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1 Elementary theory of field extensions

1.1 The category of fields and finite extensions

There is a category of fields where: objects are fields,morphisms are field (homo-)morphisms.

Remark 1. Every morphism σ : K → L of fields is injective.

For two fields K, L, we denote by Emb(K,L) the set of field morphisms from K to L. We
call the elements of the set Emb(K,L) embeddings — to remind ourselves constantly that
all morphisms of fields are injective.

In Galois theory, there is almost always a given field k — called the ground field — in the
background, and we take it for granted that all fields in sight come with a given morphism
σ : k → K. In this situation we omit σ from the notation and we just say that k ⊂ K is an
extension of fields.

We almost always work with a variant of the category of fields where we fix a ground
field k and we work in the category whose objects are extensions of k, and for two objects
k ⊂ K and k ⊂ L, morphisms are understood as embeddings over k, that is, embeddings
that restrict to the identity of k. We denote by

Embk(K,L) = {f ∈ Emb(K,L) | ∀a ∈ k, f(a) = a}

the set of field embeddings f : K → L over k, and we call the elements of this set k-embeddings
of K in L.1

1.2 Degree and the tower law

An important philosophical observation The earlier you understand this, the better.
The field structure is baroque: a field has two operations and they satisfy this weird dis-
tributive property. On the other hand, vector spaces, groups and their representations are
simpler structures and hence they are easier to work with: there are fewer ways to go down
a rabbit-hole and hence it is easier to keep on the right path.

Remark 2. If K ⊂ L is a field extension, then L is a K-vector space.

Definition 3. The degree of an extension K ⊂ L is the quantity:

[L : K] = dimK L

(the dimension of L as a vector space over K).
A field extension is finite if [L : K] <∞.

1The reason for the expression “over k” is that at the blackboard or on paper we paint an element
σ ∈ Embk(K,K) like so:

K
σ // K

k

__ ??

with K above (over) k.
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Remark 4. (a) If [L : K] = 1 then K = L;

(b) If k ⊂ K is finite, then every element of Embk(K,K) is surjective,2 hence it is an
isomorphism. In other words Embk(K,K) = Autk(K,K) is the group of automorphisms
of K over k. The k-vector space K is a k-linear representation of this group.

From now on in these notes, unless explicitly stated otherwise, all field exten-
sions are understood to be finite.

Definition 5. If k ⊂ K is a (finite) extension of fields, then the group G = Embk(K,K) is
called the Galois group of the extension.

Theorem 6 (tower law). For a tower3 K ⊂ L ⊂M of extensions4

[M : K] = [M : L][L : K]

Remark 7. In general the degree [L : K] of a field extension depends on the embedding
x : K → L that we use to put K in L. When we want to be precise about this we may write
deg(x), the degree of x. For example, the embedding x : K(t) → K(t) where x(t) = td has
degree deg(x) = d. We could not get away with a poor choice of notation if it were not that
in the context of interest to us, the degree [L : K] in fact only depends on K and L and not
on the embedding x : K → L. Indeed, if all fields are (finite!) extensions of a fixed ground
field k, then for k ⊂ K, k ⊂ L, if x : K → L is a k-embedding, then by the tower law:

deg(x) =
[L : k]

[K : k]

1.3 Elementary theory of field extensions

Elsewhere in this text I use the following facts freely5 and refer to them by bold numerals
like so [ix].

2This follows immediately from the rank-nullity formula.
3The situation of two extensions K ⊂ L and L ⊂ M is called a “tower.” The reason for this expression is

that at the blackboard or on paper we tend to paint this vertically as a two-storey tower:

M

L

OO

K

OO

The tower pictured here only has two stories but you can easily imagine a multi-storey tower.
4On punctuation at the end of displayed formulas I have been typesetting mathematics for a very

long time. It is likely that I have thought about the rules of punctuation at the end of displayed formulas
longer and harder than you. The main difficulty is that there are too many cases. I have decided that I never
put punctuation at the end of displayed formulas. This rule has the double advantage that it is simple and
it is easy to follow consistently. We are not discussing this.

5In the taught version of the course I do not use these facts freely: some I teach at the beginning, some I
recall as I need them. In the online version of the course, I have videos covering all of these facts.
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The topics are: minimal polynomials [i-v]; splitting fields [vi-ix]; separable poly-
nomials [x-xiii].

1.3.1 Minimal polynomials

(i) For K ⊂ L, all a ∈ L have a minimal polynomial fa = f ∈ K[X]: by definition, f is the
unique monic generator of the kernel ideal of the evaluation-at-a homomorphism φa =
φ : k[X] → L. By definition, the ring K[a] ⊂ L is the image of φ. The homomorphism
φ induces by passing to the quotient a ring isomorphism

[φ] : K[X]/(f)
∼=−→ k[a]

Because [φ] is (by construction) injective, and because L is a field, hence as a ring it is
an integral domain, it follows that k[X]/(f) is also an integral domain, and hence (f)
is a prime ideal, and hence f is irreducible. It follows from this that k[X]/(f) is a field,
and hence k[a] ⊂ L is a field and k[a] = k(a) is the smallest subfield of L that contains
a.

(ii) Conversely, given an irreducible f ∈ K[X] there is a field extension K ⊂ K(a) =
K[X]/(f) such that a = [x] is a root of f . If f is also monic, then f is the minimal
polynomial of a;

(iii) Let K ⊂ K(a) be as in [i] or [ii] and let f ∈ K[X] be the minimal polynomial of a. For
all extensions K ⊂ L, there is a canonical bijection:

{b ∈ L | b is a root of f} =−→ EmbK (K(a), L)

that maps a root b to the unique K-embedding φ : K(a) → L such that φ(a) = b;

(iv) In [i] and [ii] [K(a) : K] = deg f ;

(v) If K ⊂ L ⊂M and a ∈M then the minimal polynomial of a over L divides the minimal
polynomial of a over K.

1.3.2 Splitting fields

(vi) For all f ∈ K[X] — not necessarily irreducible — there is a field extension K ⊂ L such
that:

(a) The polynomial f splits completely in L[X];

(b) L = K(a1, . . . an) where the ai are the roots of f in L.

An extension K ⊂ L satisfying properties (a) and (b) is called a splitting field of f .

(vii) Let f ∈ K[x] be a polynomial, and let

(a) K ⊂M be a field extension in which f splits completely, and
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(b) K ⊂ E = K(a1, . . . , am) a field extension generated by roots ai of f ,

then the set EmbK(E,M) is not empty. It follows from this that any two splitting fields
of f ∈ K[X] are K-isomorphic; it is important to understand that the isomorphism is
not canonical, but it sends a root of f to a root of f .

(viii) If K ⊂ L is a splitting field of a polynomial f ∈ K[X] then the group G = EmbK(L,L)
is a subgroup of the symmetric group on the roots of f . If, in addition, f ∈ K[X] is
irreducible, then this group acts transitively on the roots;

(ix) Let K be a field. The following are equivalent for f, g ∈ K[X]:

(a) The polynomials f , g are coprime as elements of K[X];

(b) There exists an extension K ⊂ L such that the polynomials f , g are coprime as
elements of L[X];

(c) For all extensions K ⊂ L, the polynomials f , g are coprime as elements of L[X];

(d) For all extensions K ⊂ L, the polynomials f , g have no common root in L;

(e) There exists an extension K ⊂ L in which: (I) both f and g split completely, and
(II) f and g have no common root.

1.3.3 Separable polynomials and the Jacobian criterion

(x) By definition a polynomial f ∈ K[X] is separable if it has n = deg f distinct roots (in
a — and hence by [vii] in all — splitting field K ⊂ L). The Jacobian criterion: a
polynomial f is separable if and only if f and Df (the derivative6 of f) are coprime;

(xi) An irreducible polynomial f ∈ K[X] is not separable if and only if (a) K has character-
istic p > 0 and (b) there is a polynomial (necessarily irreducible) h ∈ K[X] such that
f(X) = h(Xp);

(xii) For K ⊂ L, an element a ∈ L is separable over K if the minimal polynomial f ∈ K[X]
of a over K is a separable polynomial;

(xiii) If k ⊂ K ⊂ L and a ∈ L is separable over k, then by [v] it is also separable over K.

6For all fields K there exists a derivation D : K[X] → K[X] uniquely specified by the properties:

(1) D is K-linear, that is, for all a, b ∈ K and f, g ∈ K[X] D(af + bg) = aDf + bDg,

(2) D satisfies the Leibnitz rule, that is, for all f, g ∈ K[X] D(fg) = (Df)g + fDg,

(3) DX = 1.

(the properties imply that for all a ∈ K Da = 0).
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2 Axiomatics

The following correspond roughly to Grothendieck’s axioms for a Galois category. The only
nontrivial ones are Axiom 1, Axiom 4 and Axiom 5. The proof is postponed till Sec. 5.

Axiom 1 Fix a field k. The category of algebraic field extensions k ⊂ K finite over k has
an initial object (the field k) and for all pairs of objects k ⊂ K and k ⊂ L, Embk(K,L)
is finite.7

Axiom 2 Every morphism is injective. Also: every k-morphism from K to K is an isomor-
phism, that is, Embk(K,K) is a group. For all fields Ω the (right) action of Embk(K,K)
on Embk(K,Ω) is free.

8

Axiom 3 Fibered products exist. (These are just “intersections” in a bigger field.) Also,
“framed” pushouts exist. (If x1 : K ↪→ L1, x2 : K ↪→ L2 are contained in a bigger
field Ω, then it makes sense to take the “product”—which in fact categorically is a
pushout—L1L2 ⊂ Ω: this is the subfield of Ω generated by L1 and L2 applying all field
operations; alternatively it is the smallest subfield of Ω containing both L1, L2.)

Axiom 4 For all pairs of finite extensions K ⊂ L, K ⊂M there is a field extension K ⊂ Ω,
and a commutative diagram:9

L

  
K

>>

  

Ω

M

>>

Axiom 5 For every field L and finite subgroup G ≤ AutL, it makes sense to take the fixed
field K = LG, and the natural inclusion G ↪→ EmbK(L,L) is an isomorphism.10

7In fact, it is shown in Lemma 18 that |Embk(K,L)| ≤ [K : k].
8f : K → Ω is injective if for all pairs of morphisms g1, g2 : L → K, f ◦ g1 = f ◦ g2 implies g1 = g2.
Recall that a right action of a group G on a set X is faithful if for all e ̸= g ∈ G there exists x ∈ X such

that xg ̸= x. The action is free if for all e ̸= g ∈ G and all x ∈ X, xg ̸= x. (There are similar notions for left
actions.)
Now f ∈ Embk(K,Ω) is fixed by some g ∈ Embk(K,K) if and only if f ◦ g = f ◦ idK and then, because f

is injective, g = idK .
9This field has no universal property and it is not unique. For example consider K = Q, L = M =

Q[X]/(X3 − 2). We can take Ω = Q( 3
√
2), i1 = i2 : L → Ω both mapping [X] to 3

√
2, but we can also

take Ω = Q
(

3
√
2, i

√
3
)
, with i1 : L → Ω mapping [X] to 3

√
2 and i2 : L → Ω mapping [X] to −1+i

√
3

2
3
√
2.

This example shows that the intersection and product of L and M in Ω are not determined (even up to
noncanonical isomorphism) by L and M . This axiom substitutes for the non-existent fibered co-product.
Indeed the tensor product of rings K ⊗k L is not a field.

10This is half the Fundamental Theorem. This axiom corresponds exactly to Grothendieck’s axiom (G5)
for a Galois category stating “F [...] commutes with taking the quotient by a finite group action.” Recall
that, in Grothendieck, F is the fibre functor: for fields F (K) = Embk(K,Ω) where Ω is an algebraic closure of
k. Suppose that G is a finite group acting on K, then by naturality G acts on F (K) by composing on the left.
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3 Fundamental Theorem

The aim of this section is to state and prove the Fundamental Theorem of Galois theory from
the axioms.

Definition 8. k ⊂ K is normal if: For all Ω any two k-embeddings x1, x2 : K → Ω differ by
a k-automorphism of K. More formally, for all x ∈ Embk(K,Ω), the naturally induced

x⋆ : Embk(K,K) → Embk(K,Ω) defined as: x⋆ : σ 7→ x ◦ σ

is bijective.11

In simpler words, k ⊂ K is normal if and only if for all pairs of k-embeddings x1, x2 : K →
Ω, we have

x1(K) ⊂ x2(K)

Informally: no matter where I go I can not “displace” K away from itself.

Lemma 9. Splitting fields [vi] are normal.

Proof. Let k ⊂ K be a splitting field of the polynomial f ∈ k[X], K ⊂ Ω and x : K → Ω a
k-embedding. We aim to prove that x(K) ⊂ K. If a ∈ K is a root of f , then x(a) ∈ Ω is also
a root of f , and hence x(a) ∈ K. But K is generated by roots of f , hence x(K) ⊂ K.

The following statement is immediate from the definition:

Lemma 10. Suppose given k ⊂ K ⊂ L: If k ⊂ L is normal, then K ⊂ L is normal.

Example 11. For given extensions k ⊂ K ⊂ L:

(1) If k ⊂ L is normal, it does not follow that k ⊂ K is normal. For an example, consider
k = Q, K = Q( 3

√
2), L = Q( 3

√
2,
√
−3) the splitting field of the polynomial f(X) =

X3 − 2 ∈ Q[X];

(2) If k ⊂ K and K ⊂ L are normal, it does not follow that k ⊂ L is normal. For an example

consider k = Q, K = Q(
√
2), L = K(

√√
2) = Q( 4

√
2).

Definition 12. k ⊂ K is separable if: For every tower of subfields

k ⊂ K1 ⊊ K2 ⊂ K

there exist: a field Ω, and at least two distinct K1-embeddings x, y : K2 → Ω.12

(And in fact the axioms imply that this action is free.) Axiom (G5) then states F (KG) = F (K)/G. Counting

elements we obtain [KG : k] = [K:k]
|G| and using the tower law then [K : KG] = |G|. Even Grothendieck sneaks

half the Fundamental Theorem into an axiom!
11The function (x, σ) 7→ x ◦ σ is in fact a right group action X × G → G, where X = Embk(K,Ω) and

G = Embk(K,K). Axiom 2 states that this action is free. An extension k ⊂ K is normal if and only if, for
all Ω, X = Embk(K,Ω) is a G-torsor.

12This definition substitutes for Grothendieck’s axiom (G6) for a Galois category (Stating that if F (u) is
an isomorphism then u is an isomorphism). The category of separable field extensions is a Galois category
in the sense of Grothendieck but the category of all extensions (separable and inseparable) is not.

7



The slogan is: k ⊂ K is separable if embeddings separate subfields.

Lemma 13. If k ⊂ K is a splitting field of a separable polynomial [x], then k ⊂ K is
separable.

Sketch of proof. This is Corollary 49, but that is not for some time, the result is not very
difficult, and it is needed to make sense of the statement of the Fundamental Theorem, so I
give a sketch now, with details to be discussed later.

In Definition 43 we define the separable degree [K : k]s of an extension k ⊂ K to be
the number of elements of the set Embk(K,Ω) of k-embeddings of K into a field Ω such
that k ⊂ Ω is a normal extension that also contains K. In Sec. 9 it is shown that the
separable degree is well-defined and that it satisfies the tower law. Note that, by Lemma 18,
[K : k]s ≤ [K : k].

It follows from the tower law that if [K : k]s = [K : k] then k ⊂ K is separable.
Now if a is separable over k (this just means that the minimal polynomial of a over k

is separable), then by [iii]: [k(a) : k]s = [k(a) : k]. Now if k ⊂ K is a splitting field of a
separable polynomial f ∈ k[X] then K = k(a1, . . . , am) where the ai are roots of f . We break
up the extension k ⊂ K into a sequence of primitive extensions:

k ⊂ k(a1) ⊂ k(a1, a2) ⊂ · · · ⊂ k(a1, . . . , am) = K

where ai is separable over k and hence also separable over k(a1, . . . , ai−1). By the tower laws
for the ordinary and the separable degrees, [K : k]s = [K : k].

The following is immediate from the definition:

Lemma 14. For k ⊂ K ⊂ L, if k ⊂ L is separable, then K ⊂ L and k ⊂ K are separable.

(The converse is also true, see Theorem 48(II).)

Theorem 15 (Fundamental Theorem of Galois theory). If k ⊂ K is normal and separable
then the correspondence between subfields and subgroups holds.13

Proof. Write G = Embk(K,K) the Galois group of the extension. One defines functions:

For H ≤ G : H 7→ H⋆ =
{
a ∈ K | ∀ g ∈ H, g(a) = a

}
and

For k ⊂ L ⊂ K : L 7→ L† = {g ∈ G | ∀ a ∈ L, g(a) = a}

and the task is naturally split into two halves:

First Half For all H, (H⋆)† = H. This is just Axiom 5;

13In fact more is true, namely there is an equivalence of categories between the category of field
extensions (intermediate between k and K) and the category of subgroups of the Galois group. This fact,
essential though it is, in textbooks it is seldom pursued to the bitter end: for subgroups H1, H2 of G, what
exactly is the correct definition of Mor(H1, H2) that makes this equivalence work? (You will answer this in
Worksheet 8.) An important consequence of the equivalence of categories is: given k ⊂ L ⊂ K, then k ⊂ L
is normal if and only if the corresponding subgroup H ≤ G (of elements that fix L) is a normal subgroup,
AND, in that case, the Galois group of k ⊂ L is the quotient group G/H.
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Second Half For all L, (L†)⋆ = L.

We need to prove the second half. Since L ⊂ K is normal and separable, it is enough to
show that G⋆ = k.

Let k ⊂ F = G⋆; I show that for all K ⊂ Ω, the set Embk(F,Ω) consists of the obvious
inclusion F ⊂ K ⊂ Ω and hence — because we are assuming that the extension is separable
— it must be that k = F .

Indeed consider the tower k ⊂ F ⊂ K ⊂ Ω. For clarity denote by ιF,Ω : F → Ω the inclu-
sion in this tower and similarly all other inclusions in the tower. Consider y ∈ Embk(F,Ω).
By Lemma 16(B) below, there is x ∈ Embk(K,Ω) such that y = x|F . Because k ⊂ K is
normal, there exists σ ∈ Embk(K,K) such that x = ιK,Ω ◦ σ. By construction of F σ|F is
the identity, and therefore y = x|F = ιF,Ω.

Lemma 16. Suppose that k ⊂ K is normal. Then for all given towers:

k ⊂ F ⊂ K ⊂ Ω

we have:

(A) the natural injective composition c : Embk(F,K) → Embk(F,Ω) (compose with the given
inclusion K ⊂ Ω) is also surjective — i.e., c is bijective;

(B) the natural restriction ρ : Embk(K,Ω) → Embk(F,Ω) (restrict to the given subfield F ⊂
K) is surjective.

Remark 17. (i) (A) states that every k-embedding x : F → Ω in fact lands F in K: x(F ) ⊂
K. In other words, “F can never be moved out of K.” When F = K, this is just the
definition of k ⊂ K normal.

(ii) The following statement is a striking consequence of (A). Suppose that f ∈ k[X] is
irreducible. Then: either f has no roots in K, or it splits completely in K. Indeed
suppose that f has at least one root a ∈ K. Consider the tower k ⊂ k(a) = F ⊂ K ⊂ Ω
where f splits completely in Ω. If b is a root of f in Ω, then we want to show that b ∈ K.
But we know that there is a K-isomorphism x : F → k(b) ⊂ Ω such that x(a) = b. By
(A) x(F ) ⊂ K and hence b ∈ K.

(iii) (B) states that every k-embedding x : F → Ω extends to a k-embedding x̃ : K → Ω:

K
x̃

  
F

x //

OO

Ω

k

OO >>

(In fact, x̃ lands K in itself, but let us leave this fact aside.)

The case K = Ω is especially significant: If k ⊂ K is normal then every embedding
x : F → K extends to an automorphism σ : K → K — a fact that was crucial in the
proof of the Fundamental Theorem.
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Another way to state this fact is to say that the left action

G× Embk(F,K) → Embk(F,K)

(given by composition: (σ, x) 7→ σ ◦ x) is transitive.

(iv) The following consequence of (B) is already known to us: if f ∈ k[X] is irreducible and
splits completely in K, then G acts transitively on the roots of f . To see this, just
apply the above remark to F = k(a) where a is any root of f in K.

(v) It is manifestly the case that, assuming as we are that k ⊂ K normal, (B)⇒(A): Indeed,
given x : F → Ω, extend it to x̃ : K → Ω, and then observe that by normality x̃(K) ⊂ K
and hence a fortiori x(F ) ⊂ K, that is, F landed in the given inclusion of K in Ω.

Proof. By Remark 17(v) we only need to prove (B). Let x : F → Ω: we want to show that x is
the restriction of some x̃ : K → Ω. First, use Axiom 4 to construct a commutative diagram:

K
y2 // Ω̃

F

OO

x
// Ω

z

OO

Note that we have TWO k-embedding K → Ω̃: one is y2 : K → Ω̃ in the diagram above; the
other is obtained composing z with the given inclusion K ⊂ Ω:

y1 : K ⊂ Ω
z→ Ω̃

It follows from the normality of k ⊂ K that y2(K) ⊂ y1(K) ⊂ z(Ω). In other words, y2
landed K in Ω, that is, it gave the sought-for extension y2 = x̃.

4 Philosophical considerations

In teaching the course these were my aims:

(i) Work with finite extensions only; avoid constructing an algebraic closure. (Even if
having one helps a great deal.) There should be no need of discussing infinite algebraic
extensions if one is only interested in finite ones.

(ii) Discuss characteristic p and the phenomenon of inseparability. Develop the theory
of Frobenius lifts and use these to give a transparent proof of the irreducibility of
cyclotomic polynomials over Q (a shockingly deep theorem of Dedekind).

(iii) Avoid copying Emil Artin like everybody else does. Aim to follow Grothendieck in
spirit, uncompromisingly expressing all important definitions and statements in pure
categorical terms; have a clean set of axioms.
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(iv) Most books spend a lot of time developing many things; the Fundamental Theorem
comes at the very end when one has seen so much detail that one can not see what
really makes it work. I wanted to do the opposite: prove the Fundamental Theorem as
soon as possible and develop the theory later.

There are three levels of abstraction:

(i) At the beginning one is interested in polynomials and their roots and in proving that
there is no general formula in radicals for the roots of polynomials of degree ≥ 5;

(ii) One then discovers that it is helpful to keep roots in the fields that they inhabit, and that
one is interested only in those permutations of roots that are induced by automorphisms
of these fields;

(iii) The third level of abstraction is arrows in a category, and the discipline of phrasing
everything in terms of these. My innovation in this course is to access this level and
try to convince you of the benefits.

5 Proofs of the Axioms

5.1 Proofs of Axioms 1 and 4

Lemma 18 (Axiom 1). Embk(K,L) has at most [K : k] elements.

Proof. We know that [iii, iv] that in the case of a primitive extension k ⊂ k(a) Embk(k(a), L)
has at most deg fa = [k(a) : k] elements, hence the statement is true in this case. We will
reduce the general case to the primitive case by tower law and induction on the degree of the
extension.14 Pick a ∈ K \ k (if there is no such a then we have nothing to do). Consider the
tower k ⊂ k(a) ⊂ K. We have an obvious restriction map:

ρ : Embk(K,L) → Embk (k(a), L)

and
for x ∈ Embk (k(a), L), ρ−1(x) = Embk(a)(K,L)

hence
|Embk (K,L) | =

∑
x∈Embk(k(a),L)

|ρ−1(x)| ≤ [k(a) : k][K : k(a)] = [K : k]

14This proof has a typical structure: to show that something holds for an arbitrary extension k ⊂ K, we
show that it hods for a primitive extension, and then reduce to the primitive extension case by tower law
and induction on degree. This scheme is not super-elementary but it is never very difficult to implement.
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by the primitive case, induction, and the tower law.15

Proof of Axiom 4. We want to create a field Ω completing to a commutative diagram:

L

  
K

>>

  

Ω

M

>>

The proof is by induction on [L : K]. The base of the induction: If [L : K] = 1, then K = L
and we take Ω =M .

If [L : K] > 0, pick a ∈ L \ K and let f(X) ∈ K[X] be the minimal polynomial [i] of
a over K. It is an elementary fact [ii] that there is a (possibly trivial) extension E = M(b)
in which f(X) has a root b ∈ E; and we know [iii] that there is a (unique) K-embedding
x : K(a) → E such that x(a) = b:

L

K(a)

<<

x

""
K

<<

""

E

M

<<

15I iron out a wrinkle in the proof. Fix a k-embedding x : k(a) → L:

K

x̃

!!
k(a)

OO

x // L

k

OO

ρ−1(x) is the set of k-embeddings x̃ : K → L such that x̃|k(a) = x. In the proof, I denoted this set by
Embk(a)(K,L) but note that this set depends on the given embedding x : k(a) → L. Let us be precise
and denote this set by Embx(K,L) to emphasize this dependence on x : k(a) → L. Note, however, that the
[K : k(a)] < [K : k], hence by induction we may still assume that:

|Embx(K,L)| ≤ [K : k(a)]

is bounded independent of x, and this is all we needed in the proof.
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Since by the tower law [L : K(a)] < [L : K], we may assume by induction that there exists a
finite field extension K(a) ⊂ Ω:

L

��
K(a)

<<

x

""

Ω

E

??

and by composing the relevant arrows K ⊂ Ω proves the statement.

5.2 Proof of Axiom 5

Proposition 19 (Axiom 5). Let L be a field, G ⊂ AutL a finite subgroup, and write K = LG

the subfield fixed by G. Then

(i) [L : K] = |G|;

(ii) The manifest inclusion G ⊂ EmbK(L,L) is an isomorphism.

Proof. We already know from Lemma 18 that

|EmbK(L,L)| ≤ [L : K]

and obviously |G| ≤ |EmbK(L,L)| so (i) and (ii) follow from: [L : K] ≤ |G|, which is proved
in the next lemma.

Lemma 20. Let L be a field, G ⊂ AutL a finite subgroup, and write K = LG the subfield
fixed by G. Then [L : K] ≤ |G|.

Proof. Suppose that G = {σ1, . . . , σn}, we want to show that all (n+1)-tuples a1, . . . , an+1 ∈
L are linearly dependent over K.

Indeed, to start with, the n+ 1 vectors in Ln:

a1 =

σ1(a1)...
σn(a1)

 , . . . , an+1 =

σ1(an+1)
...

σn(an+1)


are linearly dependent over L. Let k ≤ n + 1 be the smallest number of summands in a
nontrivial linear dependence between the ai; by rearranging the indices we may assume that
such a dependence holds between a1, . . . , ak:

x1a1 + · · ·+ xkak = 0 (1)

Because this is a nontrivial linear dependence with the smallest number of summands, all
xi ̸= 0, and by rescaling we may also assume that x1 = 1.

13



We can re-word the linear dependence by stating that x1, . . . , xk is a solution of the linear
system of equations:

∀ j ∈ [n],
k∑

i=1

xiσj(ai) = 0 (2)

Applying σ ∈ G to this reshuffles the j and from this we conclude that σ(x1), . . . , σ(xn)
is another solution of the system of Equations 2. So it is the old solution (otherwise by
subtracting it from the old solution—since x1 = 1 and so also σ(x1) = 1—we would obtain a
nontrivial linear dependence with a smaller number of summands), and then all xi ∈ K = LG.

But then the equation corresponding to σj = e states:

k∑
i=1

xiai = 0

and this is the sought-for linear dependence over K.

Remark 21. The following considerations may help to put what happens in Lemma 20 in
context. If V is aK-vector space we can extend scalars to L: VL = L⊗KV , and make a vector
space VL over L. When K ⊂ L is the extension R ⊂ C you are familiar with this construction
under the name of complexification of a real vector space. Given an L-vector space VL, we
say that VL descends to K when there is a K-vector space V such that VL = L ⊗K V as
above. So how can we tell if VL descends to K? A descent datum is a G-action on VL such
that: For all g ∈ G, for all λ, µ ∈ L, for all v, w ∈ VL: g(λv + µw) = g(λ)g(v) + g(µ)g(w).
It is a general fact of linear algebra (which you can show by adapting the ideas of the proof
of Lemma 20) that the category of K-vector spaces is equivalent to the category of L-vector
spaces equipped with descent datum. Now the set of solutions of Equation 2 is a (nontrivial)
L-vector subspace of Ln+1 with descent datum inherited from the standard descent datum
of Ln+1. This vector subspace descends to a nontrivial K-vector subspace V ⊂ Kn+1 and a
nonzero element of V is the same as a solution x1, . . . , xn+1 ∈ Kn+1 of Equation 2.

6 Discriminants and Galois groups

In this section, among other things, we answer the following question. Let K be a field of
characteristic ̸= 2. Consider a separable irreducible cubic monic polynomial with coefficients
in K:

f(X) = X3 + AX2 +BX + C ∈ K[X] (3)

What is the Galois group of the splitting field K ⊂ L of f?
If chK ̸= 3, the simple transformation X 7→ X − A

3
changes f into a polynomial of the

form
g(X) = X3 + 3pX + 2q ∈ K[X] (4)

Key formulas simplify for a polynomial of this form and because of this we often implicitly
perform the transformation.

The Galois group is a transitive subgroup of S3 — the group of permutations of the roots
— and hence it is either all of S3 or the cyclic subgroup of order 3 generated by a 3-cycle.
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The task is simple: find an invariant expression in the coefficients of f to distinguish these
two possibilities. This invariant is the discriminant, which we introduce next.

6.1 Discriminants

Definition 22. Let the symmetric group Sn act on the ring R[X1, . . . , Xn] of polynomials
in n variables with coefficients in a ring R by permuting the variables.

A Sn-invariant polynomial is called a symmetric polynomial.

Example 23. For k = 1, . . . , n we define the k-th elementary symmetric polynomial σk(X1, . . . , Xn) ∈
Z[X1, . . . , Xn] by the formula:

(X −X1)(X −X2) · · · (X −Xn) = Xn − σ1X
n−1 + σ2X

n−2 − ·+ (−1)nσn

Alternatively

σk(X1, . . . , Xn) =
∑

1≤i1<i2<···<ik≤n

Xi1Xi2 . . . Xik

Theorem 24. Every symmetric polynomial is a polynomial in the elementary symmetric
polynomials. More precisely:

Z[X1, . . . , Xn]
Sn = Z[σ1, . . . , σn]

The proof is not difficult but at this point it would be a distraction.

Definition 25. Let K be a field and f ∈ K a monic polynomial. In a splitting field we may
write

f(X) = (X − a1)(X − a2) · · · (X − an)

The discriminant of f is the quantity

∆f =
∏
i<j

(ai − aj)
2

It is obvious that the discriminant is a symmetric polynomial in the roots and hence that
the discriminant is a universal polynomial expression in the coefficients of the polynomial
and hence, in particular, that ∆f ∈ K. It is not too difficult to find and prove this formula
(but not so easy either) but at this point it would be a distraction. I only mention two special
cases.

Lemma 26. (1) The discriminant of the quadratic polynomial:

f(X) = X2 − σ1X + σ2 is ∆f = σ2
1 − 4σ2

(2) The discriminant of the cubic polynomial

f(X) = X3 − σ1X
2 + σ2X − σ3 is ∆f = σ2

1σ
2
2 − 4σ3

1σ3 − 4σ3
2 + 18σ1σ2σ3 − 27σ2

3

(3) In particular, the discriminant of the cubic polynomial16

X3 + 3pX + 2q is ∆f = −4× 27(p3 + q2)
16The sign in this formula is absolutely important.
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6.2 Galois groups

Theorem 27. Let K be a field of characteristic ̸= 2, f(X) ∈ K[X] a monic separable
polynomial, K ⊂ L a splitting field of f , and G = EmbK(L,L) the Galois group. Then
G ⊂ An if and only if ∆(f) is a square in K.

The theorem answers the question raised at the beginning of the section.

Example 28. The polynomial f = X3 − X − 1 ∈ Q[X] has no rational roots hence it is
irreducible, and ∆f = −4×27

(
− 1

27
+ 1

4

)
= −23 is not a square in Q, hence the Galois group

is S3.
The polynomial f(X) = X3−3X−1 ∈ Q[X] has no rational roots hence it is irreducible,

and ∆f = −4× 27
(
−1 + 1

4

)
= 81 is a square in Q, hence the Galois group is A3.

7 Biquadratic extensions (characteristic ̸= 2)

This is a pièce de résistance that every beginner in Galois theory needs to master completely.

7.1 The key statement

In this section we fix a field K of characteristic ̸= 2. For a, b ∈ K we study the field extension

L = K

(√
a±

√
b

)
Below we always assume that b is not a square in K — otherwise, L is not very
interesting. (The case a = 0, on the other hand, is perfectly interesting.)

Remark 29. (i) L is the splitting field of the polynomial:

f(X) = X4 − 2aX2 + c ∈ K[X] where c = a2 − b (5)

(ii) If charK ̸= 2, then f(X) is separable. Indeed, under these assumptions, Df = 4X3 −
4aX = 4X(X2 − a) manifestly has no roots in common with f(X).

(iii) It is not super-obvious, but important, that L is also the splitting field of the companion
polynomial :

g(Y ) = Y 4 − 4aY 2 + 4b ∈ K[Y ] (6)

You can either prove this now, or leave it as a mystery to unveil later. In case you
wonder, there are certain annoying factors of 2 in this story and I don’t think you can
get rid of them.

Theorem 30. Let K be a field of characteristic ̸= 2; let a, b ∈ K with b not a square in K.
Consider the normal and separable extension

K ⊂ L = K

(√
a±

√
b

)
and set c = a2 − b

Denote by G the Galois group of the extension. Then
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(I) If bc, c are not squares in K, then [L : K] = 8 and G = D8.

(II) If bc is a square in K (and then c is not a square in K, for if both bc and c are squares,
then b is also square, which it isn’t), then [L : K] = 4 and G = C4.

(III) If c is a square in K (and then bc is not a square in K), then either

(IIIa) Neither 2(a+
√
c) nor 2(a−

√
c) are squares in K. In this case [L : K] = 4 and

G = C2 × C2; or

(IIIb) One of 2(a +
√
c), 2(a −

√
c) is a square in K (but not both). In this case

L = K(
√
b), and G = C2.

It will be clear that f(X) is irreducible in cases (I), (II), (IIIa), and it splits into two
quadratic polynomials in case (IIIb). See Lemma 33 for a discussion of this point.

In all cases the action of G on the roots of f(X) is spelled out in Theorem 32. The
discussion in Secs. 7.5, 7.6, 7.7 identifies all the intermediate fields and illustrates the Galois
correspondence.

7.2 Initial set-up

I summarise all of the key algebra. Invest the time to familiarise yourself with it now.
In the discussion below we make the following choices:

(1) Choose β ∈ L such that β2 = b (there are two choices, make one);

(2) Next, choose α, α′ ∈ L such that α2 = a+β and α′ 2 = a−β. It is clear that L = K(α, α′).
The roots of f(X) are ±α,±α′ ∈ L.

The following quantities will be used throughout:

(3) γ = αα′. Note that γ2 = (a+ β)(a− β) = a2 − b = c;

(4) δ = α + α′ and δ′ = α− α′. Note that

δ2 = α2 + α′ 2 + 2γ = 2(a+ γ)

and
δ′ 2 = α2 + α′ 2 − 2γ = 2(a− γ)

Finally note:

(5) δδ′ = 2β.

Indeed δδ′ = (α + α′)(α− α′) = α2 − α′ 2=a+ β − (a− β) = 2β.

Exercise 31. 1. Write formulas for γ, α, α′ in terms of δ, δ′;

2. Convince yourself that K ⊂ L is the splitting field of the companion polynomial g(Y ).
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7.3 The action of G on the roots of f(X) = X4 − 2aX2 + c

Theorem 32. With the assumptions and notation of Theorem 30 and Sec. 7.2, the Galois
group acts on the roots of f(X) as a subgroup of the group of symmetries of the square:

α′

−α α

−α′

More precisely:

(I) If bc, c are not square in K, then G = D8 is the whole group of symmetries of the
square;

(II) If bc is a square in K, then G = C4 is the group of rotations of the square;

(IIIa) If c is a square in K and neither 2(a +
√
c) nor 2(a −

√
c) is a square in K, then

G = C2 × C2 is generated by the two reflections along the lines of angle ±π
4
in the

picture;

(IIIb.1) If c is a square in K and 2(a +
√
c) is a square in K, then G = C2 acts as reflection

along the line of angle π
4
in the picture;

(IIIb.2) If c is a square in K and 2(a−
√
c) is a square in K, then G = C2 acts as reflection

along the line of angle −π
4
in the picture.

7.4 Irreduciblilty of f(X) = X4 − 2aX2 + c

We haven’t yet understood if or when the polynomial f(X) ∈ K[X] is irreducible.

Lemma 33. Let K be a field of characteristic ̸= 2. Consider f(X) = X4−2aX2+ c ∈ K[X]
where c = a2− b and b not a square in K. Then f(X) is reducible if and only if c is a square
in K and either 2(a+

√
c) or 2(a−

√
c) is a square in K (but not both).

Proof. We have
f(X) = (X − α)(X + α)(X − α′)(X + α′)

where none of the roots is in K (otherwise, for example, b is a square in K). If f(X) is
reducible, then either (X − α)(X − α′) ∈ K[X] or (X − α)(X + α′) ∈ K[X].

Case 1 (X − α)(X − α′) ∈ K[X]:

(X − α)(X − α′) = X2 − δX + γ and f(X) = (X2 − δX + γ)(X2 + δX + γ)

since γ2 = c, we get that c is a square in K and also δ2 = 2(a+ γ) is a square in K.
Case 2 (X − α)(X + α′) ∈ K[X]:

(X − α)(X + α′) = X2 − δ′X − γ andf(X) = (X2 − δ′X − γ)(X2 + δ′X − γ)

18



and in this case c is a square in K and also δ′ 2 = 2(a− γ) is a square in K.
Note that 2(a± γ) are not both squares in K, for otherwise the product

(a+ γ)(a− γ) = a2 − c = b

is also a square in K.

It really can happen that f is reducible:

Example 34. Consider f(X) = X4 − 6X + 1 ∈ Q[X], so a = 3, b = 8 (not a square in Q)

and c = a2 − b = 1. Now f(X) has innocent-looking roots ±
√
3± 2

√
2 but

f(X) = (X2 − 2X − 1)(X2 + 2X − 1)

So in fact the splitting field is L = Q(
√
2) and the four roots are

1+
√
2 =

√
3 + 2

√
2, −1+

√
2 =

√
3− 2

√
2, 1−

√
2 = −

√
3− 2

√
2, −1−

√
2 = −

√
3 + 2

√
2

Remark 35. Recall that the companion polynomial of f(X) = X4−2aX2+c is the polynomial

g(Y ) = Y 4 − 4aY 2 + 4b ∈ K[Y ]

with roots ±
√
2(a±

√
c). The previous discussion shows that f splits in K[X] if and only if

the companion polynomial has a root in K.

7.5 The generic case: bc, c not squares in K

We will need the following:

Lemma 36. Let F be a field and A,B ∈ F . If A is a square in F (
√
B) then either A or

AB is a square in F .

Step 1 We show: [L : K] = 8 in this case.

L

K(α)

2

K(α′)

2

K(β)

2 2

K

2

Write K1 = K(β); by assumption [K1 : K] = 2. I claim that a+ β is not a square in K1. If
it were, there would be x, y ∈ K such that

a+ β = (x+ yβ)2 = (x2 + by2) + 2xyβ, and then a− β = (x− yβ)2
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would also be a square in K1, and then

c = a2 − b = (a+ β)(a− β) = (x+ yβ)2(x− yβ)2 = (x2 − y2b)2

would be a square in K, which it isn’t. A similar argument shows that a− β is not a square
in K1. We conclude that [K1(α) : K1] = [K1(α

′) : K1] = 2.
To finish Step 1 we just need to argue that K1(α) ̸= K1(α

′), that is, for example, a − β
is not a square in K1(α). Apply Lemma 36 with F = K1, A = a − β, B = a + β. If
a − β were a square in K1(α), then either a − β is a square in K1, which it is not, or
(a − β)(a + β) = a2 − b = c is a square in K1. We need to exclude this last possibility. We
apply again Lemma 36, this time with F = K, A = c, B = b. If c were a square in K1, then
either c is a square in K, or bc is a square in K, but we are assuming that neither is.

Step 2 Action of the Galois group on roots. We will show: the Galois group acts as the
group D8 of symmetries of the square:

α′

−α α

−α′

Indeed let g ∈ G be any element. Clearly g(β) = ±β. If g(β) = β, then g(α) = ±α and
g(α′) = ±α′. On the other hand if g(β) = −β, then g(α) = ±α′ and g(α′) = ±α. There is
a total of 8 possibilities and they all are in D8. Hence G acts on the roots as a subgroup of
D8. On the other hand [viii] G is a subgroup of the permutation group S4 on the roots of
f , and by Proposition 19 it has order 8 = [L : K], hence G = D8.

Step 3 Picture of the Galois correspondence.

I work with the following generators of D8: τ is the reflection in the horizontal line, and
σ the counterclockwise π/2-rotation.

The next picture shows the lattice of fields lying between K and L and the picture below
it the corresponding lattice of subgroups of D8:

L

K(α) K(α′) K(β, γ) K(δ) K(δ′)

K(β) K(βγ) K(γ)

K
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⟨e⟩

⟨τ⟩ ⟨σ2τ⟩ ⟨σ2⟩ ⟨στ⟩ ⟨σ3τ⟩

⟨σ2, τ⟩ ⟨σ⟩ ⟨σ2, στ⟩

D8

To establish the whole picture is more-or-less straightforward but still not without its twists
and turns.

For example, σ2τ(α′) = α′ (and σ2τ(α) = −α) thus the corresponding fixed field is K(α′).
Similarly, στ(α) = α′, στ(α′) = α, hence K(δ) ⊂ ⟨στ⟩⋆. To show that actually K(δ) =

⟨στ⟩⋆ we argue that [K(δ) : K] = 4. Recall that δ is a root of the companion polynomial

g(Y ) = Y 4 − 4aY 2 + 4b ∈ K[Y ]

and, by the theory developed above — now brought to bear upon g(Y ), so now “b” is
4(a2 − b), “bc” is 16bc, and “c” is 4b, and none of these three quantities is a square in K —
the polynomial g(Y ) is irreducible and hence [K(δ) : K] = 4. Etcetera...

7.6 bc square in K

We already know that in this case f(X) is irreducible, so then [L : K] = [K(α) : K] =
deg f(X) = 4. Similarly the companion polynomial g(Y ) is also irreducible. The situation
with fields is as in the following diagram:

L = K(α) = K(α′) = K(δ) = K(δ′)

K(β) = K(γ)

2

K = K(βγ)

2

where all arrows are degree-2 extensions. Indeed, first of all, (βγ)2 = bc so βγ ∈ K and hence
K(β) = K(γ). I claim that L = K(α): clearly β ∈ K(α) so also γ ∈ K(α) and then so

α′ = γ/α ∈ K(α)

This shows that L = K(α). A similar argument shows that L = K(α′). To show, for example,
that K(α) = K(δ), first observe that δ = α+ α′ ∈ K(α), and then note that [K(δ) : K] = 4
because the companion polynomial is irreducible. Similarly K(α) = K(δ′).

I claim that the Galois group G is a cyclic group of order 4 acting on the set of roots
pictured above as rotations. Indeed consider an element g ∈ G. Then g(β) = ±β and we
study the two possibilities in detail:
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(1) Suppose that g(β) = β. Now βγ ∈ K so we must also have g(γ) = γ. If g(α) = α then
also g(α′) = α′ (recall that γ = αα′), i.e., g is the identity. Similarly, if g(α) = −α, then
also g(α′) = −α′: g is a π-rotation.

(2) Now suppose that g(β) = −β and hence also g(γ) = −γ. If g(α) = α′ then

α′ =
γ

α
so g(α′) =

g(γ)

g(α)
=

−γ
α′ = −α

hence g is a rotation in this case. A similar argument shows that if g(α) = −α′, then in
that case also g is a rotation.

7.7 c square in K

We are saying here that γ ∈ K. It is best to work with the companion polynomial:

Y 4 − 4aY 2 + 4b = (Y 2 − 2a− 2γ)(Y 2 − 2a+ 2γ)

In case (IIIa) the two quadratic factors of the companion polynomial are both irreducible
over K. The situation with fields is as in the following diagram:

L

K(β)

2

K(δ)

2

K(δ′)

2

K
2

2
2

where all arrows are degree-2 extensions. Indeed, for example, 2(a − γ) is not a square in
K(δ): if it were then — by Lemma 36 — either it is already a square in K, and we are
assuming that it isn’t, or the product (a+ γ)(a− γ) = a2 − c = b is a square in K, which it
isn’t.

It is easy to nail down the action of generators of G on the roots of f(X). For instance
[L : K(δ)] = 2, hence there is an involution involution τ1 that fixes δ = α+α′ and necessarily
τ1(α) = α′. Similarly there is an involution τ2 that fixes δ′ and necessarily τ2(α) = −α′.

Finally, suppose that we are in case (IIIb.1): 2(a+ γ) is a square in K, that is δ ∈ K. In
this case G is generated by τ1. Similarly, in case (IIIb.2) 2(a− γ) is a square, δ′ ∈ K and G
is generated by τ2.

7.8 Examples of biquadratic extensions

Example 37. If K is the splitting field of X4 − 2 over Q, then G = D8.

Example 38. If K is the splitting field of X4−4X2+2 over Q, then K = Q(
√

2 +
√
2) and

G = C4.

Example 39. If K is the splitting field of Φ12(X) = X4−X2+1 (the cyclotomic polynomial)
over Q, then G = C2 × C2.
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Example 40. If K is the splitting field of the polynomial X4 − 10X2 + 1 over Q, then
G = C2 × C2. In fact K = Q(

√
2,
√
3), which – inter alia – explains the identity:√
5 + 2

√
6 =

√
2 +

√
3

8 Normal extensions

We can not go very far without some practical understanding of normal and separable ex-
tensions. Here I just sketch the bare bones.

Theorem 41 (Characterisation of normal extensions). For a finite extension of fields k ⊂ K
TFAE:

(I) for all f ∈ k[X] irreducible, either f has no root in K or f splits completely in K[X];

(II) there exists f ∈ k[X] (not necessarily irreducible) such that K is the splitting field [vi]
of f ;

(III) k ⊂ K is normal.

Proof. I show (I)⇒(II)⇒(III)⇒(I), in that order.

(I)⇒(II) If K = k(a1, . . . , an), let fi ∈ k[X] be the minimal polynomial [i] of ai. It is
clear that k ⊂ K is the splitting field [vi] of f =

∏
fi.

(II)⇒(III) Suppose that K = k(a1, . . . , an) is the splitting field [vi] of f ∈ k[X] where in
fact

f =
∏

(X − ai) ∈ K[X]

(here f ∈ k[X] is not necessarily irreducible and the ai are not necessarily pairwise distinct).
Suppose that K ⊂ Ω and let x : K → Ω be a k-embedding. It is an elementary fact [vii] that
for all i x(ai) is a root of f , that is, x(K) ⊂ K.

(III)⇒(I) Now assume that k ⊂ K is normal. Let f ∈ k[X] be an irreducible polynomial
with a root a ∈ K: we will show that f splits completely in K. To this end, let K ⊂ Ω be
the splitting field [vi] of f—seen as an element of K[X]—and let b ∈ Ω be a root of f : we
want to show that b ∈ K. With F = k(a) consider the tower:

k ⊂ F ⊂ K ⊂ Ω

It is an elementary fact [iii] that there is a unique k-embedding x : F → Ω such that x(a) = b.
By Lemma 16(A), x(F ) ⊂ K, that is, b ∈ K as was to be shown.

Lemma 42. For all k ⊂ K there is K ⊂ L such that k ⊂ L is normal.

Proof. The easiest way to prove this is to use the part of Theorem 41 stating that splitting
fields [vi] are normal: there are elements a1, . . . , an ∈ K such that K = k(a1, . . . , an), let
fi ∈ k[X] be the minimal polynomial [i] of ai, take K ⊂ L the splitting field [vi] of f =

∏
fi,

then k ⊂ L is also the splitting field [vi] of f over k and hence k ⊂ L is normal.
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9 The separable degree

Definition 43. For k ⊂ K, the separable degree [K : k]s is the number of elements of the
(finite) set Embk(K,Ω) where k ⊂ Ω is a normal field extension that also contains K.17

Remark 44. (i) By Lemma 18 [K : k]s ≤ [K : k];

(ii) By Lemma 42 the separable degree is defined, but we don’t yet know that it is well
defined, that is, at the moment [K : k]s a priori depends on Ω.

Lemma 45. [K : k]s does not depend on Ω.

Proof. Suppose that K ⊂ Ω1 and K ⊂ Ω2 are two field extensions and k ⊂ Ω1 and k ⊂ Ω2

are normal. Let Ω be an over-field of Ω1, Ω2 whose existence is guaranteed by Axiom 4; by
Lemma 16(A) we have

Embk(K,Ω1) = Embk(K,Ω) = Embk(K,Ω2)

Remark 46. We can rephrase the definition of separable extensions as follows: k ⊂ K is
separable if and only if for all towers of subfields: k ⊂ K1 ⊂ K2 ⊂ K, if [K2 : K1]s = 1, then
K2 = K1.

Theorem 47 (Tower law for the separable degree). For a tower k ⊂ K ⊂ L

[L : k]s = [L : K]s[K : k]s

Proof. Consider a tower k ⊂ K ⊂ L and use Lemma 42 to make an extension L ⊂ Ω such
that k ⊂ Ω is normal. The key point is:

Claim the natural restriction:

ρ : Embk(L,Ω) → Embk(K,Ω)

is surjective, that is every k-embedding σ : K → Ω can be extended to a k-embedding
σ̃ : L→ Ω.

Indeed by Lemma 16(B) σ extends to all of Ω hence a fortiori to L.

Now for all y ∈ Embk(K,Ω), ρ
−1(y) is the set of K-embeddings x : L → Ω, and K ⊂ Ω

is normal, hence ρ−1(y) consists of [L : K]s elements.18 The formula follows from counting
elements of Embk(L,Ω):

[L : k]s = |Embk(L,Ω)| =
∑

y∈Embk(K,Ω)

|ρ−1(y)| = |Embk(K,Ω)|[L : K]s = [K : k]s[L : K]s

17As a geometer, the degree of a covering is the number of geometric points in the fibre of a geometric
point! The dimension of a vector space is a much more mysterious invariant.

18I iron out a wrinkle in the proof, the same wrinkle in fact that occurred in the proof of Lemma 18, only
now it is less of a wrinkle. I warn you that reading this footnote can lead to more trouble for you than it is
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10 Separable extensions

Recall [x] that a polynomial is separable if it has distinct roots, and an element is separable
over k [xii] if its minimal polynomial over k is separable.

Theorem 48 (Characterisation of separable extensions). (I) k ⊂ K is separable if and
only if [K : k]s = [K : k];

(II) For all tower k ⊂ K ⊂L, if k ⊂ K and K ⊂ L are separable, then k ⊂ L is separable;

(III) k ⊂ K is separable if and only if every a ∈ K is separable over k.

Corollary 49. (i) If a is separable over k, then k ⊂ k(a) is separable.

(ii) If k ⊂ K is a splitting field of a separable polynomial, then k ⊂ K is separable.

Proof. To prove statement (i) just observe that, by [iii], [k(a) : k]s = [k(a) : k]; the statement
then follows from Part (I) of the theorem. (In fact we only need the easy direction [K : k]s =
[K : k] implies k ⊂ K separable. This is a simple consequence of the tower law for the
separable degree.)

Let us prove statement (ii). We can realise k ⊂ K as a tower of extensions:

k ⊂ k(a1) ⊂ k(a1, a2) ⊂ · · · ⊂ k(a1, a2, . . . , an) = K

where all ai are roots of f . By [v] for all i the minimal polynomial of ai over k(a1, . . . , ai−1)
is a factor of f , and hence it is a separable polynomial. By [iii] for all i

[k(a1, . . . , ai) : k(a1, . . . , ai−1)]s = [k(a1, . . . , ai) : k(a1, . . . , ai−1)]

and then [K : k]s = [K : k] by repeated application of two tower laws.

Proof of Theorem 48. The proof is in six steps:

Step 1 If [K : k]s = [K : k], then k ⊂ K is separable.

worth: read on at your own risk and peril! We have a fixed tower k ⊂ K ⊂ L:

L
ỹ

  
K

y //

OO

Ω

k

OO

ρ−1(y) is the set of k-embeddings ỹ : L → Ω such that ỹ|K = y. In the proof, I denoted this set by EmbK(L,Ω)
but note that this set depends on the given embedding y : K → Ω. Let us be precise and denote this set
by Emby(L,Ω) to emphasize this dependence on y : K → Ω. The number of elements |Emby(L,Ω)| does not
depend on y : L → Ω: indeed this number is [L : K]s and we showed in Lemma 45 that it is independent of
choices.
Given y1, y2 : K → Ω, you may want to construct as an exercise a bijective correspondence Emby1

(L,Ω) →
Emby2

(L,Ω), showing in particular that these sets have the same number of elements.
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Indeed applying two tower laws to the tower

k ⊂ K1 ⊂ K2 ⊂ K

(and remembering that [:]s ≤ [:]) we get: if [K2 : K1]s = 1 then [K2 : K1] = 1 and then
K1 = K2.

Step 2 If K ⊂ K(a) is separable, then the element a is separable over K.

Indeed, let f ∈ K[X] be the minimal polynomial [i] of a over K and suppose for a
contradiction that f is not a separable polynomial. It is then an elementary fact [xi] that
there exists h ∈ K[X] irreducible such that f(X) = h(Xp). Now b = ap ∈ K(a) is a root of
h: h(b) = h(ap) = f(a) = 0. We can form the tower

K ⊂ K1 = K(b) ⊂ K2 = K(a)

By the tower law

p deg h = deg f = [K2 : K] = [K2 : K1][K1 : K] = [K2 : K1] deg h

hence [K2 : K1] = p. It follows that Xp − b ∈ K1[X] is the minimal polynomial [i] of a over
K1: indeed a is a root of this polynomial and the extension has degree p. BUT

Xp − b = (X − a)p

hence by [iii] [K2 : K1]s = 1 and this fact contradicts the separability of k ⊂ k(a) because
manifestly K1 ̸= K2 (for instance because [K2 : K1] = p).

Step 3 If K ⊂ K(a) is separable, then [K(a) : K]s = [K(a) : K].

Indeed, we know from Step 2 that a is separable over K. In other words, the minimal
polynomial [i] f of a has distinct roots and hence [iii, v]

[K(a) : K] = deg f = |{roots of f}| = [K(a) : K]s

Step 4 If k ⊂ K is separable, then [K : k]s = [K : k]. Together with Step 1, this
concludes the proof of Part (I) of the theorem.

Pick a ∈ K \ k and consider the tower

k ⊂ k(a) ⊂ K

we know (trivially from the definition of separable extension of fields) that k ⊂ k(a) and
k(a) ⊂ K are both separable. We have just shown that [k(a) : k]s = [k(a) : k]; on the other
hand definitely [K : k(a)] < [K : k] hence we may assume inductively that [K : k(a)]s = [K :
k(a)], hence by two tower laws [K : k]s = [K : k].

Step 5 (II) holds.

Indeed (II) follows easily from (I) and two tower laws.

Step 6 (III) holds.

This is easy to put together given all the above. (Don’t read my proof, just do it in your
head.)
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Indeed, if k ⊂ K is separable, let a ∈ K. Clearly k ⊂ k(a) is separable, and hence by
Step 2 a is separable over k.

Conversely, let k ⊂ K be an extension and suppose that every a ∈ K is separable over k.
Pick a ∈ K \ k; because a is separable over k we have that [k(a) : k]s = [k(a) : k] and hence
by Step 1 k ⊂ k(a) is separable. By (II), to show that k ⊂ K is separable, it suffices to show
that k(a) ⊂ K is separable. By assumption every element b ∈ K is separable over k, and
hence a fortiori it is also separable over k(a). Since [K : k(a)] < [K : k], we may assume by
induction on degree that k(a) ⊂ K is separable.

11 Finite fields

If F is a finite field, then for some prime p > 0 chF = p and Fp ⊂ F . Since F is finite, the
extension Fp ⊂ F is finite and hence if m = dimFp F = [F : Fp], then |F | = q = pm.

Theorem 50. Fix a prime p > 0. For all integer m > 0 there exists a field Fq with q = pm

elements, unique up to isomorphism. The field Fq is the splitting field of the (separable)
polynomial Xq −X ∈ Fp[X]. The Galois group of the extension Fp ⊂ Fq is a cyclic group of
order m generated by the Frobenius automorphism:

Frp : a 7→ ap

Proof. Suppose such a field F exists. The multiplicative group F× has q− 1 elements, hence
they all satisfy the equation Xq = X and hence Fp ⊂ F is the splitting field of the polynomial
Xq −X and in particular this shows uniqueness up to isomorphism [vii].

On the other hand let F be a splitting field of the polynomial Xq −X. By the Jacobian
criterion [x] this polynomial is separable and hence it has q distinct roots in F . Now comes
the key observation. Write

µq−1(F ) = {z ∈ F | zq−1 = 1}

Because (a+b)q = aq+bq in F , and because µq−1(F ) is a group under multiplication, it follows
that the set of roots of Xq −X is a field, and hence by property (b) of the characterisation
of splitting fields [vi] it must be all of F , and this shows that F has q elements.

Finally it is clear that the Frobenius automorphism Frp has order m and hence it is all of
the Galois group.

Corollary 51. Every extension of finite fields is normal separable with Galois group a cyclic
group.

More precisely every extension is of the form Fq ⊂ Fqr — where q = pm for some prime
p and m = [Fq : Fp]— where r is the degree of the extension. The Galois group is generated
by Frq = (Frp)

m.

Proof. A straightforward consequence of the theorem. Let K ⊂ L be an extension of finite
fields of characteristic p. By what we said K = Fq where q = pm and then if [L : K] = r it
must be that L = Fqr = Fprm .

Consider the tower Fp ⊂ K ⊂ L: K ⊂ L is normal and separable because Fp ⊂ L is normal
and separable. All other statements follow easily from the Galois correspondence.
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12 Frobenius lifts

Definition 52. A monoid is a commutative semigroup with identity. (For example, N is a
monoid.)

Let P be a monoid and K be a field. A function χ : P → K is a (multiplicative) character
if: χ(0) = 1 and for all p1, p2 ∈ P , χ(p1 + p2) = χ(p1)χ(p2).

19

Theorem 53 (Linear independence of characters, a.k.a. Dedekind independence Theorem).
Let K be a field, P a monoid. Any set

{χ1, . . . , χn : P → K}

of pairwise distinct nontrivial characters is a linearly independent subset of the K-vector
space of (set-theoretic) functions f : P → K.

Proof. Work by induction on n. Assume for a contradiction a linear relation:∑
λiχi = 0

By induction, we may assume that all λi ̸= 0. Find p ∈ P such that χ1(p) ̸= χ2(p) and then
write a new relation: ∑

λiχi(p)χi = 0

By induction, the new relation relation must be a multiple of the old relation. The two
relations are

(λ1, λ2, . . . , λn) and (λ1χ1(p), λ2χ2(p), . . . , λnχn(p))

Note that the new relation is not the zero relation, because if it were, then we would have for
all i χi(p) = 0, contradicting χ1(p) ̸= χ2(p). Hence for all i χi(p) = χ1(p), which contradicts
χ2(p) ̸= χ1(p).

To illustrate the statement, we show as a consequence that if L is a field, G a finite group
of automorphisms of L, and K ⊂ LG, then |G| ≤ [L : K]. This is a special case of Lemma 18,
which we proved earlier by a different method. The proof here follows from considering two
different interpretations of the elements σ1, . . . , σn of G:

(I) In the first interpretation, an element σ ∈ G is a character

σ : P = L× → L

therefore σ1, . . . , σn are linearly independent in the L-vector space Fun(L×, L) of set-
theoretic functions f : L× → L. Note that it is the target L that makes any space of
functions Fun(S, L) an L-vector space (S any set);

(II) On the other hand, each σ : L→ L is a K-linear function. Identify the source L with
Km (for example by choosing a basis) then an element σ ∈ G is a K-linear map

σ : Km → L

19For us, it will always be the case that χ(P ) ⊂ K×, but I am not requiring this in the definition.
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and hence, by extending scalars at the source, σ extends to a L-linear map σ̃ : Lm → L,
in other words an element of the vector space

(Lm)∨ = HomL(L
m, L)

Now the σ̃i are linearly independent as elements of (Lm)∨, because a linear dependence
between the σ̃i implies by restricting scalars a linear dependence between the σi. It
follows that n ≤ m.

Theorem 54. Let f(X) ∈ Z[X] be degree n monic; Q ⊂ K a splitting field; p a prime such
that the reduction fp ∈ Fp[X] of f mod p has n distinct roots; Fp ⊂ F a splitting field of fp.
Let λ1, . . . , λn ∈ K be the roots of f and let

R = Z[λ1, . . . λn] ⊂ K

We have:

(i) There is a ring homomorphism ψ : R → F ;

(ii) Any such ψ gives a bijection from the set Z of roots of f in K to the set Zp of roots of
fp in F ;

(iii) A function ψ′ : R → F is a ring homomorphism if and only if there exists σ ∈ Gal(K/Q)
such that ψ′ = ψσ;

(iv) In particular there exists σ ∈ Gal(K/Q) such that Frp ψ = ψσ, where Frp ∈ Gal(F/Fp)
is the Frobenius automorphism.

Definition 55. The element σ ∈ Gal(K/Q) such that Frp ψ = ψσ in the above theorem (iii)
is called a Frobenius lift.

Remark 56. If f(X) is separable, then a prime p satisfying the assumption of the theorem
always exists. Indeed by the Jacobian criterion f(X), Df(X) ∈ Q[X] are coprime, hence
there are polynomials ϕ(X), ψ(X) ∈ Z[X] such that

ϕ(X)f(X) + ψ(X)Df(X) = h ̸= 0 ∈ Z (7)

If p is not a factor of h then, reducing Equation 7 modulo p, we get that fp(X), Dfp(X) ∈
Fp[X] are coprime and hence, by the Jacobian criterion, fp is separable.

Proof. Step 1 (i) holds.

Let R ⊃ m ⊃ (p) be a maximal ideal;20 then R/m ⊃ Fp is a field generated by the roots
of fp; hence it is isomorphic to F .

Step 2 (ii) holds.

20p is not a unit in R because R is a ring of integers (not necessarily integrally closed), and 1/p ∈ Q is not
integral over Z. We are using here the result from Commutative Algebra 101 on the existence of maximal
ideals: I advise you to simply take it on trust.
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This is basically obvious. Applying ψ to the identity f(X) =
∏
(X − λi) we get fp(X) =∏

(X − ψ(λi)), hence the ψ(λi) are the roots of fp. No two are the same, since we are
assuming that fp is a separable polynomial.

Step 3 R is a finitely generated free Z-module.

Let λ1, . . . , λn ∈ K be the roots of f . It is more-or-less obvious that R is generated as a
Z-module by the set of λk11 . . . λknn where all 0 ≤ ki ≤ n− 1. (Use the equation.)

Step 4 Let u1, . . . , ud be a basis of R as a Z-module. This is also a basis of K as a
Q-vector space and hence d = [K : Q].

Indeed, it is clear that the u1, . . . , ud are Q-linearly independent (clear denominators).
Next QR ⊂ K is a subring of K containing Q, hence it is a field.21 Because it contains all
the roots of f , QR = K and this implies that the u1, . . . , ud generate K as a Q-vector space.

Step 5 (iii) holds.

It is clear that G acts on R as a group of ring automorphisms. It follows that for all σ ∈ G,
ψσ : R → F is a ring homomorphism. Now fix ψ : R → F and consider ψ1 = ψσ1, . . . , ψd =
ψσd : R → F : by (ii) and because G ⊂ Sn (the group of all permutations of the roots of f)
these are all distinct (because they are distinct on the set of roots).

Suppose now that ψd+1 : R → F is one other homomorphism. Fix a basis u1, . . . , ud of R
as a Z-module (we showed in Step 2 that |G| = [K : Q] = rkZR!). By linear algebra we can
solve for λi ∈ F :

∀j,
d+1∑
i=1

λiψi(uj) = 0

and this in fact implies
∑
λiψi = 0, contradicting Dedekind independence (with monoid

P = R \ {0} with multiplication, and field F ).

Corollary 57. Let f(X) ∈ Z[X] be degree n monic; Q ⊂ K a splitting field; p a prime such
that the reduction fp of f mod p has n distinct roots and factors as a product of irreducible
factors of degree n1, . . . , nk. Then the Galois group G of Q ⊂ K contains a permutation of
the roots of f whose cycle decomposition is (n1)(n2) · · · (nk).

Proof. Any Frobenius lift will do.

The corollary can be used to produce examples of extensions of Q that have Galois group
the full symmetric group. To illustrate the point I show just two examples. The technique
is based on pure group theory statements of the following type:

Lemma 58. Let G ⊂ Sn be a transitive subgroup. If G contains a transposition and an
(n− 1)-cycle, then G = Sn.

21In general if E ⊂ L is an algebraic extension and E ⊂ R ⊂ L is a ring, then R is a field. Indeed if a ∈ R,
then a is the root of a polynomial

f(X) = a0X
N + a1X

N−1 + · · ·+ 1

with coefficients in E and hence in R. Thus

1/a = −a0a
N−1 − a1a

N−2 − · · · − aN−1 ∈ R
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Proof. The (n− 1)-cycle c ∈ G must fix an element of [n]22 which we may well assume to be
1, and then after relabelling the elements of [n] we may assume that c = (23 . . . n). Let t be
the transposition; then either t involves 1, or t = (ab) where 1 < a < b.

If t involves 1, then by further relabelling elements we may assume that c = (23 · · ·n)
and t = (12). Then for example ctc−1 = (13) ∈ G, c2tc−2 = (14) ∈ G, and all (1a) ∈ G, and
then all transpositions (ab) = (1a)(1b)(1a) ∈ G, which then implies that G = Sn.

If t = (ab) where 1 < a < b, because G is transitive it must contain an element s such
that s(a) = 1, but then sts−1 = (1, s(b)) and we are back in the previous case.

Lemma 59. Let p be prime and G ⊂ Sp a subgroup. If G contains a transposition and a
p-cycle, then G = Sp.

Proof. It is well known and not difficult to see that for all n Sn is generated by the elements
(12) and (12 . . . n). If n = p is prime and t, c ∈ Sn are an arbitrary transposition and n-cycle,
then we may relabel the elements of [n] such that t = (12) and c = (12 . . . n).

Example 60. The Galois group G of the splitting field Q ⊂ K of the polynomial

f(X) = X5 −X − 1

is the symmetric group S5.

Indeed, modulo p = 2 we get

f(X) ≡ X5 +X + 1 = (X2 +X + 1)(X3 +X2 + 1) ∈ F2[X]

hence by Corollary 57 G contains a permutation with cycle decomposition (2)(3).

Modulo p = 3, the polynomial is irreducible because it does not have a root and it is
not divisible by any of the three irreducible degree 2 monic polynomials in F3[X] (direct
inspection). It follows that f(X) ∈ Q[X] is itself irreducible and, by Corollary 57, that G
contains a 5-cycle.

It is easy to see, for example using Lemma 59, that G = S5.

Example 61. The Galois group G of the splitting field Q ⊂ K of the polynomial

f(X) = X6 − 12X4 + 15X3 − 6X2 + 15X + 12

is the symmetric group S6.

We look at the polynomial modulo small primes. Modulo p = 2 we get:

f(X) ≡ X(X5 +X2 + 1) mod 2

where the second polynomial r(X) = X5+X2+1 ∈ F2[X] is irreducible because if it weren’t it
would split an irreducible degree two polynomial and the only such polynomial is X2+X+1,
which does not divide into r(X) (direct inspection). By Corollary 57, G contains a 5-cycle.

Eisenstein at p = 3 shows that f(X) is irreducible in Q[X] and in turn this implies that
G is transitive.

Next
f(X) ≡ (X + 1)(X + 2)(X + 3)(X + 4)(X2 + 3) mod 5

thus by Corollary 57 G contains a transposition.

By Lemma 58 G = S6.
22Notation: [n] = {1, 2, . . . , n} is the set with n elements.
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13 Cyclotomic polynomials over Q
Definition 62. For n > 0 integer, the n-th cyclotomic polynomial is the polynomial:

Φn(X) =
∏

k∈(Z/nZ)×

(
X − e

2πk i
n

)
Lemma 63. For all n > 0 integer,

Φn(X) ∈ Z[X]

Proof. Denote by µn ⊂ C× the group of roots of unity and by Q ⊂ Q(µn) the splitting field
of the polynomial Xn − 1 ∈ Q[X]; a priori Φn(X) ∈ Q(µn)[X].

It is easy to argue that Φn(X) ∈ Q[X]. Indeed, the Galois group G of the extension is
a subgroup of Autµn = (Z/nZ)× and hence the polynomial Φn(X) is Galois-invariant and
hence in Q[X].

It is a little bit more subtle to show that Φn(X) has integer coefficients. Fix n > 0. It is
clear from the definition that

Xn − 1 =
∏
d|n

Φd(X)

If we assume by induction that for all d|n, d ̸= n, Φd(X) ∈ Z[X] then it follows from the
Gauss Lemma that Φn(X) ∈ Z[X].

I conclude this section with the proof of the following very deep theorem of Dedekind. I am
shocked and surprised by how deep this theorem is. There really seems to be no elementary
proof of the irreducibility of Φn(X) ∈ Z[X] for general n (if n is prime, or the power of a
prime, there is an elementary proof of irreducibility using the Eisenstein criterion).

Theorem 64. Fix an integer n > 0, denote by µn the group of n-th roots of unity, by
Q ⊂ Q(µn) the splitting field of the polynomial Xn − 1, and by Gn the Galois group of the
extension Q ⊂ Q(µn).

23 The following equivalent facts hold:

(1) The cyclotomic polynomial Φn(X) is irreducible;

(2) [Q(µn) : Q] = φ(n) where

φ(n) = |(Z/nZ)×| = |{k | 0 ≤ k < n and hcf(k, n) = 1}|

is Euler’s function;

(3) The canonical injective group homomorphism ρ : Gn → Autµn = (Z/nZ)× is an isomor-
phism.

Proof. It is easy to see that the three statements are equivalent. I prove statement (3).
To show that the inclusion

ρ : Gn → (Z/nZ)×

23I should say “a” splitting field but I have in mind the model Q(µn) = Q(ζn) ⊂ C where ζn = e
2π i
n .
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is surjective, we need to construct enough elements of Gn that they generate all of (Z/nZ)×,
and this we do by Frobenius lifts. The idea is clear enough and the implementation, as we
shall see momentarily, straightforward.

Below for a ring A we write:

µn(A) = {z ∈ A | zn = 1}
Note that this assignment is functorial: if ψ : A→ B is a ring homomorphism, then it induces
a group homomorphism ψ : µn(A) → µn(B).

If p is a prime not dividing n, then — by the Jacobian criterion — Xn − 1 ∈ Fp[X] is
separable, and hence Theorem 54 applies. We work with the notation of Theorem 54; in
particular,

R = Z[ζn] where ζn = e
2π i
n

Fp ⊂ F is the splitting field of Xn − 1 ∈ Fp[X], and ψ : R → F the ring homomorphism
whose existence is proved in Theorem 54. According to that theorem ψ gives a set-theoretic
bijection from the set of roots of Xn − 1 in Q(µn) to the set of roots of Xn − 1 in F ; these
sets are the groups µn = µn(R) (recall that R is the Z-subalgebra of K generated by the
roots of Xn − 1 in K) and µn(F ) and by what we said above about functoriality of µn

ψ : µn(R) → µn(F )

is a group homomorphism. But we just said that it is also a set-theoretic bijection, therefore
it is a group isomorphism. Because µn(R) is a cyclic group of order n (generated, for instance,

by ζn = e
2π i
n ), this implies that µn(F ) is also cyclic of order n.24 For both groups, the group

of automorphisms is canonically (Z/nZ)×.25
Consider the Frobenius automorphism Frp : F → F . Frp acts on µn(F ) as the group

automorphism
Frp : z 7→ zp

By Theorem 54 there exists σ ∈ Gn such that Frp ψ = ψσ, and σ acts on µn = µn(R) also as
z 7→ zp.

To summarise we have shown: for every prime p not dividing n, there is an element of
Gn that acts on µn as z 7→ zp.

All we need is to show that (Z/nZ)× is generated as a group by the classes of primes p such
that hcf(p, n) = 1, and this is completely obvious: take any k ∈ (Z/nZ)× and decompose
it into primes: by the argument with Frobenius lifts all those primes are in Gn ⊂ (Z/nZ)×,
hence also k ∈ Gn, hence Gn = (Z/nZ)×.

14 Kummer Theory

Theorem 65. Let n > 0 be an integer, and let K be a field of characteristic p ∤ n26 containing
all roots of the polynomial Xn − 1 ∈ K[X]. For a field extension K ⊂ L TFAE:

24You may know already that every finite group of the multiplicative group of a field is cyclic (if you don’t
kown this you will prove it in Worksheet 10) but we are not using this fact here.

25I don’t want to make too much of a big deal, but the point is the following. Let Cn be a cyclic group
of order n. I have not chosen a generator. An element k ∈ (Z/nZ)× acts on Cn as g 7→ gk. This gives
(Z/nZ)× = AutCn.

26In particular characteristic zero is OK.
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(i) For some 0 ̸= a ∈ K, L = K
(

n
√
a
)
27;

(ii) K ⊂ L is a normal and separable extension with Galois group cyclic of order dividing
n.

Proof. If αn = a and L = K
(
α), then the polynomial

Xn − a =
∏
εn=1

(X − εα)

is separable and L is the splitting field, hence K ⊂ L is normal and separable. Denoting by
G the Galois group, we will shortly define an injective group homomorphism ρ : G→ µn(L).
Since µn(L) is a cyclic group of order n,28 this shows that G is a cyclic group of order dividing
n. The group homomorphism ρ is defined as follows

for σ ∈ G, define: ρ(σ) =
σ(α)

α

It is easy to see that ρ does not depend on α and that ρ is an injective group homomorphism.
As I said, this concludes the proof that (i) implies (ii).

For the (deeper) converse implication, suppose that k|n and that K ⊂ L is a normal
and separable extension with Galois group a cyclic group Ck. Let σ ∈ Ck be a generator,
and let ζ ∈ µk(L) ⊂ µn(L) also be a generator. First we will find α ∈ L nonzero such that
σ(α) = ζα. By the Dedekind independence Theorem 53, for some x ∈ L the expression

α =
k−1∑
i=0

ζ−iσi(x) ∈ L

is nonzero, and then note that

σ(α) =
k−1∑
i=0

ζ−iσi+1(x) = ζ
k∑

i=1

ζ−iσi(x) = ζα

(because the value of ζ−iσi(x) only depends on i mod k). To conclude, we will show that
L = K(α) and that αn ∈ K. The second of these assertion is obvious:

σ(αn) = ζnα = α

that is, αn is Ck-invariant and hence it lies in K. For the first assertion, the group Ck

acts faithfully on the field K(α) (for example because the σi(α) = ζ iα are all distinct as
i = 0, . . . , k − 1) hence

k = [L : K] = [L : K(α)][K(α) : K] ≥ [L : K(α)]|Ck| ≥ [L : K(α)]k

from which we conclude that [L : K(α)] = 1 and hence L = K(α).

27In other words L = K(α) where α is a root of the polynomial Xn − a ∈ K[X].
28More generally every finite subgroup of the multiplicative group of a field is cyclic. If you don’t already

know this fact, you will prove it in Worksheet 10.
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Recall the following definition from Algebra 101:

Definition 66. A finite group G is solvable if there exists a chain of normal subgroups:

(e) = G0 ◁ · · ·◁Gk−1 ◁Gk ◁ · · ·◁Gn = G, such that for all k Gk/Gk−1 is cyclic (8)

Theorem 67. Let n > 0 be an integer, and let K be a field of characteristic p ∤ n containing
all roots of the polynomial Xn − 1 ∈ K[X].

For a separable polynomial f(X) ∈ K[X] TFAE:

(i) The polynomial f(X) is solvable by radicals of order dividing n;

(ii) The Galois group of the splitting field K ⊂ L of f(X) is solvable by a chain of normal
subgroups as in Definition 66 where the Gk/Gk−1 are cyclic of order dividing n.

Remark 68. I don’t know why solvable groups are called solvable: it is not clear what exactly
is “solvable” (in plain English) about groups that have a chain of normal subgroups as in
Definition 66. Perhaps they are so called because they correspond under the Fundamental
Theorem to equations that are solvable by radicals.

Remark 69. It follows from Theorem 67 that, for all integers n ≥ 5, there is no formula for
solving all polynomials of degree n by radicals. In other words, there is no generalization to
n ≥ 5 of the quadratic, cubic and quartic formulas that you know.

I sketch the argument here, leaving details to Worksheet 10. By a result of algebra, for
all n ≥ 5 the symmetric group Sn is not solvable.

On the other hand, by the method of Frobenius lifts, for all integers n ≥ 1 we can easily
construct degree n polynomials f(X) ∈ Q[X] such that the Galois group of the splitting field
of f(X) over Q is Sn — in fact you did this in Worksheet 9.

Alternatively, it is shown in Worksheet 10 that for all n and for all fields K,

K(X1, . . . , Xn)
Sn = K(σ1, . . . , σn)

where σ1, . . . , σn ∈ K(X1, . . . , Xn) are the elementary symmetric polynomials. Thus the
Galois group of the extension

K(σ1, . . . , σn) ⊂ K(X1, . . . , Xn)

is Sn, and hence the polynomial

f(X) = Xn − σ1X
n−1 + · · · ± σn = (X −X1) · · · (X −Xn) ∈ K(σ1, . . . , σn)[X]

is not solvable by radicals.

Proof of Theorem 67. The proof is a more-or-less direct (but not super-trivial) consequence
of Theorem 65: for clarity I spell it out in some detail.

Let us show that (i) implies (ii). To say that the polynomial f(X) is solvable by radicals
of orders dividing n is the same as to say that the roots of f(X) can be computed by means
of field operations involving (iterated) radicals of order dividing n. In other words there is a
field extension Ω ⊃ K, and a tower of extensions:

Ω = Ω0 ⊃ · · · ⊃ Ωk−1 ⊃ Ωk ⊃ · · · ⊃ Ωn = K, where Ωk−1 = Ωk( nk
√
ak) for some nk|n, ak ∈ Ωk
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such that all the roots of f(x) lie in Ω. By the assertion “(i) implies (ii)” of Theorem 65,
every intermediate extension Ωk−1 ⊃ Ωk is normal and separable with Galois group a cyclic
group of order dividing nk. The extension Ω ⊃ K is not necessarily normal but, by taking
nk

th roots of more elements, we can make a new Ω ⊃ K with the same properties that is also
normal and separable. Working with this new Ω, denote by G̃ the Galois group of Ω ⊃ K.
Letting G̃k = Ω†

k, we have a chain of subgroups:

(e) = G̃0◁ · · ·◁ G̃k−1◁ G̃k◁ · · ·◁ G̃n = G̃, such that for all k G̃k/G̃k−1 is cyclic of order |nk

Consider now the splitting field L ⊃ K of our original polynomial f(X) ∈ K[X]. Since L is
generated by the roots of f , Ω ⊃ L ⊃ K. Because L ⊃ K is a normal field extension, H = L†

is a normal subgroup of G̃ and the Galois group of L ⊃ K is G = G̃/H. Denote by Gk the

image of G̃k in G. Then
Gk = G̃k/

(
H ∩ G̃k

)
and the natural group homomorphism G̃k/G̃k−1 → Gk/Gk−1 is surjective. It follows that
Gk/Gk−1 is a cyclic group of order dividing nk, and this shows that (i) implies (ii).

The reverse implication “(ii) implies (i)” follows directly from the assertion “(ii) implies
(i)” of Theorem 65.

15 Texts

All undergraduate texts on Galois Theory go back to Emil Artin’s treatment [Art44]. Because
of this fact, almost any book will do, in that it is probably not much better than a more
or less good copy of Artin. In my day I studied [Her75] and I still like it very much. I
also recommend the notes by my friend and long-time collaborator Miles Reid [Rei], which
you can find at https://homepages.warwick.ac.uk/~masda/MA3D5/. I am a big fan of the
expository papers by Keith Conrad, see https://kconrad.math.uconn.edu/blurbs/, where
you will find several articles on Galois theory.

A big step forward was taken by Grothendieck [GR, Exposé V] with his theory of the
étale fundamental group (the axioms of a Galois category are listed at the beginning of
§ 4). Perhaps surprisingly, his treatment did not yet, as far as I know, “trickle down” to
undergraduate texts on the subject.

My treatment in this course is close in spirit to Grothendieck’s: I take an uncompromis-
ingly categorical point of view where I express key definitions and statements in terms of
field inclusions; never in terms of elements.
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