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1 What is Galois Theory?

1.1 Field extensions

Definition 1.1. A field homomorphism a function ϕ : K1 → K2 that preserves the field operations
∀a, b ∈ K1

ϕ(a+ b) = ϕ(a) + ϕ(b), ϕ(ab) = ϕ(a)ϕ(b), ϕ(0K1) = 0K2 ϕ(1K1) = ϕ1K2

Definition 1.2. α algebraic over k if f(α) = 0 for some 0 ̸= f ∈ k[X], otherwise α transcendental over
k

Extension k ⊂ K algebraic if ∀α ∈ K,α is algebraic over k

Definition 1.3. Consider field k and f ∈ k[X]. Say k ⊂ K a splitting field for f if

f(X) = a

n∏
i=1

(X − λi) ∈ K[X], K = k(λ1, . . . , λn)

1.2 Galois correspondence

Theorem 1.4. (Fundamental theorem of Galois Theory, Galois correspondency)
Assume characteristic 0. Let k ⊂ K be the splitting field of f(X) ∈ k[X] Let

G = {σ : K → K | σ a field automorphism, σ |k= idk}

Call this the Galois group. There is a one-to-one correspondence

{k ⊂ K1 ⊂ K | K1 a subfield } ↔ {H ≤ G | H a subgroup}
K1 ↔ {σ ∈ G | ∀k ∈ K1, σ(λ) = λ

{λ ∈ K | ∀σ ∈ H,σ(λ) = λ} ↔ {H ≤ G}

Definition 1.5. K ⊂ L is finite if L a finite-dimensional K-vector space. The degree of L over K is

[L : K] = dimKL

Theorem 1.6. (Tower Law)
Let K ⊂ L ⊂ F Then

[F : K] = [F : L][L : K]

Theorem 1.7. Suppose f(X)inK[X] irreducible such that f(λ) = 0, then [K(λ) : K] = deg f

2 Fundamental theorem of Galois Theory

2.1 Elementary facts

Definition 2.0. K ⊂ L, a ∈ L . We say the evaluation homomorphism

ea : K[X]→ K[a] ⊂ L, f(X) 7→ f(a)

is a surjective ring homomorphism, where K[a] the smallest subring of L containing K and a

Definition 2.1. f(X) = a0X
n + . . .+ an ∈ K[X] is monic if a0 = 1

Lemma 2.2. .

� If a transcendental, ea is injective and it extends to ẽa : K(X)→ K(a) by

DIAGRAMHERE
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� If a algebraic then ker ea = ⟨fa⟩ where fa ∈ K[X] irreducible or prime, and unique if f monic, then
called the minimal polynomial of a ∈ L/K . In this case

DIARGRAM HERE

Corollary 2.3. For K ⊂ L and a ∈ L algebraic over K

� [K(a) : K] = deg fa, and

� If K ⊂ F an extension
Em
K

(K(a), F ) = {b ∈ F | fa(b) = 0}

Corollary 2.4. Let K a field and f ∈ K[X]. Then ∃K ⊂ L s.t f has a root in L

REMARK TO ADD HERE

2.2 Axiomatics

Proposition 2.5. Fix k ⊂ K and k ⊂ L Then

#Em
k

(K,L) ≤ [K : k]

Proposition 2.6. Suppose given 2 field extensions k ⊂ K and k ⊂ L. Then there is a non-unique bigger
common field containing both.

DIAGRAM HERE

Formally: given σ1 ∈ Em(k,K) and σ2 ∈ Em(k, L) then ∃Ω, ϕ1 ∈ Em(k,Ω) and ϕ2 ∈ Em(L,Ω) such that
ϕ1 ◦ σ1 = ϕ2 ◦ σ2

Alternatively: ∃k ⊂ Ω such that Emk(K,Ω) and Emk(L,Ω) are both non-empty

Proposition 2.7. Let L be any field and G a finite group action on L as automorphism. Let

K = G∗ = FixG = LG = {λ ∈ L | ∀σ ∈ G, σ(λ) = λ}

Consider AutK L = K†. Then the obvious inclusion G ⊂ K† = (G∗)† is an equality, so G is all of K†.
Remark

We have to contextualise half of the Galois correspondence

{F | k ⊂ F ⊂ Ω} ↔ {G | G ≤ Aut
k

Ω}

F ↔ Aut
k

Ω = F †

FixG = G∗ ↔ G

Lemma 2.8. K ⊂ L a finite extension of degree [L : K] ≤ #G

2.3 Galois correspondence

Definition 2.9. k ⊂ K is normal if

∀k ⊂ Ω,∀σ1, σ2 ∈ Emk(K,Ω),∃σ ∈ Emk(K,K), σ2 = σ1 ◦ σ

Equivalently k ⊂ K is normal if

∀k ⊂ Ω,∀σ1, σ2 ∈ Emk(K,Ω), σ2(K) ⊂ σ1(K)

Remark
Will see later that k ⊂ K is normal if and only if ∃f(X) ∈ k[X] such that K a splitting field of f
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Lemma 2.10. Suppose k ⊂ K normal. Consider k ⊂ L ⊂ K Then also L ⊂ K is normal

Definition 2.11. k ⊂ K is separable if ∀k ⊂ K1 ⊂ K2 ⊂ K, if K1 ̸= K2 then ∃k ⊂ Ω and embeddings
x ∈ Emk(K1,Ω) and y1, y2 ∈ Emk(K2,Ω) such that

DIAGRAM HERE

That is y |K1= x but y1 ̸= y2
We have that embeddings separate fields. Will see that

� in Char 0, everything is separable

� in Char p there are good ways to decide if a field is separable

Lemma 2.12. Suppose k ⊂ K ⊂ L Then k ⊂ L separable if and only if k ⊂ K,K ⊂ L is separable

Theorem 2.13. (Fundamental theorem of Galois theory, Galois correspondence)
Let k ⊂ K be normal and separable. Let G = Emk(K,K) then there is a one-to-one correspondence

{k ⊂ L ⊂ K} ↔ {H ≤ G}
L→ L† = {σ ∈ G | ∀λ ∈ L, σ(λ) = λ}

H∗ = {λ ∈ K | ∀σ ∈ H,σ(λ) = λ} ← H

Lemma 2.14. Suppose k ⊂ K normal. Then for all towers k ⊂ F ⊂ K ⊂ Ω, the natural restriction

ρ : Emk(K,Ω)→ Emk(F,Ω)

is surjective

Corollary 2.15. Suppose k ⊂ K normal. Then for all towers k ⊂ F ⊂ K ⊂ Ω

Emk(F,K)→ Emk(F,Ω)

is also surjective

3 Normal and separable extensions

3.1 Normal extensions

Theorem 3.1. For finite k ⊂ K, the following are equivalent

1. ∀f ∈ k[X] irreducible, either f has no roots in K or f splits completely in K

2. ∃f ∈ k[X] not necessarily irreducible such that K is a splitting field of f

3. k ⊂ K is normal

Proposition 3.2. Let k ⊂ L be a field extension. Then there exists a tower k ⊂ L ⊂ K such that k ⊂ K is
normal

3.2 Separable polynomials

Definition 3.3. A polynomial f ∈ k[X] is separable if it has n = deg(f) distinct roots in any field k ⊂ K
such that f ∈ K[X] splits completely
Remark
It is not completely obvious that this definition is independent of K - use the fact that 2 splitting fields are
isomorphic.
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Remark 3.0. Derivative
D : k[X]→ k[X], Xn 7→ nXn−1

Having the following properties

� D is k-linear, that is ∀λ, µ ∈ k,∀f, g ∈ k[X]

D(λf + µg) = λDf + µDg

� Leibnitz rule, ∀f, g ∈ k[X]
Dfg = fDg + gDf

Proposition 3.4. f(X) ∈ k[X] is separable if and only if gcd(f,Df) = 1

Lemma 3.5. Let f, g ∈ k[X] and c = gcd(f, g) ∈ k[X]
Let k ⊂ L an extension, then c = gcd(f, g) ∈ L[X]

Theorem 3.6. f ∈ k[X] irreducible is inseparable if and only if

� ch(k) = p > 0, and

� ∃h ∈ k[X] such that f(X) = h(Xp)

Definition 3.7. A field k in ch(k) = p > 0 is perfect if ∀a ∈ k there exists b ∈ k such that bp = a

Proposition 3.8. If k is perfect then f ∈ k[X] is irreducible implies that f(X) is separable

Definition 3.9. Consider k ⊂ L. An element a ∈ L is separable over k if the minimal polynomial
f(X) ∈ k[X] of a is a separable polynomial

3.3 Separable degree

Definition 3.10. Let k ⊂ K. Choose K ⊂ Ω such that k ⊂ Ω is normal. Define the separable degree as

[K : k]s = #Emk(K,Ω)

Remark
[K : k]s does not depend on K ⊂ Ω. Suppose k ⊂ Ω1 and k ⊂ Ω2 are normal. Then there exists a bigger

field Ω̃ such that Ω1 ⊂ Ω̃,Ω2 ⊂ Ω̃ Then

Emk(K,Ω1) = Emk(K, Ω̃) = Emk(K,Ω2)

Remark
Restate definition of separable extension. Recall k ⊂ K separable if for all towers k ⊂ K1 ⊂ K2 ⊂ K there
exists Ω, y : K1 → Ω, x1, x2 : K2 → Ω such that x1 ̸= x2 and x1 |K1= x2 |K2= y so [K2 : K1] ̸= 1. Thus
k ⊂ K separable if for all towers k ⊂ K1 ⊂ K2 ⊂ K [K2 : K1]s = 1 implies that K1 = K2

Theorem 3.11. (Tower Law)
∀k ⊂ K ⊂ L

[L : K]s = [L : K]s[K : k]s

3.4 Separable extensions

Recall that for k ⊂ K, said a ∈ K separable if minimal polynomial of f(X) ∈ k[X] of a is separable
polynomial

Theorem 3.12. k ⊂ K is separable if and only if [K : k]s = [K : k]

Corollary 3.13. For all towers k ⊂ K ⊂ L if k ⊂ K and K ⊂ L are separable then k ⊂ L is separable

Corollary 3.14. k ⊂ K is separable if and only if ∀a ∈ K, a is separable over k

Lemma 3.15. Let k ⊂ L ⊂ K. For λ ∈ K, λ is separable over k implies that λ is separable over L
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4 Examples

4.1 Biquadratic extensions

Let

K ⊂ K
(√

a±
√
b

)
= L, c = a2 − b, β =

√
b ̸∈ K, α =

√
a+ β ∈ L, α′ =

√
a− β ∈ L

We know that ±α,±α′ are roots of
f(X) = X4 − 2aX2 + c

Not assuming that f(X) is irreducible. Let

δ = α+ α′ δ′ = α− α′, γ = αα′ =
√
c

Then

γ2 = c, δ2 = 2(α+ γ), δ2 = 2(α− γ), δδ′ = 2β, α =
δ + δ′

2
, α′ =

δ − δ′

2

and we have ±δ,±δ′ are roots of
g(Y ) = Y 4 − 4aY 2 + 4b

Then L is the splitting field of g. Assume

1. ch(K) ̸= 2 and

2. b is not a square in K , that is [K(β) : K] = 2

Claim that the extension K ⊂ L is separable.
It is the splitting field of f(X) Need to check that gcd(f,Df) = 1 where

Df = 4X3 − 4aX = 4X(X2 − a)

f,Df have no common roots since X = 0 not a root of f and X = ±
√
a not a root of f, as b ̸= 0

Theorem 4.1. Assume 1 and 2 from before

1. Suppose bc, c are not square. Then
[L : K] = 8, G = D8

and f(X) is irreducible

2. Suppose bc square, so c not square. Then

[L : K] = 4, G = C4

and f(X) is irreducible

3. Suppose c a square, so bc is not a square. Then

� either 2(α+ γ) and 2(α− γ) are both not square in K then

[L : K] = 4, G = C2 × C2

and f(X) is irreducible

� or one of 2(α+ γ) or 2(α− γ) is a square in K, but not the other, then

[L : K] = [K(β) : K] = 2, G = C2

and f(X) is reducible

Lemma 4.2. Let B ∈ F and A ∈ F be not square in F . If B is square in F (
√
A) then either B is square

in F or AB square in F
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4.2 Finite fields

Theorem 4.3. Fix a prime p > 0. Then ∀m ∈ Z≥1∃ a unique, up to non-unique isomorphism, finite field
with q = pm elements. The notation is Fq

G = Gal(Fq/Fp) = Z/mZ

4.3 Symmetric polynomials

Consider

f(X) = (X − x1) · · · (X − xn) = Xn − σ1Xn−1 + · · · ± σn ∈ K(x1, · · · , xn)[X]

where
σ1 = σ1(x1, · · · , xn) =

∑
i≤i≤n

xi, σ2 = σ2(x1, · · · , xn) =
∑

i≤i≤j≤n

xixj , · · ·

Here σ1 ∈ K[x1, . . . , xn] are the elementary symmetric polynomials. Let

δ =
∏

roots of f

(xi − xj), ∆ = δ2 =
∏

roots of f

(xi − xj)2

Definition 4.4. σ ∈ K[x1, . . . , xn] is symmetric if and only if ∀g ∈ Sn

σ(xg(1), . . . , xg(n)) = σ(x1, . . . , xn)

Theorem 4.5. Consider a degree n separable polynomial f(X) = Xn + a1X
n−1 + · · ·+ an−1X + an ∈ k[x].

Let k ⊂ L be the splitting field of f . Then G ⊂ An if and only if ∆ is a square in k

Theorem 4.6. Consider an irreducible cubic polynomial X3 − σ1X2 + σ2X − σ3 and k ⊂ L be the splitting
field then G = S3 iff ∆ is not a square in k, and G = A3 = C3 iff ∆ is square in k

5 Irreducible polynomials

Proposition 5.1. Suppose f(X) = a0 + . . .+ adX
d ∈ Z[X] has a root p

q ∈ Q with gcd(p, q) = 1 then [p | a0]
and q | ad

Lemma 5.2. (Gauss’ Lemma)
Suppose f(X) = a0 + . . . + adX

d ∈ Z[X] for gcd(a0, . . . , ad) = 1 factorises non-trivially in Q[X]. Then
it factors non-trivially in Z[X]

Corollary 5.3. if f(X) is prime in Fp[X] for some p, then it is prime in Q[X]

Corollary 5.4. (Eisenstein)
f(X) = a0 + . . .+ adX

d ∈ Z[X] is irreducible in Q[X] if there exists p prime such that ̸| ad but p | ai for
i < d and p2 ̸| a0

6 Reduction modulo prime

Theorem 6.1. Let f(X) ∈ Z[X] be monic of degree n,Q ⊂ K be the splitting field of f and G = Gal(K/Q) ⊂
Sn. For p prime, denote by f as f viewed in Fp[X]. If there exists p such that f ∈ Fp[X] has n distinct

roots ina splitting field and f =
k∏

i=1

f i(X) ∈ Fp[X] with f i ∈ Fp[X] irreducible of degree ni then there exists

σ ∈ G ⊂ Sn of cycle decomposition type
(n1) . . . (nk)

Proposition 6.2. Suppose that r is prime and let G ⊂ Sr be a subgroup. If G contains an r-cycle and one
transposition then G = Sr
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Definition 6.3. The character of a monoid P to K is χ : P → K such that

� χ(0) = 1, and

� χ(a+ b) = χ(a)χ(b) for all a, b ∈ P

Theorem 6.4. Linear independence of characters, Dedekind independence theorem
Let K a field and P a monoid, such as P = N. Any set of distinct non-zero characters

χ1 : P → K, . . . χn : P → K, . . .

is linearly independent in the vector space {f : P → K}

Theorem 6.5. Let f(X) ∈ Z[X] be degree n monic, Q ⊂ K be the splitting field of f , G = Gal(K/Q) ⊂ Sn
and λ1, . . . λn ∈ K be the roots of f(X). Let p be a prime. Denote by f the image f modulo p. Assume f is
separable. Let Fp ⊂ F be a splitting field for f , so f has n distinct roots in F . Let R ⊂ K be the subring
generated by the roots of f , so R = Z[λ1, . . . , λn] Then

1. there exists a ring homomorphism ψ : R→ F

2. if ψ′ : R→ F a ring homomorphism then ψ′ induces a bijection

ϕ′ : {roots of f(X) in R} → {roots of f in F}

3. ψ′ : R→ F a ring homomorphism if and only if there exists σ ∈ G such that ψ′ = ψ ◦ σ
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