i)

=
P(Xt+δ = j,Xt = i,Xt+δ 6= i)

P(Xt = i,Xt+δ 6= i)

=
P(Xt+δ = j,Xt = i)P(Xt = i)

P(Xt = i,Xt+δ 6= i)P(Xt = i)

=
P(Xt+δ = j|Xt = i)

P(Xt+δ 6= i|Xt = i)
=

pij(δ)

1− pii(δ)
→ −gij

gii
as δ ↓ 0.

I.e., for i 6= j,

pZij = −gij
gii

=
qij
qi
,

which is equivalent to

qij = qip
Z
ij .

Note that for a discrete-time Markov chain, the transition matrix together with the initial distribution
characterises the probabilistic properties of the process completely. In continuous-time, the generator plays
the role of the transition matrix and together with the initial distribution characterises the probabilistic prop-
erties of the process completely. However, it is important not to confuse these two. While the transition
matrix for a discrete-time chain is a stochastic matrix consisting of (1-step) transition probabilities, the gen-
erator is not a stochastic matrix (it has negative elements on the diagonal) and its row sums are (typically)
equal to 0 and not to 1. Also, transition rates are not probabilities, so they can take any positive value and
are not bounded between 0 and 1.

End of lecture 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.4 The forward and backward equations
We have seen that it is possible to find G, given {Pt}, by setting G = P′0, but the converse is also usually
true. The matrix of transition functions {Pt} can be derived for a given generator G by solving either
Kolmogorov’s forward or backward equations (subject to regularity conditions):

Theorem 6.4.1. Subject to regularity conditions, see Section 6.9, a continuous-time Markov chain with
stochastic semigroup {Pt} and generator G satisfies the Kolmogorov forward equation

P′t = PtG,
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and the Kolmogorov backward equation

P′t = GPt,

for all t ≥ 0.

Proof. Let t ≥ 0 and δ > 0. Using the Chapman-Kolmogorov equations, we know that Pt+δ = PtPδ .
Hence

Pt+δ −Pt
δ

=
PtPδ −Pt

δ
=

Pt(Pδ − I)

δ
= Pt

(Pδ −P0)

δ
.

Hence, taking the limit δ ↓ 0 on both sides leads to

P′t = lim
δ↓0

Pt+δ −Pt
δ

= PtG.

Also, using the Chapman-Kolmogorov equations again, we know that also Pt+δ = PδPt. Hence

Pt+δ −Pt
δ

=
PδPt −Pt

δ
=

(Pδ − I)Pt
δ

=
(Pδ −P0)

δ
Pt.

Hence, taking the limit δ ↓ 0 on both sides leads to

P′t = lim
δ↓0

Pt+δ −Pt
δ

= GPt.

As a result, we are able to express the semigroup in terms of the generator.

6.4.1 Matrix exponentials
It is often (but not always!) the case that the differential equations with boundary condition P0 = I can be
solved uniquely, with a solution of the form

Pt =

∞∑
n=0

tn

n!
Gn. (6.4.1)

Note that we have powers of matrices here and G0 = I.
We can express (6.4.1) as

Pt = etG,

where eA is the abbreviation for
∑∞
n=0

1
n!A

n for square matrices A.
Hence

Pt = etG =

∞∑
n=0

tn

n!
Gn = I + tG +

t2

2
G2 +

t3

6
G3 + · · ·

It can be tricky in practice and computationally challenging to compute such matrix exponentials. The
situation is significantly easier, if we can diagonalise G and hence diagonalise etG.

Recall that K = card(E), hence G is a K ×K-matrix. Suppose that G is diagonalisable with

G = SDS−1,

where D = diag(λ1, . . . , λK) is a K ×K-diagonal matrix with the eigenvalues of G on the diagonal and
the columns of the invertible matrix S contain the corresponding eigenvectors. Then, for any n ∈ N0, we
have

Gn = (SDS−1)n = SDnS−1 = Sdiag(λn1 , . . . , λ
n
K)S−1,
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and hence

Pt = etG =

∞∑
n=0

tn

n!
Gn =

∞∑
n=0

tn

n!
Sdiag(λn1 , . . . , λ

n
K)S−1

= S

∞∑
n=0

tn

n!
diag(λn1 , . . . , λ

n
K)S−1

= Sdiag

( ∞∑
n=0

tn

n!
λn1 , . . . ,

∞∑
n=0

tn

n!
λnK

)
S−1

= Sdiag
(
eλ1t, . . . , eλKt

)
S−1,

which is typically much easier to compute in practice.

Example 6.4.2. Let E = {1, 2}, α, β ∈ R+. There are two equivalent ways to describe the chain:

1. X has a generator

G =

(
−α α
β −β

)
.

2. Use the holding times: If the chain is in state 1 (resp. 2), it stays there for an exponential time of
parameter α (resp. β) before jumping to 2 (resp. 1).

The forward equations take the form

p′11(t) = −αp11(t) + βp12(t)

and the system of equations may be solved to yield the transition probabilities.

6.5 Irreducibility, stationarity and limiting distribution
We also extend the notions of irreducibility, stationarity and the limiting distribution.

We can define accessibility, communication and irreducibility as in the discrete case.

Definition 6.5.1. The chain is irreducible if for any i, j ∈ E we have pij(t) > 0 for some t.

We have the following result:

Theorem 6.5.2. If pij(t) > 0, for some t > 0, then pij(t) > 0 for all t > 0.

Proof. See Dobrow (2016, p. 285) for an explanation of the intuition behind the proof of this result and
(Norris 1998, p. 111) for the proof.

This result implies in particular that, in a continuous-time setting, the concept of periodicity is no longer
relevant and is hence not considered/defined since all states are essentially ”aperiodic”.

Recall that a distribution is defined as a row vector with non-negative elements which add up to 1.

Definition 6.5.3. A distribution π is the limiting distribution of a continuous-time Markov chain if, for all
states i, j ∈ E, we have

lim
t→∞

pij(t) = πj

Definition 6.5.4. A distribution π is a stationary distribution if π = πPt for all t ≥ 0.
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One can show, that if there exists a limiting distribution, then it is also a stationary distribution (as we
discussed in the discrete-time case (for a finite state space)). The converse does not hold in general, but
depends on the class structure of the Markov chain.

To find the stationary distribution, in discrete-time, we solved the vector equation π = πP. There is a
similar situation in continuous-time, but, there is another way, through the generator.

Theorem 6.5.5. Subject to regularity conditions, we have π = πPt for all t ≥ 0 if and only if πG = 0.

Proof. A sketch proof. Using (6.4.1) and G0 = I:

πG = 0⇔ πGn = 0 for all n ∈ N

⇔
∞∑
n=1

tn

n!
πGn = 0 for all t ≥ 0

⇔ π

∞∑
n=0

tn

n!
Gn = π for all t ≥ 0

⇔ πPt = π for all t ≥ 0.

This helps us to find stationary distributions, given their existence.
As in discrete time, if ν(t) is the marginal distribution of Xt, then we have

ν(t) = ν(0)Pt.

We finish the section with the ergodic theorem.

Theorem 6.5.6. Let X be an irreducible Markov chain with a standard semigroup {Pt} of transition
probabilities.

1. If there exists a stationary distribution π then it is unique and for any i, j ∈ E

lim
t→+∞

pij(t) = πj .

2. If there is no stationary distribution then

lim
t→+∞

pij(t) = 0

for all i, j ∈ E.

Note that this theorem holds exactly as stated. We did not skip any conditions here!

Proof. A sketch proof: Fix δ > 0 and define Yn := Xδn. Then one can show that {Yn} is an irreducible
aperiodic discrete-time Markov chain, which we call skeleton. If Y is positive recurrent, then it has a
unique stationary distribution π(δ) and

pij(nδ) = P(Yn = j|Y0 = i)→ π
(δ)
j , as n→∞,

otherwise pij(nδ) → 0 as n → ∞. Apply this argument to two rational values δ1, δ2: Then the
sequences {nδ1 : n ∈ N0}, {nδ2 : n ∈ N0} have infinitely many points in common and hence π(δ1) =
π(δ2) in the positive recurrent case. Hence the limit exists along all sequences {nδ : n ∈ N0} of times with
rational δ. Next use the continuity of the transition semigroup to fill in the gaps!

End of lecture 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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6.6 Jump chain and explosion
We have already discussed the concept of jump chains (also called embedded chains) associated with a
continuous-time Markov chain on a countable state space E. We briefly review the notion of such jump
chains again.

Subject to regularity conditions not stated here, we can construct the jump chain Z from a continous-
time Markov chain X as follows:

• Let Jn denote the nth change in value of the chain X and set J0 = 0.

• The values Zn = XJn+ of X (i.e. the values right after the jump, i.e. the right limit) form a discrete-
time Markov chain Z = {Zn}n∈N0 .

• The transition matrix of Z is denoted by PZ and satisfies

– pZij = gij/gi if gi := −gii > 0,

– if gi = 0, then the chain gets absorbed in state i once it gets there for the first time.

• If Zn = j, then the holding time Hn+1 = Jn+1 − Jn = H|j has exponential distribution with
parameter gj .

• The chain Z is called the jump chain of X .

Let us look at the converse to the above statement: Suppose Z = {Zn}n∈N0
is a discrete-time Markov

chain on a countable state space E. We want to find a continuous-time Markov chain, which has Z as its
jump chain. Many such chains X exist!

• Let PZ denote the transition matrix of the discrete-time Markov chain Z taking values inE. Assume
pZii = 0 for all i ∈ E. This assumption is not very important. It only accounts for the fact that you
cannot see jumps from any state i to itself in continuous time!

• For i ∈ E, let gi denote non-negative constants. Define

gij =

{
gip

Z
ij , if i 6= j,
−gi if i = j.

The construction of the continuous-time Markov chain X = {Xt}t≥0 is done as follows:

• Set X0 = Z0.

• After a holding time H1 = H|Z0
∼ Exp(gZ0) the process jumps to state Z1.

• After a holding time H2 = H|Z1
∼ Exp(gZ1

) the process jumps to state Z3, etc...

• More formally: Conditional on the values Zn of the chain Z, let H1, H2, . . . be independent random
variables with exponential distribution Hi ∼ Exp(gZi−1

), i = 1, 2, . . . . Set Jn = H1 + · · ·+Hn.

• Then define

Xt =

{
Zn, if Jn ≤ t < Jn+1 for some n,
∞, otherwise, i.e. if J∞ ≤ t.

• Note that the special state∞ has been added in case the chain explodes.

Recall that J∞ = limn→∞ Jn. J∞ is called explosion time and we say that the chain explodes if

P(J∞ <∞) > 0.

One can show that:
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• X is a continuous-time Markov chain with state space E ∪ {∞}.

• The matrix G is the generator of X (up to the explosion time).

• Z is the jump chain of X .

It is possible to define the process X in different ways at time of explosion. Note that in the case of a
finite state space |E| = K <∞ it is not that difficult to prove the above properties. Things get much more
complicated in the case of an infinite state space.

Note that the chain X constructed before is called minimal, since it is “active” for a minimal interval
of time. Next we study conditions which ensure that the process does not explode.

Theorem 6.6.1. The chain X constructed above does not explodes if any of the following three conditions
hold.

1. The state space E is finite.

2. supi∈E gi <∞.

3. X0 = i where i is a recurrent state for the jump chain Z.

Proof. Clearly (1.) implies (2.). Hence we only need to check conditions (2.) and (3.).
We start with condition (2.).

• Suppose that gi < γ <∞ for all i.

• For the nth holding time we have Hn ∼ Exp(gZn−1
).

• Clearly, if gZn−1 > 0, then Vn = gZn−1Hn ∼ Exp(1), see Theorem 4.1.2.

• If gZn−1
= 0, then Hn =∞ almost surely.

• Hence

γJ∞ =

{
∞, if gZn−1

= 0 for some n,∑∞
n=1 γHn ≥

∑∞
n=1 Vn, otherwise.

• Similarly to the proof of Theorem 4.3.1 one can then show that the sum is almost surely infinite and
hence there is no explosion.

Now assume that condition (3.) holds.

• If gi = 0, then Xt = i for all t, and there is nothing to prove!

• The case gi > 0 is more interesting. We know that Z0 = i and i is a recurrent state for Z. Hence Z
visits i infinitely many times at times N0 < N1 < · · · say.

• Then

giJ∞ ≥
∞∑
j=0

giH|ZNj , where H|ZNj ∼ Exp(gi), ∀j ∈ N0.

• Again, as in the proof of Theorem 4.3.1 one can then show that the sum is almost surely infinite and
hence there is no explosion.
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6.7 Birth processes
In the previous chapter, we have looked at Poisson processes as well as various extensions. However,
an important extension is the birth process. This is a stochastic (counting) process, which describes the
arrivals of individuals in a more general way than a Poisson process.

Definition 6.7.1. A birth process with intensities λ0, λ1, · · · ≥ 0 is a stochastic process {Nt}t≥0 with
values in N0 such that

1. Non-decreasing process: N0 ≥ 0; if s < t, then Ns ≤ Nt,
2. There is a ‘single arrival’, i.e. the infinitesimal transition probabilities are for t ≥ 0, δ > 0, n,m ∈

N0:

P(Nt+δ = n+m|Nt = n) =

 1− λnδ + o(δ) if m = 0
λnδ + o(δ) if m = 1
o(δ) if m > 1,

3. Conditionally independent increments: Let s < t, then conditional on the value of Ns, the increment
Nt −Ns is independent of all arrivals prior to s.

Note that by conditionally independent increments, we mean that for 0 ≤ s < t, conditional on the
value ofNs, the incrementNt−Ns is independent of all arrivals prior to s. I.e. for k, l, x(r) ∈ {0, 1, 2, . . . }
for 0 ≤ r < s, we have

P(Nt −Ns = k|Ns = l, Nr = x(r) for 0 ≤ r < s) = P(Nt −Ns = k|Ns = l).

Note that a birth process is a continuous-time Markov chain. In fact, the Markov property is an imme-
diate consequence of the conditionally independent increments. (You can briefly check this yourself as an
exercise!)

A Poisson process is a a special case of a birth process (with λn = λ for all n ∈ N0). In the case of a
(general) birth process, the birth rates depend on the current state of the process.

Example 6.7.2. A simple birth process is a model with λn = nλ. This models the growth of a population,
in which each individual may give birth to a new one with rate λ > 0; no deaths occur. Then, for t ≥ 0,
δ > 0, n,m ∈ N0 (and m ≤ n):

P(Nt+δ = n+m|Nt = n) =

(
n

m

)
(λδ)m(1− λδ)n−m + o(δ)

=


(1− λδ)n + o(δ) =

∑n
i=0

(
n
i

)
(−λδ)i + o(δ) = 1− nλδ + o(δ), if m = 0

nλδ(1− λδ)n−1 + o(δ) = nλδ
∑n−1
i=0

(
n−1
i

)
(−λδ)i = nλδ + o(δ), if m = 1

o(δ), if m > 1.

Example 6.7.3. A simple birth with immigration. This is a model with λn = nλ + ν, with ν > 0. Here
each individual can give birth, but there is a constant rate of immigration.

Example 6.7.4. Let us study the generator of a birth process. For i, j ∈ N0, we have pi(i+1)(δ) =
λiδ + o(δ) and pii(δ) = 1− λiδ + o(δ).

Hence

gii = lim
δ↓0

pii(δ)− 1

δ
= −λi, gi,i+1 = lim

δ↓0

pi(i+1)(δ)

δ
= λi

and otherwise gij = 0, if i > j or j > i+ 1. That is

G =


−λ0 λ0 0 0 0 · · ·

0 −λ1 λ1 0 0 · · ·
0 0 −λ2 λ2 0 · · ·
...

...
...

...
...

 .

End of lecture 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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6.7.1 The forward and backward equations
We will now derive the forward and backward equations for birth processes.

Let {Nt} be a birth process with positive intensities λ0, . . . . Recall that the transition probabilities are
defined as

pij(t) = P(Nt+s = j|Ns = i) = P(Nt = j|N0 = i), for i, j ∈ E, (6.7.1)

(note that this is time-homogeneity).

Theorem 6.7.5. For i, j ∈ E, i < j, t ≥ 0, the forward equations of a birth process are given by

dpij(t)

dt
= −λjpij(t) + λj−1pi,j−1(t),

with λ−1 = 0, and the backward equations are given by

dpij(t)

dt
= −λipij(t) + λipi+1,j(t).

In both cases, the boundary condition is given by pij(0) = δij .

Recall that δij denotes the Kronecker delta with δij = 1 if i = j and δij = 0 if i 6= j.

Proof. Let i, j ∈ E, i < j, and set λ−1 = 0. Let t ≥ 0, δ > 0.
We consider the forward equations first. Then, by the Chapman-Kolmogorov equations and the single-

arrival property

pij(t+ δ) =
∑
l∈E

pil(t)plj(δ)

= pi,j−1(t)pj−1,j(δ) + pij(t)pjj(δ) + o(δ)

= pi,j−1(t)λj−1δ + pij(t)(1− λjδ) + o(δ).

Then rearranging and taking the limit δ ↓ 0 it follows

dpij(t)

dt
= −λjpij(t) + λj−1pi,j−1(t),

with the boundary condition pij(0) = δij .
The backward equations may be derived in a similar fashion. The only difference is that we apply the

Chapman-Kolmogorov equations ”the other way round”:

pij(t+ δ) =
∑
l∈E

pil(δ)plj(t)

= pii(δ)pij(t) + pi,i+1(δ)pi+1,j(t) + o(δ)

= (1− λiδ)pij(t) + λiδpi+1,j(t) + o(δ).

Rearranging, and taking δ ↓ 0 as before we obtain

dpij(t)

dt
= −λipij(t) + λipi+1,j(t),

with the boundary condition pij(0) = δij .

As we can see, we have two ODEs which are satisfied by the transition probabilities. The solutions
of these ODEs give us the transition probabilities; this helps us to answer questions about the size of the
population.

We conclude the section with an important result:

Theorem 6.7.6. Let {Nt}t≥0 be a birth process of positive intensities λ0, λ1, . . .. Then the forward equa-
tions have a unique solution, which satisfies the backward equations.

Proof. See Grimmett & Stirzaker (2001b, p. 251).
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6.7.2 Explosion of a birth process
If the rate λ0, λ1, . . . in the birth process increase too quickly, it may happen that infinitely many individuals
are born in finite time. Such a phenomenon is called explosion. More formally, we have the following
definition.

Definition 6.7.7. Let J0, J1, . . . denote the jump times of a birth process N

J0 = 0, Jn+1 = inf{t ≥ Jn : Nt 6= NJn}, n ∈ N0.

Further, let H1, H2, . . . denote the corresponding holding times. As before, we write

J∞ = lim
n→∞

Jn =

∞∑
i=1

Hi.

Then we say that explosion of the birth process N is possible if

P(J∞ <∞) > 0.

Theorem 6.7.8. Let N be a birth process started from k ∈ N0, with rates λk, λk+1, . . . > 0. Then:

1. If
∑∞
i=k

1
λi
<∞, then P(J∞ <∞) = 1, i.e. explosion occurs with probability 1;

2. If
∑∞
i=k

1
λi

=∞, then P(J∞ =∞) = 1, i.e. the probability that explosion occurs is 0.

Theorem 6.7.8 follows immediately from the arguments used in the proof of Theorem 4.3.1 since the
holding times are exponentially distributed withH|i ∼ Exp(λi) for all i ≥ k and, conditionally onN0 = k,
independent.

6.8 Birth-death processes
Recall the definition of a birth process. This is a non-decreasing Markov chain for which the probability of
moving from n to n+1 in (t, t+δ) is λnδ+o(δ). More realistic models for population growth incorporate
death also. Suppose we are given the following process {Xt}t≥0:

1. {Xt}t≥0 is Markov chain on E = N0

2. The infinitesimal transition probabilities are (for t ≥ 0, δ > 0, n ∈ N0,m ∈ Z):

P(Xt+δ = n+m|Xt = n) =


1− (λn + µn)δ + o(δ), if m = 0,
λnδ + o(δ) if m = 1
µnδ + o(δ) if m = −1
o(δ) if |m| > 1

3. The birth rates λ0, λ1, . . . and the death rates µ0, µ1, . . . satisfy

λi ≥ 0 µi ≥ 0 µ0 = 0.

Then the process is called a birth-death process.
The generator is given by

G =


−λ0 λ0 0 0 0 · · ·
µ1 −(λ1 + µ1) λ1 0 0 · · ·
0 µ2 −(λ2 + µ2) λ2 0 · · ·
0 0 µ3 −(λ3 + µ3) λ3 · · ·
...

...
...

...
...

 .
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The transition probabilities can be calculated using the birth and death rates; although these can be very
complicated.

However, it is often of interest (and easier) to look at the asymptotic behaviour of the process. Suppose
that µi, λi > 0 for each i where the rates make sense. Then using the claim πG = 0;

−λ0π0 + µ1π1 = 0

λn−1πn−1 − (λn + µn)πn + µn+1πn+1 = 0 n ≥ 1.

Example 6.8.1. Show, using induction

πn =
λ0 × · · · × λn−1

µ1 × · · · × µn
π0

for any n ∈ N.

Such a vector π is a stationary distribution if and only if
∑
n πn = 1; that is

∞∑
n=0

λ0 × · · · × λn−1

µ1 × · · · × µn
< +∞ (6.8.1)

with the first term (n = 0) defined to be 1, i.e. λ0λ−1/µ1µ0 := 1. Given this condition, it follows

π0 =

( ∞∑
n=0

λ0 × · · · × λn−1

µ1 × · · · × µn

)−1

.

By Theorem 6.5.6 we have that the process settles into equilibrium if and only if (6.8.1) holds; i.e. that the
birth rates are not too large relative to the death rates.

Example 6.8.2 (Simple death with immigration). Suppose that we have a continuous-time Markov chain
{Xt} such that X0 = I . In this population of individuals, there is no reproduction (i.e. birth) but new
individuals migrate into the population according to a Poisson process of rate λ ∈ R+. Each individual
may die in (t, t + δ) (where δ > 0) with probability µδ + o(δ), µ > 0. The transition probabilities are
(i, j ∈ N0):

pij(δ) = P(Xt+δ = j|Xt = i) =

{
P(j − i arrivals, no deaths) + o(δ) if j ≥ i
P(i− j deaths, no arrivals) + o(δ) if j < i

since the probability of two or more changes in (t, t+ δ) is o(δ). As a result

pi,i+1(δ) = λδ(1− µδ)i + o(δ) = λδ + o(δ)

pi,i−1(δ) = (1− λδ)
(
i

1

)
µδ(1− µδ)i−1 + o(δ) = iµδ + o(δ),

pii(δ) = 1− (λ+ iµ)δ + o(δ),

pij(δ) = o(δ) if |j − i| > 1,

which is birth-death process with parameters λn = λ, µn = nµ.

We study a simple birth-death process in the following in more detail.

Example 6.8.3 (Simple birth-death process). We are given a biological system, where organisms give
birth and die, independently. Suppose, that in (t, t + δ), each individual alive gives birth with probability
λδ + o(δ) and dies with probability µδ + o(δ); in other words Xt = n, the number of organisms in
the system, evolves by increasing by 1 with probability λnδ + o(δ) and decreases by 1 with probability
µnδ+ o(δ). The initial population, at time 0, is size n0. Suppose that λ 6= µ. Using the forward equations,
show that the probability generating function of Xt is

G(s, t) = E(sXt) =

{
µ(1− s)− (µ− λs)e−(λ−µ)t

λ(1− s)− (µ− λs)e−(λ−µ)t

}n0

.
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If λ 6= µ, what is the probability that extinction has occurred at, or before time t?
Let P(Xt = n) = pn(t) and use the convention that p−1(t) ≡ 0, then the forward equations for any

n ∈ N0 are

p′n(t) = −n(λ+ µ)pn(t) + (n+ 1)µpn+1(t) + (n− 1)λpn−1(t),

with boundary condition pn0(0) = 1. By definition

G(s, t) = E(sXt) =

∞∑
n=0

snpn(t),

and note (assuming we can interchange the derivative and infinite series)

∂G(s, t)

∂t
=

∞∑
n=0

snp′n(t),

and

∂G(s, t)

∂s
=

∞∑
n=0

nsn−1pn(t).

Thus multiplying the nth forward equations by sn, on both sides, and summing over n yields

∂G(s, t)

∂t
= −s(λ+ µ)

∞∑
n=0

nsn−1pn(t) + µ

∞∑
n=0

(n+ 1)snpn+1(t) + λ

∞∑
n=1

(n− 1)snpn−1(t).

Clearly the first expression on the R.H.S. is

−(λ+ µ)s
∂G(s, t)

∂s
.

The second is

µ

∞∑
n=0

(n+ 1)snpn+1(t) = µ

∞∑
n=1

nsn−1pn(t) = µ
∂G(s, t)

∂s
;

and the third is

λs2 ∂G(s, t)

∂s
.

Thus we need to solve the PDE

∂G(s, t)

∂t
= (λs− µ)(s− 1)

∂G(s, t)

∂s
.

Either you solve this PDE using standard methods, or you show that the given solution satisfies the PDE!
Let ρ := λ/µ (recall λ 6= µ). The extinction probability is given by

η(t) = P(Xt = 0) = G(0, t) =

{
µ− µe−(λ−µ)t

λ− µe−(λ−µ)t

}n0

.

Then, as t→∞,

η(t)→
{

1, if ρ ≤ 1,
ρ−n0 , if ρ > 1.
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6.9 Uniform semigroups [Reading material]
Remark 6.9.1. If you would like to learn more about the technical details we skipped in our heuristic
proofs, then please read Chapter 6.10 on “Uniform semigroups” in Grimmett & Stirzaker (2001b)!

Definition 6.9.2. A semigroup {Pt} is called uniform if Pt → I uniformly as t ↓ 0, i.e.

pii(t)→ 1 as t ↓ 0, uniformly in i ∈ E. (6.9.1)

Since pij(t) ≤ 1 − pii(t), equation (6.9.1) implies that pij(t) → 0 for i 6= j. Clearly, a uniform
semigroup is standard. The converse statement does not hold in general, but is true when the state space is
finite. One can show the following result.

Theorem 6.9.3. The semigroup {Pt} is uniform if and only if supi(−gii) <∞.

Using the stronger condition we can now formulate the precise result on the forward and backward
equations:

Theorem 6.9.4. If {Pt} is a uniform semigroup with generator G, then it is the unique solution to both the
forward equation P′t = PtG and the backward equation P′t = GPt, subject to the boundary condition
P0 = I. Moreover,

Pt = etG and G1′ = 0′.

In the statement above 0 and 1 denote row vectors consisting of 0s and 1s, respectively.

End of lecture 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Chapter 7

Brownian motion

7.1 Introduction
Brownian motion is one of the most important building blocks of stochastic processes and is applied rou-
tinely in many areas including: statistics, finance, economics, physics, chemistry and many more. Due
to the complexity of the mathematics, we will not see a rigorous construction of Brownian motion. For
those students interested in learning more, the reference Karatzas & Shreve (1991) is a good place to start.
Brownian motion, can be thought of as a random walk in continuous time and on continuous state-spaces.
It is an example of Markov process, a diffusion process and is also a martingale. This chapter is quite
short, and as noted above, it is not possible to fully understand Brownian motion on the basis of what we
study here. However, it will give you a flavour of some of the nice properties a Brownian motion has. This
chapter is based on Ross (2010, Chapter 10).

7.2 From random walk to Brownian motion
Let us study a (discrete–time) symmetric simple random walk. Such a process is a Markov chain (Xn) on
E = Z with transition probabilities

pij =

 0.5, if j = i+ 1
0.5, if j = i− 1,
0, otherwise,

for i, j ∈ Z.

Then

Xn =

n∑
i=0

Yi,

where the Yi (i = 1, 2, . . . ) are assumed to be independent with Yi taking values in {−1, 1} and Y0

denotes the (deterministic) initial value. Here we choose Y0 = 0. By definition, the increments are i.i.d.:
Xn −Xn−1 = Yn, in particular, Xn = Xn−1 + Yn.

A simulated path of a symmetric simple random walk is depicted in Figure 7.1.
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Figure 7.1: Simulated path of a symmetric simple random walk.

Exercise 7.2.1. Compute the mean and the variance of the symmetric simple random walk Xn. (Recall
that we chose Y0 = 0.)

Solution to Exercise 7.2.1 . Clearly, Xn can only take values in {−n,−(n−1), . . . , (n−1), n}. Then, for
any i ∈ N,

E(Yi) = 0.5 · 1 + 0.5 · (−1) = 0,

Var(Yi) = E(Y 2
i ) = 0.5 · 12 + 0.5 · (−1)2 = 1.

Hence E(Xn) = 0 and Var(Xn) = n.

7.2.1 Modes of convergence in distribution, Slutsky’s theorem and the CLT
We briefly recall the following modes of convergence, which have been studied in Y2.

Definition 7.2.2 (Convergence in probability). A sequence of random variables X1, X2, . . . converges in
probability to X , written Xn

P→ X if, for each ε > 0

lim
n→∞

P({ω : |Xn(ω)−X(ω)| ≥ ε}) = lim
n→∞

P(|Xn −X| ≥ ε) = 0.

Definition 7.2.3 (Convergence in distribution). Let the cumulative distribution function of Xn and X be
denoted by Fn and F , respectively. Then, Xn converges in distribution/weakly to X , written Xn

d→ X if,

lim
n→∞

Fn(x) = F (x), for every continuity point x of F (x).
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We state without proof the famous Slutsky’s theorem.

Theorem 7.2.4 (Slutsky’s theorem). Suppose that Xn
d→ X,An

P→ a, and Bn
P→ b, where a and b are

(deterministic) constants. Then

AnXn +Bn
d→ aX + b.

Recall the central limit theorem:

Theorem 7.2.5. Let Z1, Z2, . . . be a sequence of independent, identically distributed random variables,
each with finite mean µ and finite variance σ2. Then the distribution of

1

σ
√
n

(
n∑
i=1

Zi − nµ
)

tends to the standard normal distribution as n→∞.

From the CLT, we immediately get that

Xn√
n

d→ N(0, 1).

Now define

B
(n)
t =

Xbntc√
n

=
Xk√
n

=

√
bntc√
n

Xk√
k
, for k = bntc, k ≤ nt < k + 1.

Note that
√
bntc√
n
→
√
t as n→∞. Hence, by Slutsky’s Theorem, we have

Xbntc√
n

d→ N(0, t), as n→∞.

Note that d→ denotes convergence in law/in distribution/weak convergence. Also, bntc denotes the largest
integer less than or equal to nt.

In fact, we get an even stronger result: The rescaled symmetric simple random walk converges in
distribution to the Brownian motion, i.e. for t ≥ 0

Xbntc√
n

d→ Bt, and more generally
Xbn·c√
n

d→ B·,

as n→∞.
The latter result is due to Donsker’s Theorem.
We depict the paths of a rescaled random walk for n ∈ {10, 100, 1000} in Figure 7.2.
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Figure 7.2: Simulation of a rescaled random walk for n ∈ {10, 100, 1000}.

7.3 Brownian motion
Definition 7.3.1. A real-valued stochastic process B = {Bt}t≥0 is a standard Brownian motion if

1. B0 = 0 almost surely;

2. B has independent increments;

3. B has stationary increments;

4. The increments are Gaussian, for 0 ≤ s < t

Bt −Bs ∼ N(0, (t− s));

5. The sample paths are almost surely continuous, i.e. the function t 7→ Bt is almost surely continuous
in t.

Definition 7.3.2. Let B = {Bt}t≥0 denote a standard Brownian motion. The stochastic process Y =
{Yt}t≥0 defined by

Yt = σBt + µt, for all t ≥ 0,

is called a Brownian motion with drift parameter µ ∈ R and variance parameter σ2, where σ > 0.

Note that for 0 ≤ s < t, Yt − Ys ∼ N(µ(t− s), σ2(t− s)).
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7.4 Historical background
• The Scottish botanist Robert Brown (1773 –1858) observed jittery motion of pollens in water (1828)

• The Danish astronomer, actuary and mathematician Thorvald N. Thiele (1838 –1910) described the
mathematics behind Brownian motion (1880)

• The French mathematician Louis J. A. Bachelier (1870 –1946) introduced the Brownian motion in
Finance (1900)

• The German (later Swiss and American) physicist Albert Einstein (1879 – 1955) studied the Brow-
nian motion in physics (1905)

• The American mathematician Norbert Wiener (1894 –1964) was the first one to prove the existence
of the Brownian motion (1923) (which is a deep mathematical result!)

7.5 Finite dimensional distributions and transition densities
We remark on some ideas of stochastic processes. In general, and in continuous time, we have an under-
lying probability space (Ω,F ,P), and for ω ∈ Ω, Xt(ω) is a map X : T × Ω → E. (In this chapter we
choose T = [0,∞). ) Intrinsically, this means that, when constructing the underlying probability space,
we need to think about probability measures on paths, that is on an infinite number of random variables. It
is simpler (and technically possible due what is known as the Kolmogorov existence theorem) to consider
the finite dimensional distributions (FDDs):

P(Xt1 ≤ x1, · · · , Xtn ≤ xn)

with 0 ≤ t1 < · · · < tn. This is the joint distribution of a finite collection of random variables from the
process. As stated above, it is possible (under the Kolmogorov consistency conditions) to construct a
(unique) probability space defining only the FDDs. Throughout, we mention only the FDDs, but it should
be noted that there is a much deeper theory than what is presented here.

Let B = {Bt}t≥0 denote a standard Brownian motion. Let n ∈ N and 0 ≤ t1 < t2 < · · · < tn. We
want to find the joint density function of

Bt1 , Bt2 , . . . , Btn .

Note that the set of equalities

Bt1 = x1, Bt2 = x2, . . . , Btn = xn,

for x1, . . . , xn ∈ R is equivalent to

Bt1 = x1, Bt2 −Bt1 = x2 − x1, . . . , Btn −Btn−1
= xn − xn−1.

We can us the transformation formula for multivariate densities (see the Y1 lecture notes for the bivariate
case) and the fact that B has independent, stationary, Gaussian increments, to deduce that

f(Bt1 ,...,Btn )(x1, . . . , xn) = fBt1 (x1)fBt2−Bt1 (x2 − x1) · · · fBtn−Btn−1
(xn − xn−1).

f(Bt1 ,...,Btn )(x1, . . . , xn) =
exp

(
− 1

2

{
x2
1

t1
+ (x2−x1)2

t2−t1 + · · ·+ (xn−xn−1)2

tn−tn−1

})
√

(2π)n(t1(t2 − t1) · · · (tn − tn−1)

From this equation, we can compute any desired probabilities. We spend some time discussing the
transition densities of Brownian motion.
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E.g. suppose we want to compute the conditional density of Bt+s given that Bs = x for 0 ≤ s, t.
Then

fBt+s|Bs(y|x) =
fBs,Bt+s(x, y)

fBs(x)
=
fBs(x)fBt+s−Bs(y − x)

fBs(x)

=
1√
2πt

exp

(
− 1

2t
(y − x)2

)
.

In order to shorten the notation, we write

pt(y|x) := pt(x, y) :=
1√
2πt

exp

(
− 1

2t
(y − x)2

)
,

which is called the Gauss kernel, or sometimes the heat kernel.
A very interesting property of the density (called the Gauss/heat kernel) is that it provides a probabilistic

interpretation to a solution of a partial differential equation:

Theorem 7.5.1. Let f : R→ R be a continuous function satisfying some additional regularity conditions.
Then the unique (continuous) solution ut(x) to the initial value problem

∂

∂t
ut(x) =

1

2

∂2

∂x2
ut(x)

u0(x) = f(x)

is given by

ut(x) = E[f(W x
t )] =

∫ ∞
−∞

pt(x, y)f(y)dy

where {W x
t } is a Brownian motion started at x.

The PDE is called the heat equation. The interesting point is that the solution of the PDE is now written
as an expectation w.r.t. a Brownian motion, which gives a numerical scheme to approximate its solution
(very important in high dimensions, where finite difference methods do not work well).

A verification of the result can be yielded by taking partial derivatives of the expectation w.r.t t and
then showing that

∂pt(x, y)

∂t
=

1

2

∂2pt(x, y)

∂x2
.

Exercise 7.5.2. Verify the result in Theorem 7.5.1.

End of lecture 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.6 Symmetries and scaling laws
We look at the following result:

Proposition 7.6.1. Let {Bt}t≥0 be a standard Brownian motion. Then each of the following processes is
also a standard Brownian motion:

{−Bt}t≥0 [Reflection]

{Bt+s −Bs}t≥0 for s ≥ 0, [Translation]

{aBt/a2}t≥0 for a > 0, [Rescaling]

{tB1/t}t≥0 [Inversion].
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7.6.1 Some remarks
Now these results have some important implications. First we look at the maximum and minimum pro-
cesses:

M+
t := max{Bs : 0 ≤ s ≤ t}

M−t := min{Bs : 0 ≤ s ≤ t}

These are well-defined, because the Brownian motion has continuous paths, and continuous functions
always attain their maximal and minimal values on compact intervals. Now observe that if the path Bt
is replaced by its reflection −Bt then the maximum and the minimum are interchanged and negated. But
since −Bt is again a Brownian motion, it follows that M+

t and −M−t have the same distribution:

M+
t

d
= −M−t ,

where our notation means ‘equal in distribution’. The property that {aBt/a2} is again a Brownian motion
is called the Brownian scaling property (Exercise: Prove it!). It is perhaps the most useful elementary
tool in the study of BM. As a first example, consider its implications for the distributions of the maximum
random variables M+

t . Fix a > 0, and define

B∗t := aBt/a2

M+,∗
t := max

0≤s≤t
B∗s

= aM+
t/a2

By the Brownian scaling property, B∗t is a standard Brownian motion, and so the random variable M+,∗
t

has the same distribution as M+
t . Therefore,

M+
t

d
= aM+

t/a2 .

On first sight, this relation appears rather harmless. However, it can be shown, it implies that the sample
paths of a Brownian motion are with probability one, nowhere differentiable.

7.7 The reflection property and first-passage times
We now look at some well-known properties of Brownian motion.

Proposition 7.7.1. Let x > 0 then

P(M+
t ≥ x) = 2P(Bt > x) = 2− 2Φ(x/

√
t),

where Φ is the normal c.d.f.

Before we prove this result we give the following fact, which is not proved (due to the complexity of
the proof, interested students can check Billingsley (2012).)

Let x > 0 and

τ := min{s : Bs ≥ x}.

Then

B′′t =

{
Bt if t ≤ τ
x− (Bt − x) if t > τ

is a Brownian motion. This is termed the reflection principle. Formally τ is a stopping-time.
Note that the new path B′′t is obtained from Bt by reflection: For t > τ we reflect Bt about the

horizontal line at height x > 0.
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Proof. Let τ ′′ = min{t : B′′t ≥ x}, which is the same as τ (due to the definition of B′′t ). Now we have
that

P(M+
t ≥ x) = P(τ ≤ t)

which simply means that the probability that the maximum of the Brownian motion, on [0, t], exceeding x,
is the same as the probability that the first time the Brownian motion is greater or equal to x is less than t.
Then using the law of total probability, we have

P(τ ≤ t) = P(τ ≤ t, Bt ≤ x) + P(τ ≤ t, Bt ≥ x)

= P(τ ′′ ≤ t, B′′t ≤ x) + P(τ ≤ t, Bt ≥ x),

where we have used the equivalence of τ ′′ and τ and the fact that B′′t is a Brownian motion. Now condi-
tional on τ ′′ ≤ t (i.e. τ ≤ t) we have that

B′′t ≤ x⇐⇒ 2x−Bt ≤ x⇐⇒ Bt ≥ x.

Hence

P(τ ≤ t) = P(τ ′′ ≤ t, Bt ≥ x) + P(τ ≤ t, Bt ≥ x)

= P(τ ≤ t, Bt ≥ x) + P(τ ≤ t, Bt ≥ x).

Then

P(τ ≤ t, Bt ≥ x) = P(Bt ≥ x)

due to the intermediate value theorem (recall Bt is continuous, B0 = 0, and x > 0). Hence

P(M+
t ≥ x) = 2P(Bt ≥ x) = 2

[
1− Φ

(
x√
t

)]
.

During the course of this proof we have seen that:

P(τ ≤ t, Bt ≥ x) = P(τ ≤ t, Bt ≤ x)

which can be interpreted as, if we hit the level x, the probability that the Brownian motion is above the
level, is exactly the same as being below the level. This is, essentially the argument behind the proof of the
reflection principle, which we have used here.

An obvious corollary of this result is that

pτ (t) =
x√
2πt3

exp

{
− x2

2t

}
which is the density function of the first hitting time of a Brownian motion.

7.8 A model for asset prices
A rather well-known model for describing the movement of an asset price {St}0≤t≤T , St ∈ R+ is as
follows

St = S0 exp{(µ− σ2/2)t+ σBt}

where S0 is the initial value of the underlying (e.g. the value of the stock at the start of trading), µ ∈ R is
the risk-free interest rate and σ is the volatility (i.e. the instantaneous standard deviation of the stock). This
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process is known as geometric Brownian motion, and is the solution of what is known as a stochastic
differential equation.

In practice, this model is routinely used in most, if not all, major investment banks and hedge funds,
to calculate what is known as option prices and hedge financial derivatives (essentially, for firms to protect
themselves from losing money in financial contracts).

From the point of view of statistics and econometrics, it is well-known that this model does not fit the
stylized features of financial returns data. That is, real financial data does not follow the dynamic above;
this is because in practice the volatility of asset prices is typically not constant, and often responds to a
variety of market conditions (for example, September 2008, the volatility of many banking stocks was very
high, due to the collapse of the investment bank Lehman Brothers).

We typically observe time-varying volatility clusters. We demonstrate this by looking at daily data
from the S&P500 before, during and after the financial crisis.
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Figure 7.3: The daily index and log returns of the S&P 500 index between 3rd January 2000 to 9th March
2012. The data are based upon the adjusted closing prices.

This has yielded much academic and industrial research into cases (which goes back to at least the late
1970s) where σ is a stochastic process, e.g:

St = S0 exp

{(
µt− 1

2

∫ t

0

σ2
sds

)
+

∫ t

0

σsdBs

}
σt = σ0 exp{γt+ ηWt}

where Wt is an independent Brownian motion; such a model is termed a stochastic volatility model and
there are a great variety of these. (The model for σ given above is in fact not a good one since we would
typically require the volatility to be a mean-reverting process.)

• Stochastic volatility is a key concept in financial (and in many other!) applications.

• It poses many probabilistic as well as statistical challenges, e.g.:
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– How can stochastic integrals with respect to Brownian motion be defined?

– How can we estimate stochastic volatility?

• Stochastic volatility can be studied both in continuous and in discrete time.

• Those of you who have taken the time series course, might have heard of the famous autoregressive
conditional heteroskedastic ARCH model, which was developed by Robert Engel (1982), who won
the Nobel Prize in Economics in 2003 ”for methods of analyzing economic time series with time-
varying volatility (ARCH)”. This class of models has later been generalised to GARCH models by
Tim Bollerslev (1986).

End of lecture 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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