Galois Theory Concise Notes

MATH60037

Arnav Singh

Content from prior years assumed to be known.

Mathematics Imperial College London United Kingdom April 12, 2023

Contents

1	What	What is Galois Theory?		
	1.1	Field extensions	2	
	1.2	Galois correspondence	2	
2	Fun	damental theorem of Galois Theory	2	
	2.1	Elementary facts	2	
	2.2	Axiomatics	3	
	2.3	Galois correspondence	3	
3	Nor	mal and separable extensions	4	
	3.1	Normal extensions	4	
	3.2	Separable polynomials	4	
	3.3	Separable degree	5	
	3.4	Separable extensions	5	
4	Exa	mples	6	
	4.1	Biquadratic extensions	6	
	4.2	Finite fields	7	
	4.3	Symmetric polynomials	7	
5	5 Irreducible polynomials		7	
6	Red	luction modulo prime	7	

1 What is Galois Theory?

1.1 Field extensions

Definition 1.1. A field homomorphism a function $\phi : K_1 \to K_2$ that preserves the field operations $\forall a, b \in K_1$

 $\phi(a+b) = \phi(a) + \phi(b), \quad \phi(ab) = \phi(a)\phi(b), \quad \phi(0_{K_1}) = 0_{K_2} \quad \phi(1_{K_1}) = \phi 1_{K_2}$

Definition 1.2. α algebraic over k if $f(\alpha) = 0$ for some $0 \neq f \in k[X]$, otherwise α transcendental over k

Extension $k \subset K$ algebraic if $\forall \alpha \in K, \alpha$ is algebraic over k

Definition 1.3. Consider field k and $f \in k[X]$. Say $k \subset K$ a splitting field for f if

$$f(X) = a \prod_{i=1}^{n} (X - \lambda_i) \in K[X], \quad K = k(\lambda_1, \dots, \lambda_n)$$

1.2 Galois correspondence

Theorem 1.4. (Fundamental theorem of Galois Theory, Galois correspondency) Assume characteristic 0. Let $k \subset K$ be the splitting field of $f(X) \in k[X]$ Let

 $G = \{ \sigma : K \to K \mid \sigma \text{ a field automorphism, } \sigma \mid_k = id_k \}$

Call this the Galois group. There is a one-to-one correspondence

$$\begin{aligned} \{k \subset K_1 \subset K \mid K_1 \ a \ subfield \ \} \leftrightarrow \{H \leq G \mid H \ a \ subgroup\} \\ K_1 \leftrightarrow \{\sigma \in G \mid \forall k \in K_1, \sigma(\lambda) = \lambda \\ \{\lambda \in K \mid \forall \sigma \in H, \sigma(\lambda) = \lambda\} \leftrightarrow \{H \leq G\} \end{aligned}$$

Definition 1.5. $K \subset L$ is finite if L a finite-dimensional K-vector space. The degree of L over K is

$$[L:K] = dim_K L$$

Theorem 1.6. (Tower Law) Let $K \subset L \subset F$ Then

$$[F:K] = [F:L][L:K]$$

Theorem 1.7. Suppose f(X)inK[X] irreducible such that $f(\lambda) = 0$, then $[K(\lambda) : K] = deg f$

2 Fundamental theorem of Galois Theory

2.1 Elementary facts

Definition 2.0. $K \subset L, a \in L$. We say the evaluation homomorphism

$$e_a \colon K[X] \to K[a] \subset L, f(X) \mapsto f(a)$$

is a surjective ring homomorphism, where K[a] the smallest subring of L containing K and a

Definition 2.1. $f(X) = a_0 X^n + \ldots + a_n \in K[X]$ is monic if $a_0 = 1$

Lemma 2.2. .

• If a transcendental, e_a is injective and it extends to $\tilde{e}_a : K(X) \to K(a)$ by

DIAGRAMHERE

• If a algebraic then ker $e_a = \langle f_a \rangle$ where $f_a \in K[X]$ irreducible or prime, and unique if f monic, then called the **minimal polynomial of** $a \in L/K$. In this case

DIARGRAM HERE

Corollary 2.3. For $K \subset L$ and $a \in L$ algebraic over K

- $[K(a):K] = deg f_a, and$
- If $K \subset F$ an extension

$$E_{K}^{m}(K(a), F) = \{b \in F \mid f_{a}(b) = 0\}$$

Corollary 2.4. Let K a field and $f \in K[X]$. Then $\exists K \subset L \text{ s.t } f$ has a root in L

REMARK TO ADD HERE

2.2 Axiomatics

Proposition 2.5. Fix $k \subset K$ and $k \subset L$ Then

$$\# E_{\mathcal{M}}(K,L) \le [K:k]$$

Proposition 2.6. Suppose given 2 field extensions $k \subset K$ and $k \subset L$. Then there is a non-unique bigger common field containing both.

DIAGRAM HERE

Formally: given $\sigma_1 \in Em(k, K)$ and $\sigma_2 \in Em(k, L)$ then $\exists \Omega, \phi_1 \in Em(k, \Omega)$ and $\phi_2 \in Em(L, \Omega)$ such that $\phi_1 \circ \sigma_1 = \phi_2 \circ \sigma_2$

Alternatively: $\exists k \subset \Omega$ such that $Em_k(K, \Omega)$ and $Em_k(L, \Omega)$ are both non-empty

Proposition 2.7. Let L be any field and G a finite group action on L as automorphism. Let

$$K = G^* = Fix G = L^G = \{\lambda \in L \mid \forall \sigma \in G, \sigma(\lambda) = \lambda\}$$

Consider $Aut_K L = K^{\dagger}$. Then the obvious inclusion $G \subset K^{\dagger} = (G^*)^{\dagger}$ is an equality, so G is all of K^{\dagger} . **Remark**

We have to contextualise half of the Galois correspondence

$$\{F \mid k \subset F \subset \Omega\} \leftrightarrow \{G \mid G \leq \operatorname{Aut}_{k} \Omega\}$$

$$F \leftrightarrow \operatorname{Aut}_{k} \Omega = F^{\dagger}$$

$$Fix G = G^{*} \leftrightarrow G$$

Lemma 2.8. $K \subset L$ a finite extension of degree $[L:K] \leq \#G$

2.3 Galois correspondence

Definition 2.9. $k \subset K$ is normal if

$$\forall k \subset \Omega, \forall \sigma_1, \sigma_2 \in Em_k(K, \Omega), \exists \sigma \in Em_k(K, K), \sigma_2 = \sigma_1 \circ \sigma$$

Equivalently $k \subset K$ is normal if

$$\forall k \subset \Omega, \forall \sigma_1, \sigma_2 \in Em_k(K, \Omega), \sigma_2(K) \subset \sigma_1(K)$$

Remark

Will see later that $k \subset K$ is normal if and only if $\exists f(X) \in k[X]$ such that K a splitting field of f

Lemma 2.10. Suppose $k \subset K$ normal. Consider $k \subset L \subset K$ Then also $L \subset K$ is normal

Definition 2.11. $k \subset K$ is separable if $\forall k \subset K_1 \subset K_2 \subset K$, if $K_1 \neq K_2$ then $\exists k \subset \Omega$ and embeddings $x \in Em_k(K_1, \Omega)$ and $y_1, y_2 \in Em_k(K_2, \Omega)$ such that

DIAGRAM HERE

That is $y \mid_{K_1} = x$ but $y_1 \neq y_2$ We have that embeddings separate fields. Will see that

- in Char 0, everything is separable
- in Char p there are good ways to decide if a field is separable

Lemma 2.12. Suppose $k \subset K \subset L$ Then $k \subset L$ separable if and only if $k \subset K, K \subset L$ is separable

Theorem 2.13. (Fundamental theorem of Galois theory, Galois correspondence) Let $k \subset K$ be normal and separable. Let $G = Em_k(K, K)$ then there is a one-to-one correspondence

$$\{k \subset L \subset K\} \leftrightarrow \{H \leq G\}$$

$$L \to L^{\dagger} = \{\sigma \in G \mid \forall \lambda \in L, \sigma(\lambda) = \lambda\}$$

$$H^* = \{\lambda \in K \mid \forall \sigma \in H, \sigma(\lambda) = \lambda\} \leftarrow H$$

Lemma 2.14. Suppose $k \subset K$ normal. Then for all towers $k \subset F \subset K \subset \Omega$, the natural restriction

$$\rho: Em_k(K, \Omega) \to Em_k(F, \Omega)$$

is surjective

Corollary 2.15. Suppose $k \subset K$ normal. Then for all towers $k \subset F \subset K \subset \Omega$

$$Em_k(F,K) \to Em_k(F,\Omega)$$

is also surjective

3 Normal and separable extensions

3.1 Normal extensions

Theorem 3.1. For finite $k \subset K$, the following are equivalent

- 1. $\forall f \in k[X]$ irreducible, either f has no roots in K or f splits completely in K
- 2. $\exists f \in k[X]$ not necessarily irreducible such that K is a splitting field of f
- 3. $k \subset K$ is normal

Proposition 3.2. Let $k \subset L$ be a field extension. Then there exists a tower $k \subset L \subset K$ such that $k \subset K$ is normal

3.2 Separable polynomials

Definition 3.3. A polynomial $f \in k[X]$ is separable if it has n = deg(f) distinct roots in any field $k \subset K$ such that $f \in K[X]$ splits completely

Remark

It is not completely obvious that this definition is independent of K - use the fact that 2 splitting fields are isomorphic.

Remark 3.0. Derivative

$$D: k[X] \to k[X], X^n \mapsto nX^{n-1}$$

Having the following properties

• D is k-linear, that is $\forall \lambda, \mu \in k, \forall f, g \in k[X]$

$$D(\lambda f + \mu g) = \lambda Df + \mu Dg$$

• Leibnitz rule, $\forall f, g \in k[X]$

$$Dfg = fDg + gDf$$

Proposition 3.4. $f(X) \in k[X]$ is separable if and only if gcd(f, Df) = 1

Lemma 3.5. Let $f, g \in k[X]$ and $c = gcd(f, g) \in k[X]$ Let $k \subset L$ an extension, then $c = gcd(f, g) \in L[X]$

Theorem 3.6. $f \in k[X]$ irreducible is inseparable if and only if

- ch(k) = p > 0, and
- $\exists h \in k[X]$ such that $f(X) = h(X^p)$

Definition 3.7. A field k in ch(k) = p > 0 is **perfect** if $\forall a \in k$ there exists $b \in k$ such that $b^p = a$

Proposition 3.8. If k is perfect then $f \in k[X]$ is irreducible implies that f(X) is separable

Definition 3.9. Consider $k \subset L$. An element $a \in L$ is **separable** over k if the minimal polynomial $f(X) \in k[X]$ of a is a separable polynomial

3.3 Separable degree

Definition 3.10. Let $k \subset K$. Choose $K \subset \Omega$ such that $k \subset \Omega$ is normal. Define the separable degree as

$$[K:k]_s = \#Em_k(K,\Omega)$$

Remark

 $[K:k]_s$ does not depend on $K \subset \Omega$. Suppose $k \subset \Omega_1$ and $k \subset \Omega_2$ are normal. Then there exists a bigger field $\widetilde{\Omega}$ such that $\Omega_1 \subset \widetilde{\Omega}, \Omega_2 \subset \widetilde{\Omega}$ Then

$$Em_k(K, \Omega_1) = Em_k(K, \Omega) = Em_k(K, \Omega_2)$$

Remark

Restate definition of separable extension. Recall $k \subset K$ separable if for all towers $k \subset K_1 \subset K_2 \subset K$ there exists $\Omega, y : K_1 \to \Omega, x_1, x_2 : K_2 \to \Omega$ such that $x_1 \neq x_2$ and $x_1 \mid_{K_1} = x_2 \mid_{K_2} = y$ so $[K_2 : K_1] \neq 1$. Thus $k \subset K$ separable if for all towers $k \subset K_1 \subset K_2 \subset K$ $[K_2 : K_1]_s = 1$ implies that $K_1 = K_2$

Theorem 3.11. (Tower Law) $\forall k \subset K \subset L$

$$[L:K]_s = [L:K]_s[K:k]_s$$

3.4 Separable extensions

Recall that for $k \subset K$, said $a \in K$ separable if minimal polynomial of $f(X) \in k[X]$ of a is separable polynomial

Theorem 3.12. $k \subset K$ is separable if and only if $[K:k]_s = [K:k]$

Corollary 3.13. For all towers $k \subset K \subset L$ if $k \subset K$ and $K \subset L$ are separable then $k \subset L$ is separable

Corollary 3.14. $k \subset K$ is separable if and only if $\forall a \in K$, a is separable over k

Lemma 3.15. Let $k \subset L \subset K$. For $\lambda \in K$, λ is separable over k implies that λ is separable over L

4 Examples

4.1 Biquadratic extensions

Let

$$K \subset K\left(\sqrt{a \pm \sqrt{b}}\right) = L, \quad c = a^2 - b, \quad \beta = \sqrt{b} \notin K, \quad \alpha = \sqrt{a + \beta} \in L, \quad \alpha' = \sqrt{a - \beta} \in L$$

We know that $\pm \alpha, \pm \alpha'$ are roots of

$$f(X) = X^4 - 2aX^2 + c$$

Not assuming that f(X) is irreducible. Let

$$\delta = \alpha + \alpha' \quad \delta' = \alpha - \alpha', \quad \gamma = \alpha \alpha' = \sqrt{c}$$

Then

$$\gamma^2 = c, \quad \delta^2 = 2(\alpha + \gamma), \quad \delta^2 = 2(\alpha - \gamma), \quad \delta\delta' = 2\beta, \quad \alpha = \frac{\delta + \delta'}{2}, \quad \alpha' = \frac{\delta - \delta'}{2}$$

and we have $\pm \delta, \pm \delta'$ are roots of

$$g(Y) = Y^4 - 4aY^2 + 4b$$

Then L is the splitting field of g. Assume

- 1. $ch(K) \neq 2$ and
- 2. b is not a square in K , that is $[K(\beta):K] = 2$

Claim that the extension $K \subset L$ is separable.

It is the splitting field of f(X) Need to check that gcd(f, Df) = 1 where

$$Df = 4X^3 - 4aX = 4X(X^2 - a)$$

f, Df have no common roots since X = 0 not a root of f and $X = \pm \sqrt{a}$ not a root of f, as $b \neq 0$

Theorem 4.1. Assume 1 and 2 from before

1. Suppose bc, c are not square. Then

$$[L:K] = 8, \quad G = \mathcal{D}_8$$

and f(X) is irreducible

2. Suppose bc square, so c not square. Then

$$[L:K] = 4, \quad G = \mathcal{C}_4$$

and f(X) is irreducible

- 3. Suppose c a square, so bc is not a square. Then
 - either $2(\alpha + \gamma)$ and $2(\alpha \gamma)$ are both not square in K then

$$[L:K] = 4, \quad G = \mathcal{C}_2 \times \mathcal{C}_2$$

and f(X) is irreducible

• or one of $2(\alpha + \gamma)$ or $2(\alpha - \gamma)$ is a square in K, but not the other, then

$$[L:K] = [K(\beta):K] = 2, \quad G = \mathcal{C}_2$$

and f(X) is reducible

Lemma 4.2. Let $B \in F$ and $A \in F$ be not square in F. If B is square in $F(\sqrt{A})$ then either B is square in F or AB square in F

4.2 Finite fields

Theorem 4.3. Fix a prime p > 0. Then $\forall m \in \mathbb{Z}_{\geq 1} \exists$ a unique, up to non-unique isomorphism, finite field with $q = p^m$ elements. The notation is \mathbb{F}_q

$$G = Gal(\mathbb{F}_q/\mathbb{F}_p) = \mathbb{Z}/m\mathbb{Z}$$

4.3 Symmetric polynomials

Consider

$$f(X) = (X - x_1) \cdots (X - x_n) = X^n - \sigma_1 X^{n-1} + \dots \pm \sigma_n \in K(x_1, \dots, x_n)[X]$$

where

$$\sigma_1 = \sigma_1(x_1, \cdots, x_n) = \sum_{i \le i \le n} x_i, \quad \sigma_2 = \sigma_2(x_1, \cdots, x_n) = \sum_{i \le i \le j \le n} x_i x_j, \quad \cdots$$

Here $\sigma_1 \in K[x_1, \ldots, x_n]$ are the elementary symmetric polynomials. Let

$$\delta = \prod_{\text{roots of } f} (x_i - x_j), \quad \Delta = \delta^2 = \prod_{\text{roots of } f} (x_i - x_j)^2$$

Definition 4.4. $\sigma \in K[x_1, \ldots, x_n]$ is symmetric if and only if $\forall g \in S_n$

$$\sigma(x_{g(1)},\ldots,x_{g(n)})=\sigma(x_1,\ldots,x_n)$$

Theorem 4.5. Consider a degree n separable polynomial $f(X) = X^n + a_1 X^{n-1} + \dots + a_{n-1} X + a_n \in k[x]$. Let $k \subset L$ be the splitting field of f. Then $G \subset A_n$ if and only if Δ is a square in k

Theorem 4.6. Consider an irreducible cubic polynomial $X^3 - \sigma_1 X^2 + \sigma_2 X - \sigma_3$ and $k \subset L$ be the splitting field then $G = S_3$ iff Δ is not a square in k, and $G = A_3 = C_3$ iff Δ is square in k

5 Irreducible polynomials

Proposition 5.1. Suppose $f(X) = a_0 + \ldots + a_d X^d \in \mathbb{Z}[X]$ has a root $\frac{p}{q} \in \mathbb{Q}$ with gcd(p,q) = 1 then $[p \mid a_0]$ and $q \mid a_d$

Lemma 5.2. (Gauss' Lemma)

Suppose $f(X) = a_0 + \ldots + a_d X^d \in \mathbb{Z}[X]$ for $gcd(a_0, \ldots, a_d) = 1$ factorises non-trivially in $\mathbb{Q}[X]$. Then it factors non-trivially in $\mathbb{Z}[X]$

Corollary 5.3. if f(X) is prime in $\mathbb{F}_p[X]$ for some p, then it is prime in $\mathbb{Q}[X]$

Corollary 5.4. (Eisenstein) $f(X) = a_0 + \ldots + a_d X^d \in \mathbb{Z}[X]$ is irreducible in $\mathbb{Q}[X]$ if there exists p prime such that $|a_d|$ but $p | a_i$ for i < d and $p^2 | a_0$

6 Reduction modulo prime

Theorem 6.1. Let $f(X) \in \mathbb{Z}[X]$ be monic of degree $n, \mathbb{Q} \subset K$ be the splitting field of f and $G = Gal(K/\mathbb{Q}) \subset S_n$. For p prime, denote by \overline{f} as f viewed in $\mathbb{F}_p[X]$. If there exists p such that $\overline{f} \in \mathbb{F}_p[X]$ has n distinct roots in a splitting field and $\overline{f} = \prod_{i=1}^k \overline{f}_i(X) \in \mathbb{F}_p[X]$ with $\overline{f}_i \in \mathbb{F}_p[X]$ irreducible of degree n_i then there exists $\sigma \in G \subset S_n$ of cycle decomposition type

$$n_1$$
)... (n_k)

Proposition 6.2. Suppose that r is prime and let $G \subset S_r$ be a subgroup. If G contains an r-cycle and one transposition then $G = S_r$

Definition 6.3. The character of a monoid P to K is $\chi : P \to K$ such that

- $\chi(0) = 1$, and
- $\chi(a+b) = \chi(a)\chi(b)$ for all $a, b \in P$

Theorem 6.4. Linear independence of characters, Dedekind independence theorem Let K a field and P a monoid, such as $P = \mathbb{N}$. Any set of distinct non-zero characters

 $\chi_1: P \to K, \quad \dots \quad \chi_n: P \to K, \dots$

is linearly independent in the vector space $\{f: P \to K\}$

Theorem 6.5. Let $f(X) \in \mathbb{Z}[X]$ be degree n monic, $\mathbb{Q} \subset K$ be the splitting field of f, $G = Gal(K/\mathbb{Q}) \subset S_n$ and $\lambda_1, \ldots, \lambda_n \in K$ be the roots of f(X). Let p be a prime. Denote by \overline{f} the image f modulo p. Assume \overline{f} is separable. Let $\mathbb{F}_p \subset F$ be a splitting field for \overline{f} , so \overline{f} has n distinct roots in F. Let $R \subset K$ be the subring generated by the roots of f, so $R = \mathbb{Z}[\lambda_1, \ldots, \lambda_n]$ Then

- 1. there exists a ring homomorphism $\psi: R \to F$
- 2. if $\psi': R \to F$ a ring homomorphism then ψ' induces a bijection

 $\phi': \{ roots of f(X) in R \} \to \{ roots of \overline{f} in F \}$

3. $\psi': R \to F$ a ring homomorphism if and only if there exists $\sigma \in G$ such that $\psi' = \psi \circ \sigma$