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1 What are Derivatives

1.1 Forward Contract

Definition 1 (Forward Contract). A forward contract is an agreement to buy or sell an asset at a certain
future time for a certain price, paying a forward price at expiry of the contract.
Described by parameters A - the asset being bought or sold, K - the strike price and T - the expiry date.
The value of the contract at time t is PT −K, where PT the market price of the asset at time T .

FT = f(PT ), with f(x) := x−K, x ∈ R

1.2 The Binary Option

Definition 2 (Binary Option). A binary option is a contract that pays out a fixed amount if the price of
the underlying asset is above a certain level at expiry, and nothing otherwise.
The payoff of a binary option is given by

f(PT ) = f(x) := 100 · 1x≥K , 1x≥K =

{
1 if PT > K

0 if PT ≤ K
P&L options =

{
100 ·A−AB0 if PT > K

−AB0 otherwise

where B0 the intial value, receiving payoff of $100 for each contract held.

1.3 Speculation

Definition 3 (Speculation). Speculation is the act of trading in the hope of making a profit, but with the
risk of making a loss.
Hedging is the act of trading to reduce risk.

2 How to price and hedge derivatives in one-period models

2.1 Pricing by replication

Principle 5. (Law of One Price)
If there are 2 possible investments which have ,under all possible market outcomes, the same value at time
T , then they must have the same value also at all previous times.

Principle 6. (Pricing via replication)
At any time t ∈ [0, T ], the derivative’s price must equal the value of the replicating portfolio.

Remark 7. (Hedging = - Replicating)

2.2 Pricing a Binary Option

Assume in the market we can only

� Trade gold, or

� Borrow/deposit money from/into a bank

Over a short-time span can assume that interest rate r = 0.
We trade binary options with strike price K = 59 and expiry T = 1, and the current price of gold is P0 = 58.

PT (ω)︸ ︷︷ ︸
Price at maturity

=

{
61, if ω = g;

56, if ω = b.
, Ω = {g, b}, P({g}) = P({b}) = 1

2
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With the payoff BT = 100 · 1PT≥59

BT (ω) =

{
100, if ω = g;

0, if ω = b.

Price now by replication
VT︸︷︷︸

wealth at maturity

= V x,h
T = x− h · 58 + h · PT

where h the amount of gold bought initially at P0 and V0 = x the initial wealth.
Replicating if final wealth is the same as the payoff{

x+ h · (61− 58) = 100

x+ h · (56− 58) = 0
=⇒ h = 20, x = 40

So we get the initial value of the binary option is V0 = 40.

2.3 Model uncertainty

Definition 8 (Model uncertainty). Model uncertainty is the uncertainty about the probability distribution
of the future asset price.
Introduce model risk - the risk that the model we use to price the derivative is not the correct one.

Remark 9 (Storage Costs). In the real world, there are storage costs for holding the asset for some assets.
e.g. gold, oil, etc. but not for others e.g. stocks, bonds, etc.

Remark 10 (Choosing the right mode). In the real world, we do not know the true model.
We choose the model that best fits the data, and use it to price the derivative.

Remark 11 (Counter-party risk). In the real world, there is counter-party risk - the risk that the other
party in the contract will not be able to pay.

2.4 What can be used as underlying

� Commodities

� Bonds

� Stocks

� Stock indices

� FX rates

� Other derivatives

2.5 The bank account and the bond

Assume that we can invest in contract - with value Bt at time t given by

1. B0 = 1 , by normalisation

2. If discrete time: Bt+1 = Bt(1 +Rt), where Rt the interest rate for period (t, t+ 1)

Bt = B0

t−1∏
s=0

(1 +Rs)

if Rt = r constant then, Bt = B0(1 + r)t

3. If continuous time: satisfy dBt = BtRtdt, where Rt the instantaneous spot rate at t . Then Bt =
B0e

∫ t
0
Rsds, if Rt = r constant then Bt = B0e

rt
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2.6 Justification of the law of one price

Remark 12 (Transaction costs and arbitrage). In the real world, there are transaction costs.
These costs nay be higher than the price imbalance that we are trying to exploit - hence no arbitrage.

2.7 The no-arbitrage principle

Definition 13 (Arbitrage). Arbitrage is the act of making a profit without risk.
Arbitrage opportunity is a trading strategy that has a positive initial value and zero probability of a loss.
It is a portfolio L that starting with 0 initial capital, and final value V L

T s.t V L
T ≥ 0 a.s., and P(V L

T < 0) =
0,P(V L

T > 0) > 0

� If there exists arbitrage, law of supply and demand would quickly disappear it.

� If the law of one price fails, then there exists arbitrage

Proposition 14. (Arbitrage and the Binomial model)
Given market with one risky asset S the stock and the bond. We assume that the interest rate is r > −1 and
the stock price can only take two values at time T , ST = S0u or ST = S0d with 0 < d < 1 < u.
Then there is no arbitrage if and only if d < 1 + r < u.

2.8 Dependence of prices on probabilities

Definition 15 (Equivalent probabilities). Say P ∼ Q are equivalent if they have the same null sets.

2.9 Unspoken Modelling assumptions

Remark 16 (Linear dependence). Given discrete time, and some model for the bonds and shares prices,
with stochastic processes K,H represent the number of shares and bonds held between (t, t+1), with H vector
valued quantity H = (H1, . . . ,Hm) with Hj the number of shares in the stock of type j of price Sj, then we
take

V (K,H)
s := KtBs +Ht · Ss, for s = t, t+ 1

the value of portfolio (K,H) where S = (S1, . . . , Sm) the stock prices.
Assume that (K,H) 7→ V (K,H) is linear.

1. Anything behaves linearly only does so on first approximation

2. Linear models easy to work with, and often only ones that are solvable.

2.10 Prices of liquid and illiquid goods

Important to distinguish between illiquid markets and liquid ones; the latter those in which a good is traded
a lot, by many possible participants - cannot use law of one price in illiquid markets.
Options pricing deals with how to price illiquid derivatives based on a liquid underlying.

2.11 Modelling the underlying, not the derivative

2.12 Discounting and Numeraire

”A dollar today is worth more than a dollar tomorrow.”

Definition 17. (Nominal vs. Real value)
Look at value of Wt in terms of B the bond instead of a unit of currency.

W t︸︷︷︸
real terms

= Wt︸︷︷︸
nominal terms

/Bt
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Given constants B0 = 1, B1 = B0(1 + r) > 0, r > −1, S0 ∈ Rm and the random vector S1 ∈ Rm

Consider portfolio (k, h) with value V k,h
s = kBs + h · Ss at time s ∈ {0, 1}, more interested in initial capital

- look at (x, h) instead with x = k + S0h the initial capital and hj number of shares of stock Sj

Value of (x, h) is

V x,h
0 = x, V x,h

1 = x(1 + r) + h · (S1 − S0(1 + r)), (x, h) ∈ R× Rm

Since V
x,h

t = V x,h
t /Bt find that V

x,h

0 = V x,h
0 = x

So our value in discounted terms becomes

V
x,h

1 =
1

1 + r
(x(1 + r) + h · (S1 − S0(1 + r))) = x+ h ·

(
S1

1 + r
− S0

)
V

x,h

t = x+ h · (S1 − S0), t = 0, 1

In discounted terms the gains from trade between times 0, t given by

V
x,h

t − V
x,h

0 = h · (S1 − S0)

Continuous case: dV
x,h

t = Ht · dSt, V
x,h

t − V
x,h

0 =

∫ S

0

Ht · dSt

Definition 20 (Numeraire). A numeraire is a portfolio L which has a strictly positive value a.s. and at all
times, ie.e s.t. V L

t > 0 a.s. for all t

2.13 Finite Probability Spaces

Pretty straightforward stuff here

2.14 How to find arbitrage

Trading strategy (x, h) ∈ R× Rm is an arbitrage if x = 0 and

P(V 0,h

1 ≥ 0) = 1 and P(V 0,h

1 = 0) < 1

or equivalently

P(V 0,h

1 < 0) = 0 and P(V 0,h

1 > 0) > 0

Since x taken to be zero, say ’h is an arbitrage’.

h is an arbitrage if wh ∈ Rn corresponding to random variable V
0,h

1 = h · (S1 −S0), satisfies w
h
i ≥ 0, ∀i and

wh ̸= 0
Denote W the vector space of discounted payoffs replicable at cost 0

W :=


m∑
j=1

hj(S
j

1 − S
j

0) : h ∈ Rm

 = span
{
(S

j

1 − S
j

0)
m
j=1

}
Find that

The set of all arbitrage payoffs is W ∩ (Rn
+ \ {0})

No arbitrage iff W ∩ (Rn
+ \ {0}) = {0}

The set of discounted payoffs replicable at cost x is x+W = {x+ w : w ∈ W}, since V
x,h

1 = x+ V
0,h

1
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2.15 The Fourier-Motzkin Algorithm

2.15.1 Simple linear equality

Given x ∈ Rn, b ∈ Rm and a m × n matrix A with rows, a1, . . . ,m, to solve system Ax = b write x = (y, z)
with y = (x1, . . . , xn−1 ∈ Rn−1, z := xn ∈ R) so that ai · x = ci · y+ diz for some ci ∈ Rn−1, di ∈ R rewriting
the equations as

ci · y + diz = bi, i = 1, . . . ,m

in the form z = ei · y+ f i or in form 0 = ei · y+ f i for some ei ∈ Rn−1, f i ∈ R to find the equivalent system{
z = ei · y + f i, for i ∈ I ̸= := {i : di ̸= 0};
0 = ei · y + f i, for i ∈ I= := {i : di = 0}.

I̸=, I= disjoint subsets whose union is {1, . . . ,m}.
I̸= = ∅ iff the last system i.e Ax = b doesn’t involve variable z
In this case: take any y solving system 0 = ei · y + f i, i ∈ I= and any z ∈ R
If instead I̸= ̸= ∅ then fix arbitrarily i∗ ∈ I ̸= then all and only the solutions (y, z) of above found by taking
solution y of system {

ei · y + f i = ej · y + f j , for i, j ∈ I̸=;

0 = ei · y + f i, for i ∈ I=.

and taking z = ei
∗ · y + f i∗

Above equation has no solution iff so does Ax = b

Iterating the above get sequence of linear systems Aixi = bi, i = n, n− 1, . . . , 1
Deleting the last variable, one at a time, till we get to A1x1 = b1 in the only variable x1 = x1 ∈ R
A1x1 = b1 has no solution ⇐⇒ so does Ax = b
Can construct all solution of Ax = b from solutions of A1x1 = b1 by back substitution.

2.15.2 System of linear inequalities

Generalise above to system of linear inequalities Ax ≥ b
Rewriting our system instead as

z ≥ ei · y + f i, for i ∈ I> : {i : di > 0};
z ≤ ei · y + f i, for i ∈ I< : {i : di < 0};
0 ≥ ei · y + f i, for i ∈ I= : {i : di = 0};

where I<, I>, I= disjoint sets whose union is {1, . . . ,m}, with I< ∪ I> = ∅ iff the last system does not
involve variable z
In this case: take any y solving system 0 ≥ ei · y + f i, i ∈ I= and any z ∈ R
If instead I< ∪ I> ̸= ∅, if I> = ∅ then I< ̸= ∅ and all and only solutions (y, z) of above found by taking
solution y of system 0 ≥ di + fi · y, i ∈ I= if I= ̸= ∅ and taking any z ≤ min

i∈I<
di + fi · y

Analogously if I< = ∅ then I> ̸= ∅ and take any y solving 0 ≥ di + fi · y, i ∈ I= if I= ̸= ∅, and any
z ≥ max

i∈I>
di + fi · y and find all and only solutions of the system .

In case where I>, I< both non-empty, all and only solutions x = (y, z) obtained by: taking solution y of
system {

ei · y + f i ≥ ej · y + f j , for i ∈ I<, j ∈ I>;

0 ≥ ei · y + f i, for i ∈ I=,

and then choose any

z ∈
[
max
j∈I>

ej · y + f j ,min
i∈I<

ei · y + f i

]
.
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Note conventions, sup∅ = −∞, inf ∅ = ∞
When I> = ∅ or I< = ∅ then system becomes z ≤ min

i∈I<
di + fi · y , z ≥ max

i∈I>
di + fi · y respectively.

And if I< ∪ I> = ∅ then we have z ∈ R
(y, z) solves system iff y solves the rewritten system and z solves the above range.

Iterating this procedure get sequence of linear systems Aixi ≥ bi, i = n, n− 1, . . . , 1
Where ith system has variables xi =

(
x1, . . . , xi

)
, starting from xn and deleting until we get to x1 = x1 ∈ R

A1x1 ≥ b1 has no solution ⇐⇒ so does Ax ≥ b
Can construct all solution of Ax ≥ b from solutions of A1x1 ≥ b1 by back substitution.

2.16 Find arbitrage with the FM algorithm

Can find if a finite market has arbitrage, can use FM algorithm to check whether W ∩ Rn
+ = {0}

2.17 The no-arbitrage and the domination principles

Principle 32 (Weak Domination Principle). If there are 2 possible investments, and the first one has, under
all possible market outcomes, a smaller value then hte second at time T , then this holds also at all previous
times.

Principle 33 (Pricing via super- and sub-replication). At any time t ∈ [0, T ], the derivative’s price must be
smaller (resp. bigger) than the value of any super-replicating (resp. sub-replicating) portfolio.
We can then define the price bounds for the derivative as the smallest (resp. biggest) initial capital of a
super-replicating (resp. sub-replicating) portfolio.

u(X) := inf
{
V U
0 : V U

T ≥ XT

}
, d(x) = sup

{
V D
0 : V D

T ≤ XT

}
We also have trivially VT ≥ XT ⇐⇒ V T ≥ XT and VT ≤ XT ⇐⇒ V T ≤ XT

u(X) = inf
{
V U
0 : V

U

T ≥ XT

}
, d(X) = sup

{
V D
0 : V

D

T ≤ XT

}
Principle 34 (Domination Principle). Say that the Strict Domination Principle holds if, whenever there
are two investments L,M such that

1. the first one has a value a.s. smaller than the second, i.e. P({V L
t ≤ V M

t }) = 1

2. the first one has a value not a.s. equal to the second i.e. P({V L
t ̸= V M

t }) > 0

at time t = T , then necessarily items 1 and 2 hold at all previous times t ∈ [0, T ].
We will say that the Domination Principle holds if both the law of one price and the strict domination
principle hold.

Remark 35. When working in one-period models, items 1 and 2 in principle in principle 34 are just
required to hold for t = 0. Since V0 is known at time 0, it is a constant, so items 1 and 2 become more
simply V L

0 < V M
0

Theorem 36. In the linear one-period marker model, the following are equivalent:

1. The domination principle (34) holds

2. The strict domination principle holds

3. there exists no-arbitrage

Theorem 38. In the linear multi-period market model, the Weak Domination principle (32) holds if and
only if there exist no uniform arbitrage.
Moreover, the domination principle (34) implies the weak domination principle (32), which implies teh Law
of one price, adn the two opposite implications do not hold.
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2.18 No-arbitrage prices

Definition 39 (No-arbitrage price). p ∈ R is a fair price of X in the market (B,S) if the enlarged market
(B,S,X), composed of the original market plus the derivative X traded has price X0 = p at time 0, is also
arbitrage-free.

Lemma 40. The infimum and supremum in the definition of u(X) and d(X) are achieved.

Proposition 42. In the arbitrage-free one-period market (B,S), if a derivative X is

1. replicable, then its fair price X0 is unique, it equals the initial value x of any replicating portfolio, and
u(X) = X0 = d(X)

2. not replicable, then the set of its fair prices is the open interval (d(X), u(X))

Definition 44. A market model (B,S) is called complete if any derivative X is replicable (in such a market);
otherwise its called incomplete.
In a complete model all derivatives have a unique price.

2.19 Linear programming, option pricing and arbitrage

Definition 45. A set P ⊆ Rk is called a polyhedron if it of the form

P := {z ∈ Rk : Az ≥ b, Cz ≤ d, Ez = f}

where A,C,E are matrices and b, d, f are vectors. A linear optimisation problem (LP) is a problem of the
form

minimise/maximisea+ c · z subject to z ∈ P

where a ∈ R, c, z are vectors and P is a polyhedron.
Polyhedra are closed, convex sets.

2.20 Solving LPs with the FM algorithm

Given a polyhedron P ⊆ Rn and c ∈ Rn, and the LP

inf c · z subject to z ∈ P

Want to find z∗ such that c · z∗ = y∗ the infimum
z∗ the optimiser, y∗ the optimal value.
If optimiser exists, LP called solvable

To solve the LP, define the polyhedron

R = {(y, z) : y = c · z, z ∈ P}

Use FM to compute projection πn+1
1 (R) where πn+1

1 = πy defined on R1
y × Rn

y

Theorem 47. inf πn+1
1 (R) equals the optimal value y∗ of the LP, and z∗ solves the LP if and only if

(y∗, z∗) ∈ R

Corollary 48. A LP solvable iff its optimal value is finite.
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2.21 How to price a derivative using the FM algorithm

2.22 How to find the optimisers of a LP using the FM algorithm

2.23 Foreign Currency

Describe the money market using ’the bond’ and ’the stock’
If we are trading between two currencies, need to consider

Bd
0 = 1, Bf

0 = 1, Bd
0 = 1 + rd, Bf

0 = 1 + rf

Where Bd the domestic bond, and Bf the foreign bond, each with their own interest rate > −1 .
Also required to specify between domestic and foreign assets each priced in their own currency.
A European stock has price (in ¿) S , so its price in £ is SE where E := E¿

£
- the cost of one ¿ in £.

Conversely U a British stock its value UE′ in ¿, where E′ := E£
¿
- the cost of one £ in ¿.

Where obviously E = 1
E′

A british investor may model the market as (Bd, Sd, EBf , ESf ) where as a euro investor may model the
market as (Bd/E, Sd/E,Bf , Sf ), with each using their respective bond as the numeraire.
Clear to see that the two models are equivalent, one is arbitrage free/complete iff the other is too.

2.24 Formulas for the binomial model

Consider the one-period binomial model (B,S) assume that S0d = S1(T ) < S1(H) = S0u
Do not assume that d < 1 + r < u, (arbitrage free)
To price a derivative, try to replicate it, i.e find x, h such that

V
x,h

1 (H) = X1(H), V
x,h

1 (T ) = X1(T )

We have V
x,h

1 = x+ h(S1 − S0), this system of two equations in two unknowns has a unique solution.
We get the following delta-hedging formula

h =
X1(H)−X1(T )

S1(H)− S1(T )

and the following formula for p̃ the risk-neutral probability

p̃ =
1 + r − d

u− d

And the risk-neutral price

X0 = p̃X1(H) + (1− p̃)X1(T ), X0 =
1

1 + r
E[X1]

2.25 The Fundamental theorem of Asset Pricing

A probability space (Ω,A,P), if Q another probability on (Ω,A)
Say Q absolutely continuous with respect to P, Q ≪ P if P(A) = 0 =⇒ Q(A) = 0,∀A ∈ A
If any null set of P a null set of Q say they are equivalent. Q ∼ P if Q ≪ P,Q ≫ P

If Ω finite and every singleton {w}, w ∈ Ω is measurable, then Q ≪ P iff P({w}) = 0 =⇒ Q({w}) = 0
If Ω finite and P({w}) > 0,∀w ∈ Ω then any probability Q satisfies Q ≪ P and Q ∼ P iff Q({w}) > 0,∀w ∈ Ω

Proved earlier that the one-period binomial model arbitrage free iff there exists Q on {H,T} that is
equivalent to P and such that S0 = EQS1 holds

9



Definition 58. A probability Q on (Ω,A) is an S-Martingale Measure, if Q ≪ P and

S
j

1 ∈ L1(Q), S
j

0 = EQ[S
j

1], ∀j = 1, . . . ,m (53)

Denote
M(S) := {Q ∼ P : eq. (53) holds}, M(S) := {Q ≪ P : eq. (53) holds}

We have the families of all EMM (Equivalent Martingale Measures) and MM (Martingale measure) for S
abbreviated as M,M

Remark 59 (MM in finite Ω ). Any random variable defined on a finite Ω is integrable with respect to

any probability; thus, if Ω is finite, the assumption S
j

1 ∈ L1(Q) automatically satisfied. Moreover, because
of our assumption that P({w}) > 0,∀w ∈ Ω,Q ≪ P is satisfied by any probability Q, and Q ∼ P holds iff
Q({w}) > 0∀w ∈ Ω

Theorem 63 (1st Fundamental Theorem of Asset Pricing). Consider the linear one-period market model
(B,S). This model is free of arbitrage ⇐⇒ M(S) ̸= ∅

Theorem 64 (Seperation Theorem). If C,K ⊆ Rn are convex, C is closed and K is compact then there
exists z ∈ Rn, a, b ∈ R s.t

x · z ≤ a < b ≤ y · z, ∀x ∈ C,∀y ∈ K

In particular, if C is a vector space then x · z = 0,∀x ∈ C

Theorem 66. Consider the linear one-period model (B,S) and assume that Ω is finite. In this model there
exists no uniform arbitrage ⇐⇒ M(S) ̸= ∅

2.26 The Risk Neutral Pricing Formula

Corollary 67 (Risk-Neutral Pricing Formula). The set of arbitrage-free prices for an illiquid derivative with
payoff X1 in a one-period arbitrage-free market model (B,S) is

AFP(X1) = {EQ[X1] : Q ∈ M(S) and EQ[X1] < ∞}

Corollary 69 (Risk-Neutral Pricing Formula). If (B,S) a one-period market model with no uniform arbi-
trage, based on a finite probability space, the set of prices for an illiquid derivative with payoff X1 for which
the extended market (B,S,X) has no uniform arbitrage equals

{EQ[X1] : Q ∈ M(S) and EQ[X1] < ∞}

Remark 70. It follows from Corollary 68 and Proposition 42 that the price bounds for X are given by

u(X) = sup{EQ(X1) : Q ∈ M(S),EQ[X1] < ∞}
d(x) = inf{EQ[X1] : Q ∈ M(S),EQ[X1] < ∞}

sup and inf only attained if and only if X1 replicable.

Corollary 73 (Characterisation of replicable derivatives). X1 is replicable ⇐⇒ EQ[X1] is constant across
all Q ∈ M(S) s.t. EQ[X1] < ∞

Corollary 74. Let (B,S) be a market-model free of arbitrage. Then (B,S) is complete ⇐⇒ the EMM is
unique (i.e. M(S) a singleton)
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2.27 Dividends

Stocks can issue dividends, and bonds coupons. Dividends generally paid every 3 months in the same amount.
Paying out dividends decreases the value of the shares by the same amount.
Denote with S︸︷︷︸

ex/post-dividend

the price of share just after the dividend D is paid, and D︸︷︷︸
cum−dividend

the price of

one share just before the dividend is paid. Then clearly

V = S +D, S ≥ 0, D ≥ 0

Calculate the forward price F of a stock paying dividends in one-period model. F depends on D, forward
contract pays S1 − F but does not depend on D, the stock does pay dividends
If we buy one share at cost S0, while borrowing F+D

1+r from the bank, we replicate the payment of S1 − F of
the forward contract, since the final wealth is

(S1 +D)− (1 + r)

(
F +D

1 + r

)
= S1 − F

Since the initial cost of such replicating strategy is S0 − F+D
1+r , setting this to 0 shows that the forward

price of S is F = S0(1 + r)−D

3 Multi-Period models

3.1 Measurability

Stochastic processes: a family X = (Xt)t∈I , i.e. a function I ∋ t 7→ Xt of random numbers or vectors defined
on the same probability space (Ω,A,P) indexed by set I
Say X ≤ Y mean that Xt ≤ Yt for all t ∈ I

P ({ω : Xt(ω) ≤ Yt(ω)∀t ∈ I}) = 1 P ({ω : Xt(ω) ≤ Yt(ω)}) = 1, ∀t ∈ I

Lemma 78 (Doob-Dynkin). Suppose X,Y random vectors with n, k components, defined on measurable
space Ω,A, then the following are equivalent

1. There exists a Borel function f : Rk → Rn such that X = f(Y )

2. X is σ(Y )-measurable, i.e. σ(X) ⊆ σ(Y )

Lemma 79. Given random vector X,Y on the same measurable space Ω,A if Y only takes countably many
values {yn}n∈N then the t.f.a.e

1. There exists a function f : Rn → Rk such that X = f(Y )

2. X takes a constant value xn on each set of the form {Y = yn}, n ∈ N

Definition 80. A family F = (Ft)t∈T of σ-algebras is called a filtration if Fs ⊆ Ft for all s ≤ t, s, t ∈ T

Definition 81. The stochastic process X = (Xt)t∈T is said to be adapted to the filtration F = (Ft)t∈T (or
F-adapted) if Xt is Ft-measurable for all t ∈ T
The natural filtration generated by a process X is the smallest filtration FX to which X is adapted i.e.
FX

t = σ((Xu)u≤t,u∈T)

11



3.2 Self-financing portfolios

At time t own Hj
t ∈ R units of jth asset with price Sj

t and Kt units of the bond with price Bt

At time t the value of the portfolio is KtBt +Ht · St

At time t+ 1 the value of the portfolio is KtBt+1 +Ht · St+1

At t+1 readjust the portfolio to Kt+1 units of the bond and Ht+1 units of the stock, between times t+1, t+2
Assume that these values are equal, i.e. the portfolio is self-financing

KtBt+1 +Ht · St+1 = Kt+1Bt+1 +Ht+1 · St+1, t ∈ T, t < T

Need to choose the values of variables Kt, H
1
t , . . . ,H

m
t for each t ∈ T, t < T not all these random variables

are free ones - they need to satisfy the T constraints of self-financing.
Can determine Kt+1 via induction from Kt given B > 0 (see notes for clarification)

Kt+1 =
1

Bt+1
(KtBt+1 + (Ht −Ht+1) · St+1)

We have
Vti+1

− Vti = Kti(Bti+1
−Bti) +Hti(Sti+1

− Sti)

Vtk − V0 =

k−1∑
i=0

Hti(Sti+1 − Sti) + (Vti −HtiSti)r

Which gives a simpler discounted version

V
x,H

t = x+ (H · S)t, t ∈ T (66)

where we define the ’discrete-time stochastic integral’ of H with respect to Y by

(H · Y )t =

t−1∑
s=0

Hs(Ys+1 − Ys), t ∈ T

If we need to calculate Kt can do so using V t

Kt =
1

Bt
(Vt −Ht · St) = V t −Ht · St

3.3 Arbitrage and arbitrage-free prices

Definition 82. An adapted process (Pt)t∈T is an Arbitrage Free Price for the derivative with payoff XT at
maturity T in the arbitrage-free market model (Bt, St)t∈T if Pt = XT and the enlarged market (Bt, St, Pt)t∈T
is arbitrage-free.

Theorem 83. In the linear multi-period market model (Bt, St)t∈T in eq. (66), the Domination principle
holds ⇐⇒ there exists no arbitrage

Theorem 84. There exists an arbitrage in the multi-period model (Bt, St)t∈T iff there exists a s ∈ T, s < T
s.t there exists an arbitrage in the one-period model (Bt, St)t=s,s+1

3.4 The multi-period binomial model

Define the N -period binomial model on the following filtered probability space (Ω,A,F ,Pp)

1. Ω = ΩN = {ω = (ω1, . . . , ωN ) : ωi ∈ {H,T}}

2. A = P(Ω) all subsets of Ω

3. F = (Fn)
N
n=0 = σ((Xk)k<n)

12



4. Pp is the probability measure on (Ω,A) defined by

Pp({ω}) = pk(1− p)N−k, ω = (ω1, . . . , ωN ) ∈ Ω, k =

N∑
i=1

I{ωi=H}

for p ∈ (0, 1)

Notice that a process Y is adapted if, for each n, Yn a function of Xn := (Xk)k≤n

Or equivalently if Yn(ω) depends only on ω(n) = (ω1, . . . , ωn) does not depend on (;wn+1, . . . , wN )

On (Ω,A,F ,Pp) we build the binomial market model (B,S) by asking that

� The bond price process B given by

Bn = B0

n−1∏
k=0

(1 +Rk)

for each n ∈ T, where the interest rate process R > −1 is F-adapted

� The price of underlying given by

Sn+1(ω) =

{
(SnUn)(ω), if Xn+1(ω) = H;

(SnDn)(ω), if Xn+1(ω) = T.

where the up and down factors Un, Dn are F-adapted processes s.t. 0 < D < U

Theorem 85. The multi-period binomial model is arbitrage free ⇐⇒ D < 1 +R < U

3.6 Derivatives paying a cashflow

Consider derivatives that provide payoff Pt at any time t = 0, 1, . . . , T where T ∈ N the expiry.
Process P = (Pt)t=0,...,T called the cashflow of derivative
Require it to be adapted to the filtration F of the market model (B,S)

Can see a derivative with cashflow P seen as the sum over n = 0, . . . , N of derivatives with payoff Pn at
expiry n
Denote Pn

k value at time k ≤ n of derivative which only has payoff Pn at expiry n
And take Hn

k the number of shares one should hold at time k to replicate it.
Value of Pn

k only defined for k ≤ n, since derivative has expiry n, and analogously Hn
k is defined only for

k ≤ n− 1

Hk =

N∑
n=k+1

Hn
k , Vk =

N∑
n=k

Dk

3.7 Derivatives with random maturity

Definition 89. A random variable with values in I ∪ {∞} is called a random time.

Definition 90. A random time τ is called a stopping time if {τ ≤ t} is Ft-measurable for all t ∈ I

3.8 Chooser options

American call option - gives right to exercise option and receive payment (St −K)+, or instead wait for a
later more preferable time.
Bermudan call option - right to choose stopping time τ at which receive payoff (Sτ −K)+, but only among
those τ which take values in set D of possible exercise dates
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3.9 American Options

Consider American option, which has payoff Iτ at time τ where τ is a stopping time, τ ≤ T is chosen by the
buyer.
I the intrinsic value of the derivative, τ the exercise date, and T the expiry of the option.
The buyer can exercise the option at any time τ ≤ N , only choosing τ(ω) = t ≤ N if It(ω) ≥ 0
If It(ω) < 0∀t, he will choose τ = ∞ and the option will expire worthless without being exercised, I∞ = 0

3.10 Conditional probability and conditional Expectation

Theorem 97. P(· | B) : A → [0, 1], P(A | B) := P(A ∩B)/P(B), for A ∈ A
P(· | B) a probability on A, and

EP(·|B)[X] = EP[X1B ]/P(B)

for any random variable X ≥ 0, and thus for all X s.t. EP[|X|1B ] < ∞

Definition 98. An atom of a σ-algebra F is a non-empty A ∈ F such that B ⊆ A,B ∈ F imply that either
B = ∅ or B = A
The family of atoms of F is denoted by A(F)

Theorem 99. Assume F is a finite σ-algebra on Ω, and denote with AF (ω) the intersection of all the A ∈ F
which contains ω ∈ Ω
Then AF is the smallest A ∈ F which contains ω. The family A(F) of atoms of F is a finite partition of Ω,
and

A(F) = {AF (ω) : ω ∈ Ω}

so AF (ω) is the (only) atom of F containing ω ∈ Ω . The function Πtoσ(Π), mapping finite partitions of
Ω to finite σ-algebras on Ω, is a bijection and has inverse { 7→ A(F); in particular, if F = σ(X) for some
random variable X, which satisfies the below eq. (79), then A(F) = {X = xk}nk=1

P ({X = xk}) > 0 ∀k = 1, . . . , n, P

(
X /∈

n⋃
k=1

{xk}

)
= 0 (79)

3.11 Properties of the conditional expectation

Theorem 100. For all X ∈ L1 and σ-algebra G ⊆ F the net (E[X | H])H∈H(G) converges in L1.
Its L1 limit is called the conditional expectation of X given G, denoted with E[X | G]

Theorem 101. Z := E[X | G] is G-measurable and satisfies

E[ZW ] = E[XW ] for all G −measurable and bounded W ; (83)

moreover, Z = E[X | G] is the unique G-measurable random variable Z ∈ L1 which satisfies eq. (83)

Properties of conditional expectation:

1. Linearity: E(X + Z | G) = E[X | G] + E[Z | G]

2. Independence: If X is independent of G, then E[X | G] = E[X]
In particular, any constant c ∈ R satisfies E(c | G) = c, and if G is the trivial σ-algebra {∅,Ω} then
any X satisfies E(X | G) = E(X)

3. Taking out what is known: if X is G-measurable then E(XZ | G) = XE(Z | G), and in particular
E(X | G) = X

4. Iterated conditioning: if H ⊆ A a σ-algebra and G ⊆ H then E(E(X | H) | G) = E(X | G); in
particular E[E(X | H)] = E[X]

5. Jensen inequality: if ϕ : R → R is convex then E[ϕ(X) | G] ≥ ϕE[X | G]
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Theorem 102. Assume X ∈ L2(A). Then E[X | G] is the unique C minimiser of E[(X − C)2] across
C ∈ L2(A) .
Equivalently E[X | G] is the unique C ∈ L2(A) s.t.

E[(X − C)W ] = 0 for all W ∈ L2(G)

Lemma 103. The set L2 = L2(P) of random variables X s.t. E(X2) < ∞ is a vector space, and if
X,Y ∈ L2(P) then XY ∈ L1(P)

3.12 The RNPF in the multi-period binomial model

Compute up and down factors

Un(ω) :=
Sn+1((ω(n), H))

Sn(ω(n))
, Dn(ω) :=

Sn+1((ω(n), T ))

Sn(ω(n))

and define risk-neutral transition-probabilities P̃n and Q̃n = 1− P̃n by asking that

Sn(ω(n)) = P̃n(ω(n))Sn+1((ω(n), H)) + Q̃n(ω(n))Sn+1((ω(n), T ))

Solving to get

P̃n(ω) = P̃n(ω(n)) :=
(1 +Rn)−Dn

Un −Dn
(ω(n)), n = 0, . . . , N − 1 (86)

Q̃n(ω) = Q̃n(ω(n)) :=
Un − (1 +Rn)

Un −Dn
(ω(n)), n = 0, . . . , N − 1 (87)

Compute Vn = V x,G
n

V n(ω(n)) = P̃n(ω(n))V n+1((ω(n), H)) + Q̃n(ω(n))V n+1((ω(n), T )) (88)

V n(ω(n)) = EQ|{X(n)=ω(n)}[V n+1] (90)

V n = EQ[V n+1 | Fn] (91)

Lemma 105. The map Q 7→ P̃ given by equation (89) is a bijection between

1. probabilities Q on (Ω,A)

2. F-adapted processes P̃ = (P̃ )n≤N on (Ω,A) with values in [0, 1]

Moreover Q ∼ P ⇐⇒ O < P̃ < 1

3.13 The FTAP in the multi-period setting

As P̃ is determined by eq. (85) which is eq. (88) with V = S, eq. (91) states that Q satisfies

Sn = EQ[Sn+1 | Fn]

Definition 107. 1. An adapted process Y = (Yt)t∈T a martingale if Yt ∈ L1(P) and E[Yt | Fs] for each
s ≤ t, s, t ∈ T

2. A probability Q on F is a Martingale Measure if S is a martingale on (Ω,A,F ,Q)
Say S a Q-martingale
Such Q is an EMM if Q ∼ P. The set of EMM denoted by M(S)

Theorem 108 (1st FTAP). A multi-period market (Bt, St)t∈T is arbitrage free ⇐⇒ M(S) ̸= ∅

Corollary 109. Let (Bt, St)t∈T be a multi-period market free of arbitrage. Then (B,S) is complete ⇐⇒
the EMM is unique (i,e. M(S) is a singleton)
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3.14 Permutation-invariant processes and recombinant trees

To find AFP Y := (Yn)n<N for binomial model - work by backward induction. Setting V n = V
x,G

n := Y n

and using the RNPF eq. (91) to compute V n = EQ(V n+1 | Fn) and Gn for each 0 ≤ n ≤ N − 1
Problem: amount of computation grows exponentially with n - as its proportional to the # of paths

(ω1, . . . , : wn) = #{H,T}n = 2n

Solution - consider for (B,S) only those adapted processes W such that for each n , Wn takes the same
value at the point (ω1, . . . , ωn) as at the point

(
σ(ω1), . . . , σ(ωn)

)
, where σ any permutation of Ωn = {H,T}n

Call such W permutation-invariant
If W is permutation-invariant Wn takes at most n+1 possible values, as it is a function only of the number
k = 0, . . . , n of coin tosses which results in Heads. As the number of values of Wn grows linearly in n -
instead of exponentially - the amount of computation is reduced.

Figure 1: Recombinant tree

Suppose (B,S) is permutation invariant. If the value Y n of a derivative at time N depended just on
(BN , SN ), i.e. Y n = fN (BN , SN ), then we would only need to keep track of the N + 1 values of (BN , SN )
to compute Y n

For a general derivative we have Y n = fN ((Bk, Sk)k≤N ), we would still only need to keep track of∑n
k=0(k + 1) = 1

2 (N + 1)(N + 2) ∼ N2 values - which is much less than 2N

3.15 Independence

Definition 110. Given a probability space (Ω,A,P), we say two events A,B ∈ A are independent if P(A ∩
B) = P(A)P(B)

Definition 111. Given probability space (Ω,A,P) say finitely many events Fi ∈ A, i ∈ J = {ij}nj=1 are
P-independent if we have

P(Gi1 ∩ . . . ∩Gin) =
n∏

j=1

P(Gij )

For any Gij ∈ {Fij , F
c
ij
}, j = 1, . . . , n

Definition 113. Given probability space (Ω,F ,P), an arbitrary collection of events Gi ∈ A, i ∈ I are
independent if {Gi}i∈J are independent for every finite J ⊆ I
Arbitrary collection {Gi}i∋I of sub-σ-algebras of A are independent if for every choice of sets Gi ∈ Gi, i ∈ I,
the sets {Gi}i∈I are independent
An arbitrary collection of random vectors Xi : Ω → Rki , i ∈ I are independent if the σ-algebras {σ(Xi)}i∈I

are independent

Theorem 114. Given random vectors Xj : Ω → Rkj , j = 1, . . . , n the following are equivalent:

1. (Xj)j are independent
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2.

E

[
n∏

k=1

fj(Xj)

]
=

n∏
k=1

E[fj(Xj)] (97)

holds for any bounded and Borel functions fj : Rkj → C, j = 1, . . . , n of the form fj(x) = exp(i · tj ·
x), tj ∈ Rkj

3. eq. (97) holds for any functions fj : Rkj → C, j = 1, . . . , n of the form fj(x) = exp(i · tj · x), tj ∈ Rkj

Remark 115. 1. if Xj has values in R+ for each j and eq. (97) holds for every fj of the form fj(x) =
exp(tjx), tj ∈ R, or

2. if each Xj has values in a bounded set Bj (P(Xj /∈ Bj) = 0 ) and eq. (97) holds for every fj which is
a polynomial

Then the (Xj)j are independent

Remark 116. For T = {0, 1, . . . , N} or T = N

1. (Xi)i∈T are independent

2. For every J,K ⊆ T s.t. J ∩ K = ∅ the two random vectors Y := (Xi)i∈J and Z := (Xi)i∈K are
independent

3. For every k ∈ T \ {0} , the two random vectors X(k − 1) := (Xi)
k−1
i=0 and Xk are independent

Theorem 117. Given two σ-algebras B, C ⊆ A, the following are equivalent:

1. B, C are P-independent

2. for all B ∈ B the random variable P(B | C) is constant

3. for every B-measurable Y ∈ L1(P), the random variable E(Y | C)is constant

and in this case P(B | C) = P(B), and E[Y | C] = E[Y ]

Theorem 118. If two random variables X,Y take finitely many values {xi}ni=1, {yj}mj=1 then X,Y indepen-
dent iff, for each i, j the two sets {X = xi}, {Y = yi} are independent

Remark 119. If B finite, if P(B | C) = P(B) holds for every atom of B of B then it holds for every finite
union of atoms, i.e. for every B ∈ B ; moreover if P(B | C) = P(B) then

P(Bc | C) = 1− P(B | C) = 1− P(B) = P(Bc)

Thus, a random variable X which only takes 2 values x1, x2 is independent of a σ-algebra G iff P(X = x1 | G)
is constant

Remark 120. Combining remarks 116 + 119.
Follows that random variables (Xi)

N
i=1 with values in {H,T} are P-independent iff, for every k ∈ {1, . . . , N−

1}
P(Xk+1 = H | σ

(
X1, . . . , Xn

)
) is constant

Remark 121. WARNING: if X,Y, Z are pairwise independent, then not necessarily X,Y, Z are independent
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3.16 Pricing and hedging fast using Markov Processes

Definition 122. An adapted process X = (Xt)t∈T on a filtered prob. space (Ω,A,F ,P) is Markov if

∀f Borel-measurable ,∀s ≤ t, s, t ∈ T, E(f(Xt) | Fs) = E(f(Xt) | Xs)

Lemma 124 (Independence Lemma). If X a Rk-valued, and Y a Rn-valued random vector on (Ω,A,P),G ⊂
A a σ-algebra,X is G-measurable and Y is independent of G, f : Rk × Rn → R a Borel function, then

E(f(X,Y ) | G) = g(x) for g(x) = E(f(x, Y )), g : Rk → R

Corollary 126. If a F-adapted process W satisfies Wk+1 = fk(Wk, Xk+1) for each k ∈ Z, where fk is some
Borel function and Xk+1 is independent of Fk, then W is Markov and E(f(Wk+1 | Fk)) = g(Wk) for all
k ∈ Z, where

g(ω) := E[f(f(ω,Xk+1))]

4 Continuous Time models

Lol
NON EXAMINABLE MATERIAL
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