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Week 1

1 What are derivatives?

1.1 Lecture 1, The Forward Contract

Derivatives (a.k.a. options1) are type of contract, which allows to transfer risk. To
clarify what are derivatives, and what they are used for, it is best to start with some
concrete examples.

The oldest-known derivative, already in use (to trade agricultural products) in India
in 2000 BC and in ancient Babylonia in 1600 BC, is the forward contract, which we now
introduce.

Example 1 (Forward Contract). Today (i.e. at time 0) the airline easyJet buys from a
bank a forward contract for A litres of jet fuel at forward price K (fixed today) and
expiry (a.k.a. expiry, maturity, delivery date) T . This means that the companies enter
into an agreement which states that, at the future time T , easyJet will buy from the
bank A litres of jet fuel at price K.

Notice that a forward contract costs nothing, i.e. no cash changes hands at time today.
Despite of this, we say that easyJet buys the forward contract, and the bank sells it, to
indicate that at time T easyJet will buy the fuel from the bank. The forward price K is
not the price which easyJet has to pay to buy a forward contract: this price, also called
the value of the contract today, is zero. Instead, the forward contract is described by
the parameters A,K, T , and the parameter K specifies the price (in some fixed currency,
say £) at which easyJet will buy A litres of fuel from the bank at expiry T .

For easyJet, buying a forward contract removes the risk of rising fuel prices: if prices
rise, easyJet will nonetheless have the right to buy the fuel from the bank at price K.
This is particularly useful as easyJet sells tickets months in advance, so it cannot raise
their prices to offset its increased costs due to the rise of fuel prices. However, if fuels
prices drop, easyJet will also have the obligation to pay the pre-agreed price K at time
T for the fuel, instead of paying its market price PT . This is however an acceptable
scenario: essentially, easyJet is sacrificing the possibility of a very positive outcome, in
exchange for removing the risk of a very negative one. So easyJet, buying a forward
contract, transfers the risk2 of rising fuel prices to the bank. It can then focus on
making money by operating its business well, without being subjected to the vagaries of
the market.

In summary, the value of the forward contract at time T is PT −K, since owning it
allows, and forces, easyJet to buy at price K from the bank what it could have bought at
price PT from the market. Thus, the value FT of a forward contract at time T depends

1Some people call options only a very special type of derivatives: those which we will call vanilla
options.

2Notice how in finance the word ’risk’ refers to any uncertain outcome, not necessarily to a negative
uncertain outcome.
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on (is a function of) the price PT of the jet fuel at time T ; more precisely,

FT = f(PT ), with f(x) := x−K, x ∈ R.

The forward contract is then called a derivative (or a contingent claim), since it is a
contract whose value derives from (is contingent on) the value that one or more other
quantities, called the underlying, take at times t ∈ [0, T ].

The bank is now exposed to the risk of rising fuel prices. To reduce the risk, the bank
will seek to trade with other customers in a way that the resulting risks cancel each other
out as much as possible; this is called hedging. For example, Koch industries produces
jet fuel and wants to cover itself against the risk of dropping fuel prices. Thus, the bank
could buy the forward contract from Koch industries, and then sell it to easyJet. This
trade reduces the risk for easyJet and Koch industries. In exchange for this service, the
bank will make some small profits, because the forward price at which it will buy (bid
price) and sell (ask price) it are actually slightly different.

Of course, Koch industries could have sold the forward contract directly to easyJet.
However, in reality hedging is a lot more complicated, and one can never fully cover
all risks. easyJet will not want to buy a contract with the same parameters at which
Koch industries wants to sell it. Not even the bank, with its extensive connections to
thousands of businesses, will ever be able to find someone from which to buy the same
contract that it is selling to someone else. Instead, the bank will have to sell many
types of derivatives to many participants, trading to hedge as much as possible the total
risk resulting from its many investments. Koch industries and easyJet could also try
to do that. However, to get the job done the bank has to employ innumerable highly
paid math-whizzes to come up with a bewildering variety of sophisticated contracts, and
figure out at what prices they should trade these, and find trading partners with which
to conduct thousands of transactions in a way to minimize the combined risks, all the
while satisfying complicated requirements from financial regulators. So, most companies
prefer to concentrate their efforts on their core competencies, and pay a fee to the bank
for its service. Large companies may however have their in-house financial arm; as an
extreme example, reported by the Economist on 28/10/17 in the article Apple should
shrink its finance arm before it goes bananas,

[Apple’s financial operation is] on some measures, roughly half the size of
Goldman Sachs.

1.2 Lecture 2, The Binary Option

There are many possible derivatives and underlying, and a few more reasons to trade
derivatives, as we will see. In this introductory chapter however we offer just one more
example.

Example 2 (Binary option). Let’s say it is 10am, gold is trading at $58 per gram, and my
American uncle Bob believes the price of gold will rise and close above $59 by the end of
the trading day (at 4pm EST). He can then place a wager on whether this will happen,
asking his trader to buy for him from a bank 1500 cash-or-nothing binary options on
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gold with strike price $59. Denote with B0 the cost (in $) of each binary option. Buying
them, Bob enters a contract with the bank, which specifies that if

1. Bob’s prediction is correct (i.e. at 4pm the price PT of gold is above $59), then the
bank owes him $100 for each option3, i.e. $150000 in total. The option is said to
be in the money.

2. Bob’s prediction is wrong, then the bank owes him nothing: Bob loses all the
$1500B0 which he invested in buying the options. The option is said to be out of
the money, as it is worth nothing.

In this example, the underlying is gold, the derivative is the binary option, and expiry
is 4pm. Bob bought each contract at time 0 at price (i.e. initial value) $B0; its payoff at
maturity (i.e. its final value) is $100 if PT ≥ 59, and $0 otherwise. The option’s payoff
can be written as f(PT ) with f(x) := 100 · 1{x≥59}, where by definition

1{x≥b} :=

{
1 if x ≥ b,
0 otherwise.

The P&L (Profit and Loss) of Bob’s investment in the binary option, defined as its payoff
minus its cost, expressed in $, is

P&L options =

{
150000− 1500B0 if PT ≥ 59,

−1500B0 otherwise.

Remark 3 (Probabilities and prices). This example shows how options allow traders to
place bets of their market predictions; this makes it clear that the cost (initial value)
of the option should be tied to the probability that their prediction comes true. More
generally, the cost of a derivative will depend on the probability distribution (a.k.a. law)
of the underlying, and potentially also of other trading instruments (tradable quantities).

1.3 Lecture 3, Speculation

Notice that Bob, convinced that the price of gold would rise, could have decided to buy
gold instead of binary options. To compare this trading strategy with the binary option,
assume to fix ideas that4 B0 = 37. If Bob invested the $1500B0 = 55500 in gold instead
of in options, he would have bought 55500/58 ∼ 957 grams of gold, and then his final
wealth would be 957 · PT , i.e. his P&L would be 957 · (PT − 58). So, while both P&L’s
are strictly positive if PT ≥ 59, trading options can lead to much bigger gains and losses.
For example, if PT = 59.3 then

P&L options = $94500, P&L gold = $957 · 1.3 = $1244.1,

3In the U.S., every binary option settles at $100 or $0: 100 if the bet is correct, 0 if it is not.
4As value that, as it will become clear later from our remark 8, is entirely reasonable.
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whereas if PT = 57.7 then

P&L options = −$55500, P&L gold = $957 · (−0.3) = −$287.1.

Thus, trading with binary options is a risky move: its purpose is not to hedge away a
risk, but rather to speculate. In fact, binary options are banned by regulators in many
jurisdictions as a form of gambling! This example illustrates how derivatives can be
used to create investments that are riskier than the underlying by ’magnifying’ its price
movements, making it a more effective way of betting on its future prices. This can
be very profitable, but also very risky business, especially considering that trading in
stocks is already quite risky: as Mark Twain splendidly put it in Pudd’nhead Wilson’s
tale (1894):

October. This is one of the peculiarly dangerous months to speculate in
stocks. The others are July, January, September, April, November, May,
March, June, December, August and February.

As an horrific example (among many available) of the dangers of speculation, consider
Barings Bank, which was one of England’s oldest and most prestigious banks. It was
founded in 1762 and collapsed in 1995, after an employee lost $1.4 billion of company
money speculating in futures contracts.

Remark 4 (Derivatives: good or bad?). Many people have very strong views -positive or
negative- on derivatives, for several reasons:

1. derivatives can be used both for hedging and for speculating. While banks which
trade derivatives and hedge their risks provide an important service which benefits
other companies (and ultimately society as a whole), speculators can cause huge
losses to their employers and customers, with disastrous knock-on effect for the
rest of the economy.

2. the derivatives’ market is huge.

3. derivatives are difficult to understand.

As a result, even experts on the topic can have a very wide range of views on deriva-
tives. For example, while the legendary investor Warren Buffett wrote that

[derivatives are] financial weapons of mass destruction [...] time bombs,
both for the parties that deal in them and the economic system,

the Nobel laureate Merton Miller wrote5

Contrary to the widely held perception, derivatives have made the world a
safer place, not a more dangerous one. They have made it possible for firms
and institutions to deal efficiently and cost effectively with risks and hazards
that have plagued them for decades, if not for centuries.

Either way, what is undeniable is that derivatives have played a significant role in finan-
cial markets across the centuries, and that in today’s complex world many institutions
find derivatives essential in managing their varied risks.
5In ’Merton Miller on Derivatives’.
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2 How to price and hedge derivatives in one-period models

2.1 Lecture 4, Pricing by replication

We will often use the word portfolio; by this we mean an investment, normally seen as
a collection of investments in specific assets. For example, I could say that I have £106

in cash, 100 kg of gold and 104 shares of Apple in my portfolio.
Consider a derivative X which gives a payoff XT at one6 time in the future, denoted

by T and called expiry. Assume that T is known at time 0, i.e. it is not random7. The
derivatives payoff is8 a known function of the present and past values of the underlying,
i.e. it is of the form f((Pt)t≤T ). In general, the bank needs to figure out at what price it
’should’ sell the derivative today, i.e. what is its ’correct’ initial value. The case of the
forward contract is conceptually a little more complicated, as by construction the initial
value of the forward contract must be zero; the bank here has to figure out the correct
value of the parameter K such that the forward contract with final value PT −K has
initial value zero; this value of K is called the forward price (of the underlying).

In many cases, the answer can be obtained simply by the following criterion:

Principle 5 (Law of one price). If there are two possible investments which have, under
all possible market outcomes9, the same value at time T , then they must have the same
value also at all previous times.

Later on we will show that, when an answer cannot be obtained by the law of one
price, it can be obtained by a generalisation thereof (the domination principle, or equiv-
alently the no-arbitrage principle). We will also eventually put our principles on a firm
mathematical footing and justify why we should assume them. For now however, we
will content ourselves with assuming the law of one price as self-evident, and concen-
trate on understanding how this principle can be used to price derivatives, using our two
examples.

Consider again example 1: instead of buying the forward contract, easyJet could have
decided to use the following trading strategy: buy the jet fuel today at price $P0, getting
the money to finance this purchase by taking out a loan from a bank. Then at expiry
easyJet would own the jet fuel, which has value $PT , and would owe the bank the amount
$L which was agreed10 when signing the loan of $P0 at time 0; in other words, the final
value of this investment is $PT −L. The value at time 0 was zero, since easyJet did not

6More generally, derivatives (e.g. swaps) can give a whole cashflow, i.e. a sequence of payoffs at multiple
times T1 < . . . , < Tn. However, in discrete-time these derivatives can be seen as a portfolio of n
derivatives, each with payoff at only one time T = T1, . . . , T = Tn. So, once we learn how to price
derivatives which give a payoff at only one time, we can price derivatives with give a payoff at multiple
times.

7We will eventually be able to apply the present pricing theory to options with random (non-
anticipative) expiry T , but for now let us consider the simpler case of non-random T .

8Simply by definition of derivative and of underlying.
9Meaning, no matter what the value of the traded instruments turns out to be, among those values

which are considered possible, i.e. which have a non-zero probability of happening.
10To lend money the bank will charge interest, and so L = P0(1 + r), where r is the interest rate.
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use any of its money to buy the fuel (instead, it borrowed the money, so it has to repay
it at time T ). We can now figure out what should be the value of the forward price K:
it should be L. Indeed, the above investment (borrowing from the bank to buy the jet
fuel) has payoff PT −L and initial price zero. Since the forward contract with parameter
L also has payoff PT − L, then it should, by the law of one price, also have initial price
zero; thus L is the forward price of jet fuel sold at time T . Since the above portfolio has
the same payoff as the forward contract, we say it has replicated the forward contract.
More generally, by the law of one price, if we can find a portfolio which replicates a
derivative, we know that:

Principle 6 (Pricing via replication). At any time t ∈ [0, T ], the derivative’s price must
equal the value of the replicating portfolio.

Of course there can be multiple replicating portfolios, but this leads to no contradic-
tion, since (again by the law of one price) they will all have the same value at any time.
In particular, the above principle implies that there is only one (reasonable) price at
which to trade a replicable derivative

Remark 7 (Hedging = - Replicating). Assume a trader sold a forward contract to easyJet.
Instead of buying a forward contract from Koch industries it could, as described above,
get a loan from a bank and to borrow just enough money to buy the A litres of jet fuel
today at price $P0. She would then have exactly what it takes to fulfil her obligations
from the forward contract, since she could deliver the A litres of jet fuel to easyJet in
exchange for £K, and use those £K to repay her loan. More generally, the trader could
sell a derivative, and use the proceeds from the sale to buy11 a portfolio replicating the
derivative; at maturity his obligations would be exactly matched by the value of his
portfolio, thus covering his risks. This shows that replicating a derivative is the same as
hedging ’minus the derivative’, i.e. hedging having sold (one unit of) the derivative. It is
then common to use interchangeably the terms replicating strategy and hedging strategy :
though to be precise one it the negative of the other, it is always clear what one means.

In finance we say that the trader has gone short (/has shorted/has a short position
in) the derivative if she has sold it, and has gone long12 (/has a long position in) the
derivative if she has bought it; with this language we can say that replicating means
hedging a short position. By the way, in finance lingo to write a derivative means to sell
it (and the writer of a derivatives means the seller).

Flipping around the above situation, a trader who bought the forward contract could
decide to hedge her long position by taking the negative of the above trading strategy,
i.e. selling13 the A litres of jet fuel today at price $P0 and letting the proceeds accrue
interest until maturity.

11He would have just enough money to do that, by principle 6.
12The expression ’has longed’ is not used.
13As we will see later on (when discussing short-selling), the trader can sell the fuel even if she does not

own it, essentially by borrowing it.
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2.2 Lecture 5, Pricing a binary option

Let us now derive how the bank ’should’ price the binary options in example 2. As
mentioned in remark 3, to price a derivative in general we have to first model the
law (probability distribution) of the available trading instruments. Let us assume for
simplicity that in our market we can only:

1. trade gold, or

2. borrow/deposit money from/into a bank.

Also, since we are looking at a very short time span (between 10am and 4pm), let us
assume for simplicity that the interest rate r is zero. We then only have to model the
random behaviour of the price of gold at maturity PT . Say for simplicity that we model
it as a random variable which only takes the two possible values 61 and 56, both with
probability 1

2 . So, we can think of a probability space Ω = {g, b} made of two possible
outcomes (’g’ for good and ’b’ for bad) with probabilities P({g}) = 1

2 = P({b}), and take

PT (ω) =

{
61 if ω = g

56 if ω = b.

The payoff BT = 100 · 1{PT≥59} of the binary option is then

BT (ω) =

{
100 if ω = g

0 if ω = b.

To price the binary option, let us try to replicate it. For added clarify, let us call 10am
’now’ and 4pm time ’maturity’; all values are in $. If we start with wealth V0 = x and
we buy h grams of gold at price P0 = 58 each, then at maturity our wealth will be

VT = V x,h
T = x− h · 58 + h · PT .

This is true even if, to buy h grams of gold, we had to borrow $k from the bank, since
in this case we would deposit $(x+ k− h · 58) in the bank now, and end up at maturity
with $h · PT of gold and a debt of $k to the bank, and thus our final wealth would be

(x+ k − h · 58) + (h · PT − k) = x− h · 58 + h · PT .

By definition, this is a replicating portfolio if its final wealth V x,h
T equals the payoff BT

of the binary option. This leads to the system of equations

{
x+ h · (61− 58) = 100
x+ h · (56− 58) = 0,

(1)

whose unique solution is h = 20, x = 40. Thus, there exists a portfolio which replicates
the binary option: we should start with initial wealth 40 and buy 20 grams of gold. The
initial value x of this portfolios 40, which by principle 6 must then be the price of the
binary option.
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Remark 8 (Replication depends on the model). When discussing example 1 it turned
out not to be necessary to model the law of the underlying, because there exists a
model-independent hedge, i.e. a trading strategy which replicates the forward contract
independently of the model : buying A litres of jet fuel, borrowing the money to do so.
In example 2 instead, the replicating portfolio depends on the model: if we changed 61
to 60, i.e. if we assumed that the PT was given by

PT (ω) =

{
60 if ω = g

56 if ω = b,

then the replicating portfolio would have changed to h = 25, x = 50 (and thus the price
of the binary option would be $50.). Worse yet, if we assumed that PT was modelled as
possibly taking the three values 61, 57, 56, we would have found that the binary option
is not even replicable!
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Week 2
2.3 Lecture 1, Model uncertainty

As remark 11 shows, it is extremely important to work with a market model that accu-
rately describes reality. We will not discuss how to use statistics to do so, and instead
refer the interested reader to [?].

Here is the crux of the problem. To price options we work in a fixed probabilistic
model, e.g. we assumed PT takes values 61 and 56, each with probability 1

2 . This is
a situation where the realised outcomes are unknown, but the possible outcomes are
governed by a probability distribution known at the outset. The famed14 economist
Frank Knight called this the ’known unknown’, i.e. an unknown which is ’a quantity
susceptible of measurement’ (since for example we can calculate expectation, variance
etc of such quantity). Given one such market model, we can find prices of options.

However, in reality, not only we do not know for sure which outcome will be realised:
we do not even know the probability that govern the possible outcomes, so e.g. we could
legitimately have modelled PT as taking15 values 60, 56, or 61, 57, 56, instead of 61, 56.
Thus, choosing a model introduces model risk (a.k.a. model uncertainty, or Knightian
uncertainty, or unknown unknown), i.e. the unquantifiable risk that we have chosen an
inappropriate model. This is the Achille’s heel of option pricing; the 2008 financial crisis
has been blamed on (among other things) the false security created by the over-reliance
on models which ’disregard key factors’, see e.g. the 13/05/2009 Wharton School article
Why Economists Failed to Predict the Financial Crisis, which discusses the Dahlem
Report. Let us now give two examples of how one could consider a more complicated
but more realistic model than done do far.

Remark 9 (Storage Costs). Notice that we are ignoring for the moment the fact that
easyJet, if it chose to replicate the forward contract (instead of buying one) by buying
the fuel and borrowing the required capital, it would have to pay a fee $F to store the
jet fuel for 6 months. If our example substituted jet fuel with shares of a corporation
(which are just contracts, and thus have no storage costs), or with gold (which has
a small storage costs16), this would be perfectly reasonable. In other cases, e.g. when
trading agricultural products (e.g. wheat, milk), it is probably never reasonable to ignore
storage costs. In some cases, items just cannot be stored (at any cost) for more than a
few days: for example flowers, since they wilt quickly. This, and the fact that roses are

14Frank Knight (1885-1972) had 3 students who became Nobel laureates, and was named one of the
’American saints in economics’ by Paul Samuelson (Samuelson, who was the first of many Americans
to win the ’Nobel in Economics’, was considered by the New York Times to be the ’foremost academic
economist of the 20th century’).

15By which we mean that the probability that PT equals any of those values is non-zero, and the
probability that PT equals none of those values is zero; e.g. we say that PT takes values 61, 57, 56 if

P({PT = x}) > 0 for all x ∈ {61, 57, 56}, P({PT /∈ {61, 57, 56}}) = 0.

.
16Essentially the cost keeping it safe from thieves.
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worth double during a very short period (Valentine’s Day), has many consequences, as
illustrated by the very interesting Episode 603: A Rose On Any Other Day of the (highly
recommended!) Planet Money podcast. In other yet cases, like jet fuel or oil, ignoring
storage costs is probably a good first approximation, though of course one always has
to consider the specific market setting. For a remarkable example of how the market
conditions matter, consider the following April 2020 article by the Guardian Oil prices
dip below zero as producers forced to pay to dispose of excess, which details how the
cost of crude oil became negative because of storage issues17.

Remark 10 (Counter-party risk). Suppose easyJet buys the forward contract from Koch
industries, jet fuel prices rise, and at maturity Koch industries is unable to sell jet fuel at
the pre-agreed prices because it has gone bankrupt. Then easyJet’s forward contract is
worthless, and easyJet is decidedly not in the same situation as if had instead bought the
jet fuel to replicate the forward contract. This shows that we have been ignoring counter-
party risk, i.e. the risk that the other party in the trade will not fulfil its obligations. If
we admit that the counter-party can18 default, then the trading strategy we described
is not actually a replicating strategy.

Remark 11 (Choosing the right model). As exemplified by remarks 9 and 10, one has
to choose a model which is appropriate to the specific market one is considering. It is
often not easy to do so, as it can be hard to realise what potential complications a given
model is ignoring! While a model makes some assumptions, and is thus meant to be
applied under specific market conditions, often its predictions will work reasonably well
even if applied to a market which does not quite satisfy those assumptions/conditions:
as George Box19 quipped:

Essentially all models are wrong, but some are useful.

Indeed, the prices which one gets from the no-arbitrage theory work so remarkably well
in practice that the famed economist Stephen Ross said in 1987:

[option pricing theory is] the most successful theory not only in finance,
but in all of economics.

This is one of the main reasons why the derivatives’ market has expanded massively since
the beginning of the development of the no-arbitrage pricing theory (in the 1960’s/1970’s),
and is now huge (about 8 times20 the size the world’s GDP :-o).

17Essentially, as the coronavirus pandemic depressed demand for crude oil way below the rate at which
it was being extracted, and as the world was soon to run out of ways to store crude oil, oil producing
companies became willing to pay to get rid of it (since the alternative was to temporarily close oil
wells, which was more costly).

18i.e. that the event of default has a non-zero probability.
19British-born statistician, lived 1919-2013, he has been called ‘one of the great statistical minds of the

20th century’.
20In 2017 the Global GDP was around $80 trillion in nominal terms, while the notional amount of the

derivatives’s market was about $636 trillion.
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2.4 Lecture 2, What can be used as underlying

Let us now describe which assets21 can be used as an underlying. Historically, derivatives
were based on tangible physical goods22, i.e. on

1. commodities23 (e.g. (semi)-precious metals like zinc or gold, agricultural products
like wheat or milk, crude oil, electricity, bandwidth);

nowadays instead most derivatives are based on financial assets24 (so that, for simplicity,
often people when talking of derivatives call the underlying simply ‘the stock’), e.g.

2. bonds25 (e.g. US Treasury bonds, UK gilts), interest rates,

3. stocks26 (e.g. Amazon (AMZN), HSBC, Alibaba (BABA), Total (TOT)),

4. stock market indices27 (e.g. SP500, NASDAQ)

5. FX28 (exchange) rates (e.g. GBP/EUR, USD/RMB), including cryptocurrencies
(e.g. Bitcoin).

6. other derivatives (e.g. a call option based on a call option, which is itself based on
some other underlying).

An underlying can also be weather-related quantity (e.g. temperature, wind precipita-
tion). However, the no-arbitrage pricing theory which we will develop cannot be applied
to price weather-related quantities, since their underlying is not traded (though of course
it is correlated with things29 which are traded). Worse, as stated in [?, Chapter 1.4],

‘a generally accepted framework for pricing temperature (or in general
weather) derivatives does not exist’.

2.5 Lecture 3, The bank account and the bond

So far we said that our investor can ‘put money in the bank’, and receive an interest.
While this is a conveniently intuitive way to talk about money markets, it is clearly not
how things work in reality: what would it even mean for an investor to ‘put money in
the bank and get an interest’, when the investor is a bank itself? In reality what does

21An asset is a resource with economic value.
22In economics, one calls good anything that satisfies a human want.
23Commodities are a type of goods whose quality may only differ slightly across its many possible

suppliers; typically they are goods used as input in the production of other goods or services.
24i.e. on contracts.
25A bond is a contract that states that money is being borrowed (usually by governments, or large

companies), and it to be repaid later with interest. As the borrower binds itself to repay, this
agreement is called a bond.

26Shares are contracts which represent partial ownership of a company; all the shares of a company
together are called a stock. So, one can say, e.g., one thousand shares of Tesla’s stock.

27Indices are weighted averages of stock prices in a given geographical zone or industrial sector.
28FX=forex=Foreign Exchange.
29E.g. electricity consumption, power generated by wind and solar, agricultural production, etc..
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exist is a money-market, in which one can trade debt instruments, i.e. contracts that
describe how exactly the seller is borrowing money from the buyer and is to later repay
at an interest. There is a whole variety of such contracts, with different names and
characteristics, e.g. bonds (issued by national governments, corporations, municipalities
etc.), debentures, notes, commercial paper, banker’s acceptances, mortgage-backed se-
curities, loans etc. As in this course we are not interested in the details of the money
market, we will from now on simply talk of ‘buying bonds’, in the same simplistic way
as we have talked about ‘putting money in the bank’, and we will always talk of ‘the’
interest rate, and use the following idealised but reasonable-enough representation of the
money-market.

In other words, we will assume that we can invest in a contract, which we will call
‘the bond’ (or ‘the bank account’), whose value Bt at time t is given as follows:

1. B0 = 1, which we can assume w.l.o.g. by normalisation

2. if we work in discrete time: Bt+1 = Bt(1 + Rt), where Rt is the interest rate for
investing in the time period between t and t + 1. Thus Bt = B0Πt−1

s=0(1 + Rs), so
if Rt = r is constant Bt = B0(1 + r)t.

3. if we work in continuous time: B satisfies30 dBt = BtRtdt, where Rt is called the
instantaneous spot rate (a.k.a short rate) at time t. Thus Bt = B0 exp(

∫ t
0 Rsds),

so if Rt = r is constant Bt = B0e
rt.

While sometimes we will model R as a stochastic process (as one should), often we
will simply consider it as a constant, and write Rt(ω) = r. We will not assume that
Rt > 0 (i.e. we allow bonds to decrease in value), since the math does not require it
and it is not always true31. We will however assume that Rt > −1, i.e. bonds always
maintain some32 value.

One should however keep in mind that in reality:

1. there is no such thing as ‘the’ interest rate: there are only many contracts, which
specify how someone will borrow money from someone else during a set time period,
and how she will repay the loan. There are several quantities that one could call
‘interest rate’, some of which are random quantities that changes in time (i.e. a
stochastic process). These quantities also depend on the specific contract, e.g. in
2020 a bond issued by the German government will pay a lower interest rate than
one issued by the Greek one (because lenders take into account the possibility
that the borrower may default on its debt, and thus require a higher interest to
compensate for the increased risk of default)

30This ODE (Ordinary Differential Equation) comes out by rewriting Bt+1 = Bt(1+Rt) as Bt+1−Bt =
BtRt, so that changing the time step from 1 to h > 0 gives Bt+h −Bt = BtRth, and dividing times
h and taking h→ 0 gives the ODE.

31As unintuitive as it may sound, interest rates have actually frequently been slightly negative between
2008 and 2020.

32While in reality governments and corporations can default, they do normally get to pay out at least
a percentage of their debt in any case, so this is a reasonable assumption.
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2. The market for debt is larger than the stock market, so studying money markets
is very important. However, money markets are a complicated subject, so e.g. it is
harder to price bonds and model interest rates than it is to price derivatives based
on stocks and model stock prices.

2.6 Lecture 4, Justification of the law of one price

We have so far treated the law of one price as self-evident. Let us now justify it using
the law of supply and demand33; we do this with the following fictitious example, which
is a simplified version of what derivatives’ trading is like.

Suppose that there are lots of Americans and Europeans living in Little Whinging.
Some Americans want to exchange their $ to AC, and some the Europeans AC to $, but
since they do not know one another, they have to go all the way to a bank in London to
exchange currency. The Europeans can exchange AC to £ using the exchange rate S£

AC = 2

(i.e. AC2 = £1), and £ to $ using the exchange rate S$
£ = 1.5 (i.e. £3 = $2); and the

Americans the converse. Since going to the bank takes effort, an enterprising shop owner
in Little Whinging turns into a trader, as she starts buying and selling to local customers
contracts which state that at 10am tomorrow the buyer of the contract will give the seller
ACx and will receive from the seller $1. Whoever buys or sells this contract to the trader
also has to pay the trader a small fee, which most people prefer to do, rather than having
to go through the trouble of going to the bank. Thus, Europeans start buying (resp.
Americans start selling) contracts from (resp. to) the trader. Ideally the trader sells and
buys exactly the same number of contracts, so that essentially Americans and Europeans
switch their currencies using the trader as an intermediary, and the trader pockets the
small fees. If however the trader ends up selling (resp. buying) more contracts that she
buys (resp. sells), she can go early tomorrow morning to the London bank to buy the
correct amount of $ (resp. AC) to satisfy the remaining obligation that she has to her
customers (i.e she can always hedge her position...as long as x = 3). Suppose that in
a 24h period the exchange rate between AC,£ and $ never changes significantly, and the
interest rate is essentially 0. What value of x should the trader choose?

Well, since she can go to the bank and exchange AC6 into £3 and then these into $2, it
seems very intuitive that she would set x = 3, which is indeed what the law of one price
says; but what if she didn’t?

If she chose x = 2, her sagacious customer Mr. Dursley would buy many (say M) of
these contracts (for a fee so small we can disregard), go to London, borrow £M

2 from the
bank, exchange them for ACM, then use the contracts to get $M2 from the trader, then
go to the London bank and exchange those $M2 to £3M

4 ; this way, Mr. Dursley gets to
repay the loan to the bank, and make £M

4 > 0 (the money made by Mr Dursley is of
course lost by the customers who sell those same contracts to the trader; and by the
trader, if she sells more contracts that she buys). Thus, Mr. Dursley’s investing strategy
has made money starting with no initial capital to invest, and without any risk ; such an
investment is called an arbitrage.

33Which we can use immediately as it is very intuitive; we will explain it in more detail later.
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Now, if the trader kept x = 2, Mr. Dursley could buy an arbitrarily big amount
amount M of contracts etc, and literally create a money pump that makes arbitrary
amounts of money with no risk. However the trader, as Mr. Dursley buys more and
more contracts to the point that the trader is not able to sell all of them, would raise
the value of x, since this would make her customers want to sell more (and buy less)
contracts, thus clearing again her inventory. This way, she is not exposed to the risk of
not being able to hedge the obligations resulting from her growing inventory.

The trader would keep raising the value of x until x = 3, at which point Mr. Dursley’s
clever strategy doesn’t work anymore (and there are no other arbitrage to strategies
either). Analogously, if the trader chose x > 3, the law of demand and supply would
quickly drive down the value of x to 3, at which point there are no more arbitrages.
Thus, x = 3 is the only possible value which results in economic equilibrium; if at any
time x 6= 3, some clever arbitrageur will quickly force x to revert back to 3.

Now, if you substitute:

1. the London bank for the (stock) market,

2. the trader for a bank (whose role here is that of a marker-maker, described later).

3. AC and $ for shares of two different stocks

4. the contract issued by the trader with any derivative based on those two stocks

5. the customers as any companies in need to buy or sell derivatives

6. Mr. Dursley with a bank employee working at the arbitrage trading desk

you essentially reproduced what happens when trading derivatives with two stocks as
underlying.

Remark 12 (Transaction costs and arbitrage). In the above, we have ignored the trans-
action cost incurred by the trader in trading with his customers. In practice, one cannot
ignore these costs, as they may well be higher than the price imbalance detected by the
arbitrageur in the market, in which case there is really no arbitrage!

2.7 Lecture 5, The no-arbitrage principle

The only substantial over-simplification of the above example is that the exchange rates
are known in advance (as we assume they don’t change over the 24h period). In reality,
the value of the underlying is not known in advance, it can only be modelled as a
stochastic process; correspondingly

1. the law of one price needs to be applied to random quantities (not just to deter-
ministic payoffs, as it was in this example), as we already had supposed.

2. an arbitrage should not always make money. Rather, it should be defined as
follows.
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Definition 13 (Arbitrage). An arbitrage is a portfolio (a.k.a. a trading strategy, or an
investing strategy) L that, starting with no initial capital to invest, and without taking
any risk, makes at money sometimes; i.e. an arbitrage is a portfolio L with zero initial
capital and with final value V L

T which satisfies V L
T ≥ 0 a.s., and V L

T > 0 with non-zero
probability (i.e. P(V L

T < 0) = 0, and P(V L
T > 0) > 0).

Nonetheless, this example:

1. conveys the fundamental idea that, if there ever was an arbitrage, the law of
demand and supply would quickly change prices to make it disappear.

2. shows that what is really problematic is the existence of arbitrage, and that if the
law of one price fails, then34 there exists arbitrage.

Thus, whenever we model a market, we should choose a model that not only satisfies
the law of one price, but more generally is arbitrage-free (i.e. admits no arbitrage).
Indeed, an arbitrage is an unrealistic strategy, too good to be allowed to exist: while
in the real world arbitrage fleetingly occurs, some traders (called arbitrageurs) quickly
notice the arbitrage and take advantage of it and drive the prices back to equilibrium.
Thus, we should exclude as non-sensical all models in which there exists an arbitrage.

Example 14 (Binomial model and arbitrage). Let us consider, in the one-period setting,
the model of a market with only one risky asset S (which for simplicity we will call
stock), plus the bond. So, we assume we can only invest at time 0 and receive some
payoff at expiry T (normally one takes T = 1), and we can only invest in a bank account
with interest rate35 r > −1, and one stock whose value36 S0 > 0 is known at time zero
(and it thus represented by a constant), and whose value ST at time T is not known at
time 0, and is thus represented by a random variable. If we now consider specifically
the binomial model, we assume that ST takes only two values, S0u and S0d, with some
probabilities p ∈ (0, 1) and 1− p respectively, where u > d > 0 (u is the up factor, d the
down factor). When is this model arbitrage free?

To answer this question, assume from now on that our initial capital is 0. Then, to
buy 1 share, we have to borrow £S0 from the bank; if we do so, our final wealth is
W := S1−S0(1 + r). If instead we buy h ∈ R shares (in which case we have to borrow37

hS0 from the bank), our wealth is hW . In particular, notice that if h > 0 then h is an
arbitrage⇐⇒ 1 is an arbitrage, since {hW ≥ 0} = {W ≥ 0} and {hW > 0} = {W > 0}.
Analogously, if h < 0 then h is an arbitrage ⇐⇒ −1 is an arbitrage. Notice that h = 0
is never an arbitrage, since its final payoff is identically 0. So, if we are considering a

34We will see that this is true whenever we work in a linear model which admits a numeraire (i.e. essen-
tially always).

35So, by definition, if we lend (/borrow) 1 to (from the bank at time 0, the bank owe us (/we owe the
bank) 1 + r at time T .

36As measured in some currency, which we never specify unless we are dealing with two or more currencies
at the same time

37Of course if h < 0 we are actually short-selling the shares (as discussed later), and correspondingly
depositing −hS0 > 0 in the bank.
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model with only one risky asset, to check whether it has arbitrage or not it is enough to
check whether h = 1 and h = −1 are arbitrages.

Taking h = 1, i.e. buying one share (while borrowing the corresponding amount of
money), is an arbitrage iff d ≥ 1+r, since in this caseW (T ) ≥ 0,W (H) > 0. Analogously
taking h = −1, i.e. selling one share (while depositing the corresponding earnings in the
bank), is an arbitrage iff 1 + r ≥ u since in this case −W (H) ≥ 0,−W (T ) > 0. Finally,
if d < 1 + r < u neither h = 1 nor h = −1 is an arbitrage, since the two corresponding
final wealth W and −W satisfy W (H) > 0 > W (T ) and so −W (H) < 0 < −W (T ), and
so there exists no arbitrage. In conclusion:

the binomial model is arbitrage-free⇐⇒ d < 1 + r < u (2)

2.8 Lecture 6, Dependence of prices on probabilities

To illustrate how prices depend on probabilities, let us revisit the example we considered
in Section 2.2. Thus, consider a model in which Bob can only borrow/deposit money
from/into a bank, with interest rate r = 0, and trade one asset (say gold, or shares of a
corporation), whose price S Bob believes should be modelled as

ST (ω) =

{
61 if ω = ω1

56 if ω 6= ω1,
with P({ω1}) = 2/3.

In this case, Bob would price the binary option C with payoff 100·1{ST≥59} by replication.
To do so, he considers the system of equations{

x+ h · (61− 58) = 100
x+ h · (56− 58) = 0,

whose unique solution is h = 20, x = 40. Thus, C can be replicated starting with an
initial capital x = 40 and buying h = 20 units of the asset. So, the option should be
sold at price 40, and thus Bob would be willing to sell it at any price ≥ 40.

Suppose that I believe instead that P({ω1}) = 99.9%. At what price should I be willing
to sell the binary option? To answer this question, notice that the probability P({ω1})
does not appear in the replication equation; thus h = 20, x = 40 is still a replicating
strategy, and so I also believe that the option should be sold at 40. To understand
why, consider that we are asking that the replication equation V x,h

1 = C1 holds with
probability one. Thus, if the probability P which describes Bob’s beliefs of how market
prices will evolve is replaced by the probability Q which describes my beliefs, as long as
P and Q have the same null sets (sets of probability 0), the replication equation will be
satisfied with probability 1 under P iff it is under Q. Of course, in the above example
one could consider as underlying probability space a set of two points {ω1, ω2}, and then
the empty set is the only null set under P, and also under Q, which thus have the same
null sets. It is thus convenient to introduce a notation: say that two probabilities P,Q
are equivalent, and write P ∼ Q, if they have the same null sets.

Let us now see how prices change when switching to a non-equivalent probability.
For that to happen (without having to assume that ST is equal to a constant with
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probability one), we have to use as underlying probability space something bigger than
Ω2 := {ω1, ω2}: let us use Ω3 := {ω1, ω2, ω3}. Of course, P can be considered as a
probability on Ω3, instead of Ω2, by setting P({ω3}) = 0. Suppose now that Alice
believes that

ST (ω) =


61 if ω = ω1

56 if ω = ω2

55 if ω = ω3

with probability P′({ω}) =


2/3− ε
1/3− ε
2ε,

with ε very small, say ε = 10−9. Clearly P 6∼ P′, since P({ω3}) = 0 < P′({ω3}). To
figure out at what price Alice is willing to sell the option, we cannot just use the law
of one price, since in this setting the option is not replicable. One way to generalise
the procedure of pricing by replication is to assume that Alice is infinitely risk-averse,
i.e. that she does not want to take any risk, and ask at what price she is willing to
sell the option. Clearly, the answer is at any price ≥ u(C), where u(C) is the smallest
super-replication price, i.e.

u(C) := inf{x : ∃h s.t. V x,h
1 ≥ CT }.

To be precise, the super-replication inequality V x,h
1 ≥ CT needs to hold with probability

1, but as long as we model random variables as being defined on the space Ω3, for which
the only set with probability 0 under P′ is the empty one, asking that the complement
of the set {V x,h

1 ≥ CT } is empty is the same as asking that it has probability 0 under P′.
As we will show later on, if C is replicable then u(C) is the same price as we calculated

by replication, so indeed the above procedure generalises what we already know. Thus,
u(C) is the smallest x such that

x+ h · (61− 58) ≥ 100
x+ h · (56− 58) ≥ 0
x+ h · (55− 58) ≥ 0.

(3)

To compute u(C), we can draw the three half planes described by
x+ 3h ≥ 100
x− 2h ≥ 0
x− 3h ≥ 0.

Since their intersection is the wedge between the two lines

x+ 3h = 100, x− 3h = 0,

to the right of their intersection at x = 50, h = 50/3, the smallest x such that (x, h)
belongs to the above three half planes for some h is u(C) = 50. Notice that, since the
model depends on ε, so in principle does u(C), which we could thus denote with uε(C);
however, as the value of ε does not appear in the system eq. (3), so uε(C) = 50 will not
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actually depend on ε...as long as ε > 0. If instead ε = 0, we are back to the case of Bob,
and thus u0(C) = 40.

This shows that the ‘price’ uε(C) changes drastically as soon as ε goes from 0 to any
value > 0. If ε is very small, Alice beliefs are extremely similar to those of Bob, and
yet the price at which she is willing to sell the option is wildly different from that of
Bob. This is not really reasonable, since in reality it is impossible to (super-)replicate
anything with absolute certainty; more generally, the outputs of a good model should
depend continuously on the inputs, since one can never know anything (neither the
‘right’ model, nor the value of the inputs) with absolute precision. Even if this is not
reasonable, that is how no-arbitrage pricing works, so get used to it: it works well enough
in practice, often enough, and that’s what matters. It is good to keep in mind however,
that you should never blindly trust the output of any model.

2.9 Lecture 7, Unspoken modelling assumptions

When considering example 14, on top of the assumptions that there is only one time pe-
riod and only one stock price which can only take two values (of course these assumptions
are ridiculous, but we will improve on these), we made some very common modelling
assumptions, which we will essentially make throughout this course and which, as it is
so often the case, went unnoticed and unchallenged. Let us critically discuss them.

Remark 15 (Information). In all our considerations we assumed that all market partici-
pants have the same information (there are no ‘insiders’); the theory otherwise changes
completely. This assumption is of course blatantly untrue, though it is not too unrea-
sonable to assume that all major financial institutions have mostly the same information
available. A nice example of of how to take advantage of additional information is offered
at the end of the famous 1983 movie Trading Places; for an explanation thereof, one can
listen to Episode 471 of the Planet Money Podcast.

Remark 16 (Linear dependence). We took as h ∈ R the number of shares we purchased,
and we assumed that ‘buying’ h ∈ R shares at time 0 would ‘cost’ us hS0 (i.e. buying
h > 0 would cost hS0 > 0, and selling h > 0 would yield hS0 > 0), and ‘buying’ k ∈ R
bonds would cost us kB0. In other words, we assumed that the portfolio (k, h), which

holds k bonds and h shares, has value V k,h
s := kBs + hSs at time s ∈ {0, 1}.

More generally, when working in discrete-time38, and whatever model for the bond
and shares prices B,S we choose, if the stochastic processes K,H represent the number
of bonds and shares which we hold between time t and time t + 1 (and H is a vector
valued quantity H = (H1, . . . ,Hm), as Hj represents the number of shares in the stock
of type j, whose price is Sj), then we take

V (K,H)
s := KtBs +Ht · Ss, for s = t, t+ 1 (4)

as the value of the portfolio (K,H), where S = (S1, . . . , Sm) are the stock prices and
· is the dot product on Rm. In other words, we normally assume that the dependence

38Eventually we will even see how to generalise eq. (4) to continuous time, and obtain a formula for the

value V
(K,H)
t at time t of the portfolio (K,H).
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(K,H) 7→ V (K,H) is linear. As reasonable as this may sound, as anyone with any
experience modelling knows:

1. if anything behaves linearly, in reality it only does so on first approximation.

2. linear models are infinitely easier to work with than non-linear ones, and are nor-
mally the only models that one can solve. Thus, reasonable or not, that’s really
the only choice we have.

Thus, you should not be so surprised to know that our linearity assumption is not really
satisfied (but it is absolutely needed). In particular, in reality:

1. one can only buy or sell an integer number of shares. This is however not a
problem, since each share is worth very39 little (so, if you are buying 15000 instead
of 15000.1 shares, it really doesn’t make much of a difference).

2. the prices at which a share can be bought and sold (called bid and ask price) are
not quite equal. When (as it if often the case for liquid shares) the difference
between these numbers is small, we can reasonably ignore this detail.

3. the interest rate for lending and borrowing cash are not quite equal. However, for
banks and other (large and reputable enough) investors, the difference between
these numbers is small, so we can reasonably ignore this detail.

4. if buying one share of a stock costs S0, buying a big number h of shares costs
more than hS0, since by the law of demand and supply an increase in buy orders
will trigger an increase in prices, and so the shares we buy later will cost more
than the first ones we buy (correspondingly selling h > 1 shares one makes less
than hS0). More precisely, the above reasoning shows that the cost c(h) of buying
h shares of a given stock is a function whose derivative dc

dh is not constant, but
is instead strictly increasing in h; consequently, the map h 7→ c(h) is not linear,
rather, it is strictly convex. Of course, as long as h is not too big, i.e. if we make
the assumption that our trader is too small a participant in the market to affect
prices by its actions, this effect is also very small and can be ignored (essentially
because we are approximating the cost function c by its tangent at 0).

5. a trader cannot choose to hold whatever amount h of shares she wants, because the
total number of shares is finite and there might be legal or practical complications
in buying too many shares. Analogously, the trader cannot borrow an arbitrarily
large amount of money from the bank. These considerations also do not cause
problems if we assume that our trader only trades ‘little’.

6. buying or selling involves ‘market frictions’ like transaction costs, taxes, the cost
of running the business (paying for employees) etc. These frictions cannot always
be ignored, but considering them normally makes the models non-linear and thus
essentially intractable.

39Normally up to a few thousand £/$/AC each; for financial investors, this is so little that normally shares
are bought in multiples of 100.
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7. we assumed that a trader can sell h > 0 shares which she does not own. This
practice, called short-selling, deserves to be discussed in a separate remark, as we
now do.

Remark 17 (Short-selling). In example 14, if h > 0 the trader uses hS0 units of cash
which she does not own to buy one share and make an arbitrage; this she can do by
borrowing hS0 > 0 from the bank, and returning it with interest at time 1.

Analogously (though maybe less intuitively), if h < 0 the trader can use one share
which she does not own, sell it and with it buys some cash and makes an arbitrage.
Selling a share which you do not own is called short-selling, and (just like with cash),
the above strategy in practice involves borrowing40 the share from a bank or a broker,
selling it, and then at a later time buying it from the market and returning it to the
lender. While in our models we ignore these complications, in reality short-selling is
really quite problematic and does not occur that frequently, since

1. it is really risky, as one has to buy the share at a later time, and while the price
of a share can only go down to 0 (so there is a limit to how much one can lose by
buying shares), it can go up to any arbitrarily high value

2. one has to pay a fee for the privilege of borrowing, making it ever harder and more
risky to make money by short-selling

3. short-selling shares of a company is essentially placing a bet that the company’s
value will decrease, and so the short-seller will try to convince enough people to
emulate his/her strategy, so that by the law of demand and supply the value of
the company’s shares will indeed decrease and perhaps crash. Thus, companies
and even countries hate41 short-sellers, and fight them as they can. In particular,
short-selling is sometimes temporarily out-lawed by a government, or banned by
some trading platforms, especially during financial crisis.

Thus, as long as we assume that we are considering a ‘small trader’, treating short-selling
in a manner that is completely analogous with buying with just a minus sign in front,
and ignoring market-frictions, are the only items listed in remark 16 which are not very
realistic.

It is quite humbling to see how many things can go wrong with our model, despite it
looking quite reasonable, isn’t it?

Remark 18. Some of the above complications can be considered by replacing our linear
model with a linear model with some (additional) linear constraints; these are also nice
and solvable, though they do nonetheless involve some additional complications.

40A few market participants (e.g. market makers) may be allowed to short-sell even shares that they
have not borrowed in advance.

41See e.g. the 23/06/2018 Bloomberg article Why Short Selling Can Make You Rich But Not Popular
and the CBC 19/09/08 article Why they hate short sellers.
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Week 3
2.10 Lecture 1, Prices of liquid and illiquid goods

We have showed how to compute the price of derivatives based on an underlying which
is given a by some (e.g. binomial) model. At this point, the reader might be puzzled
and have some legitimate questions, such as:

1. What determines the price of the underlying ?

2. Why did it make sense to model the price of the underlying (using random vari-
ables)?

To figure out what determines the price of the underlying, we need to talk about the
law of demand and supply, which is what economists normally use to determine prices.
Suppose that the demand and supply of some commodity, say fuel, are equal, so its price
is stable. Suppose then that something causes the demand for fuel to rise (e.g. many
more people buy cars). Then the fuel ‘sellers’ (by which we mean the aggregate of its
whole supply chain: all those who pump oil out of the ground, transport it across the
world, refine it into fuel, and then sell the fuel to car drivers at the gas pump) would
raise the fuel price, since even doing so they’d still be able to sell their supply. The
increase in price would cause some fuel buyers to consume less fuel (e.g. by replacing
car driving with public transport), and some fuel sellers to produce more fuel (e.g. by
opening new oil wells which, due to their geology, cost more to operate and thus only stay
open when oil prices are high enough). This would thus reduce the demand and increase
the supply, and it would keep on happening until demand = supply. The converse would
also happen: if something causes demand for fuel to decrease (e.g. a Covid-induced
lockdown), so that demand becomes lower than supply, then prices would fall, making
the demand rise and lowering the supply until demand = supply again. So, the prices
of commodities, shares and the other assets which we can use as underlying, arise from
the interactions between the different market participants (as described by the law of
demand and supply), and thus we say that they are ‘priced by the market’.

Notice that the law of demand and supply has extremely broad applicability, e.g. you
can apply it to determine the prices of commodities, capital, labour, etc; unfortunately,
it does not lead to solvable, tractable models, other than toys models which are much
too simple and unrealistic to be of value. Thus, the law of demand and supply, while
offering a nice and very general theoretical justification of a pricing mechanism, can only
provide a qualitative description of prices, not a quantitative one. Since we cannot use
the law of demand and supply to build a reasonable model which outputs a stochastic
description of the evolution of prices of commodities, shares etc., we instead model these
prices directly.

While the law of demand and supply is broadly applicable, it cannot be used to
determine price of illiquid (i.e. non-traded) goods. As an extreme example, suppose the
Italian state was in such dire financial straits that it decided to sell the Colosseum. At
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what price should it be sold? Surely we cannot answer such a question by looking at
existing markets to come up with a reasonable price; instead, here one would have to
set up an auction. So, it is important to distinguish between illiquid markets, and liquid
ones; the latter are those in which a good is traded a lot, by many possible market
participants. The law of one price can be used to price liquid goods, but not illiquid
ones.

We will always consider two extreme and idealised situations: markets which are either
(completely) liquid or (completely) illiquid; real markets are of course always somewhere
in the middle. For example, while call options far out of the money (i.e. for which the
strike price K is very different from the initial value S0 of the underlying) are illiquid,
call options at the money (i.e. for which K = S0) are liquid. Between these two extremes,
we have the whole spectrum, so call options near the money (i.e. for which K ≈ S0) are
a bit less liquid than those at the money, and as K gets further and further away from
S0 the corresponding call options become less and less liquid.

Goods that are normally very liquid are financial assets such as bonds, stocks of
major companies (after their IPO42), stock indexes, and FX, which is the largest and
most liquid market of all. Other goods that are normally liquid are stocks in smaller
companies, and commodities. Some derivatives’ market are also liquid: for example,
futures, and near-the-money call and put options, based on (i.e. whose underlying is) a
major currency or a major stock market index.

Good that are quite illiquid are: real estate, luxury items (e.g. antiques, art pieces,
Ferraris), heavy machinery (e.g. industrial equipment, battle tanks) and, most impor-
tantly for us, most derivatives: especially those based on a not very liquid underlying
(like stocks of small companies), or with a expiration date far into the future.

Notice that liquid derivatives, as all liquid goods, are priced by the market via the law
of demand and supply (and thus their prices should be modelled). Traders don’t need to
figure out at what price to sell liquid derivatives, nor any liquid goods: the market does
it for them. Instead, option pricing deals with how to price illiquid derivatives based
on a liquid underlying, using the law of one price and its generalisation (the Domina-
tion Principle, i.e. the no-arbitrage principle). This uses a different pricing mechanism,
which has a much narrower field of applicability, but which allows to consider, and deal
with, complicated models and obtain useful quantitative results from them (sometimes
analytically, sometimes just numerically).

2.11 Lecture 2, Modelling the underlying, not the derivative.

While traders can observe in the market the present-time value of liquid goods, they
don’t know how market forces will shape their future prices. However, simple observa-
tion about their historical behaviour teaches them that prices vary in an unpredictable,
wildly erratic manner: for example, here a chart of coffee prices: Though this differs
so drastically from the smooth dependence that one normally encounters in classical
physics, this behaviour is to be expected: it is the reason why traders cannot be sure

42IPO=Initial Public offering; before the IPO, there is no market for a stock.
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Figure 1: Image courtesy of Macrotrends

of what is the best way to invest, and thus choose to ‘insure’ themselves against price
uncertainty by hedging away the risk of losses using derivatives. Indeed, if prices were
differentiable in time, it would be extremely easy to choose how to invest, since the
behaviour of prices in the recent past would be a near perfect approximation of their
behaviour in the near future, so one would simply have to invest in the stock that had
the best performance in the recent past!

Moreover, this erratic behaviour could perhaps be expected from the law of demand
and supply. Indeed, at any time an order is issued, prices will jump, because of the
sudden imbalance between supply and demand; if we consider a market where some
orders are large, then the corresponding jumps in prices will be big, and we are forced
to model these prices using a stochastic process with jumps. Suppose instead that the
market for some good is made of frequent43 small transactions (e.g. if we assume that
all traders are ‘small’). Then its price will move by lots of little jumps, which from
a macroscopic point of view can be looked at as a path which is continuous, but is
very jagged and oscillates wildly. Thus, in this (continuous-time) setting it makes sense
to model price with a stochastic process whose paths are continuous, but very rough
(e.g. not of finite variation). This in turn creates some mathematical difficulties, which
have been solved by the development of the (hard!) theory of stochastic integration,
which considers measures which have values in the space L0(P) of all random variables
on a given probability space (instead of in R), or a subspace thereof.

To all of us living in the 21st century, as we have all been exposed to the rudiments of
probability theory, it seems pretty obvious that a quantity whose future behaviour is not
known should be modelled mathematically as a stochastic process, i.e. random variable
that changes over time (more precisely, a family Y = (Yt)t∈[0,T ] of random variables
Yt = Yt(ω), parametrised by time t ∈ [0, T ]). But as probability theory burst on the
scene very late44, it is absolutely remarkable that in 1900 the French mathematician and
former stock trader Louis Bachelier, in his PhD thesis, proposed to model stock prices
as a stochastic process (Brownian Motion W = (Wt)t≥0) which he ‘invented’ (beating

43If the market for a good is liquid, transactions will be frequent.
44The definition of probability space, due to A. Kolmogorov, only appeared in 1933.
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Einstein to the punch by 5 years), and whose paths (i.e. the functions t 7→Wt(ω)) display
exactly the type of erratic behaviour expected of prices.

Though Bachelier realised that, as Brownian Motion took also negative values, it
did not make perfect sense to use it to model stock prices, it was only half a century
later that Paul Samuelson, after being introduced to Bachelier’s work (which, having
been way ahead of its time, had been ignored and forgotten, until the statistician Jimmy
Savage discovered it and advertised it in the 1950’), decided to consider instead Brownian
Motion on an exponential scale, i.e. to model the stock price as St = exp(σWt+ct) (here
σ, c > 0 are constants). This is the celebrated model named after Black and Scholes,
who managed to compute the price of a call option in such model; Scholes and Merton
won the Nobel prize in 1997 (Black having already died) for this and related work. We
refer to [?] for more historical information on the topic.

While the Black and Scholes model has several shortcomings, it remains the benchmark
model against which to compare. Bachelier’s idea to treat stock prices as a ‘known
unknown’, i.e. to model their price as a stochastic process, stands today. Traders select
a family of processes (P λ)λ, which depends on some parameter45 λ whose value is to
be chosen via statistical considerations, to make the corresponding model best fit the
observed behaviour of the market. Thus, once the parameter λ = λ∗ has been chosen,
they describe the prices of a given liquid good with a stochastic process P := P λ∗ =
(Y λ∗
t )t∈[0,T ]. The price at time t is given by the random variable Pt, whose value becomes

known46 at time t. In particular, the price P0 of a liquidly traded good is known already
at time 0, i.e. it is deterministic (i.e. it is a constant ‘random’ variable).

2.12 Lecture 3, Discounting and Numeraire

We now introduce a useful accounting practice, named discounting. As the saying goes,

a dollar today is worth more than a dollar tomorrow.

In other words, normally one unit of currency (hereafter we consider $, to fix ideas)
decreases in value, if we measure value by the amount of (most) goods one $ can buy, so
e.g. 100 years ago $1 was worth about 13 of today’s $ (see US inflation calculator). This
is due to the fact that normally people are only willing to take the risk (and the loss of
opportunity) that comes with lending money if they are to receive back their loan with
interest; historically this has almost47 always been true.

Thus, when comparing values across times, it make little sense to use currency (e.g. $,
£, AC, . . . ) as a unit of measure. Rather, one should use the value B of ‘the bond’; in
other words, instead of looking at the value Wt of something in $, we should instead
consider the value

W t := Wt/Bt

45The parameter can be a real number, a vector, a function, or even a stochastic process.
46We will develop the mathematics to make sense of this
47There have been some (few) exceptions, e.g., since the 2008 financial crisis central banks often kept

interest rates slightly negative; in medieval times Cristians were prohibited from lending money at
an interest by the (Roman Catholic) church, etc.
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in units of B. Often people call W the price in nominal terms, and W the price in real
terms (since it better reflects how many things how can buy with that value), or the
value of W adjusted for inflation, or the present48 value of W . We will normally work
in discounted terms determine V t; if we ever need to compute the value Vt in in $, we
can then simply multiply times B, since Vt = V tBt.

Consider from the moment the one-period linear model of eq. (4), i.e. given constants
B0 = 1, B1 = B0(1 + r) > 0, r > −1, S0 ∈ Rm and the random vector S1 ∈ Rm, consider

the portfolio (k, h) with value V k,h
s := kBs + h · Ss at time s ∈ {0, 1}. Since the initial

capital is a quantity more of interest than the investment in bonds, we will normally
change variables, and describe the portfolio as (x, h), where x = k + S0h is the initial
capital and hj the number of shares of stock Sj (where j = 1, . . . ,m). The value of
(x, h) is

V x,h
0 := x, V x,h

1 := x(1 + r) + h · (S1 − S0(1 + r)), (x, h) ∈ R× Rm. (5)

Since V
x,h
t = V x,h

t /Bt we find that V
x,h
0 = V x,h

0 = x, and the formula eq. (5) for the
value of a portfolio in our linear model, when expressed in discounted terms becomes

V
x,h
1 =

1

1 + r
(x(1 + r) + h · (S1 − S0(1 + r))) = x+ h ·

(
S1

1 + r
− S0

)
,

and so in summary

V
x,h
t = x+ h · (St − S0), t = 0, 1. (6)

Remark 19. Working in discounted terms is certainly an intuitive way to describe values;
it also has several additional advantages:

1. Since Bt = 1, when working in discounted terms the interest rate r is always
0; conversely, if the interest rate is zero then values in nominal and real terms
coincide, so even if we were working with nominal values, we could pretend that
were working with real values. In other words, discounting can be seen as an
accounting trick which allows us to assume w.l.o.g. that r = 0. This be can useful
and it can simplify proofs and calculations.

2. The full usefulness of discounting will only become clear in the multi-period (and
in the continuous-time) settings, where it will allow us to automatically take care
of the self-financing condition.

3. In discounted terms, the gains from trade between times 0 and t are given by

V
x,h
t − V

x,h
0 = h · (St − S0); (7)

48It is called present value because to replicate the amount $x at a future time T , one could simply
deposit x̄ := x/BT in the bank at time 0 (time 0 being though of as ‘the present’). So, x̄ represents
the value at time 0 of receiving x at time T
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it is important that this expression involves multiplying the increment of something
(the discounted price S) times something else (the trading strategy h). Indeed,
in the continuous-time setting we will have look at the gains in the infinitesimal
interval between t and t+ ε as ε ↓ 0, and the above expression will become

dV
x,H
t = Ht · dSt, or equivalently V

x,H
s − V x,H

0 =

∫ s

0
Ht · dSt,

and so we will be able to express the quantity of interest (the discounted value V
H

of the portfolio H, and thus also its nominal value V H = BV
H

) in some way (by
integrating49 with respect to S). It is not clear how we could have generalised to

the continuous-time setting the expression eq. (5) for the nominal value V x,h
t .

More generally, if V L if the value in $ of some portfolio L s.t. V L > 0, if something
has value Wt in $, we can express its value as Wt/V

L
t at time t in units of V L. This

motivates the following definition.

Definition 20 (Numeraire). A numeraire is a portfolio L which has a strictly positive
value a.s. and at all times, i.e. s.t. V L

t > 0 a.s. for all t.

Since in our linear model we assumed that the interest rate satisfies Rt > −1, the
bond is a numeraire. In theory an investment in shares of a specific company cannot be
a numeraire, since any company has a non-zero probability of going bankrupt at some
point; whereas an investment in gold or50 in a51 major currency can be considered as a
numeraire. In practice however, one normally works with models where the stock price
is assumed to be strictly positive, and one can then use it a numeraire.

Remark 21. While we normally use the bond as a numeraire, it can be useful to consider
other numeraires. This is most intuitive when one is considering a problem that involves
multiples currencies, in which ‘the bond’ is replaced by multiple bonds (one for each
currency), whose interest rates are different and whose ratio changes over time (and
is random); in this setting it would make sense for an American investor to use ‘the
US bond’ as a numeraire, and for a British investor to use ‘the UK bond’ instead.
Moreover, often choosing an appropriate numeraire can simplify the calculations. It
can also reduce the calculations of the price of a derivative to those for the price of a
different derivative. E.g. using the asset S1 as numeraire, the derivative with payoff
S1
T f(ST ) (where S = (S1, . . . , Sm)) will have discounted payoff f(ST ), of which we can

try to find the value by working in the discounted market (B̃, S̃), where X̃ := X/S1.
Analogously, when considering the bond as numeraire and the derivative with payoff

49Here
∫ s

0
Ht · dSt is not the usual Lebesgue-Stieltjes integral, but a more complicated object, called

(vector) stochastic integral.
50For a long time, when the world was on the gold standard, the value of the £ (and later of $ etc) was

defined using the value of gold, i.e the price of gold in £ was constant in time; in that word, using £
as a numeraire was the same as using gold (up to a constant).

51While even major currencies can cease to exist (e.g. Deutsche mark), they do not do that suddenly,
so one can change its investment into another currency and thus keep having a positive value.
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BT f(ST ), we end up with the discounted payoff f(ST ), of which we can try to find the
value by working in the discounted market (B,S), where X := X/B. Thus, by changing
market (from (B̃, S̃) to (B,S)), one can reduce the calculation of the price of the first
derivative to the price of the second derivative, in the sense that one has to deal with
the same discounted payoff f(ST ) in both cases.

Remark 22. Clearly which numeraire we use to perform the calculations will not change
the properties of our models, so e.g. whether a strategy is an arbitrage, or a derivative
is replicable, does not depend on the numeraire used for calculations; the arbitrage-
free prices of a derivative can be calculated using any numeraire and then converted to
another, etc..

2.13 Lecture 4, Finite Probability Spaces

Given a finite set Ω = {ωi : i = 1, . . . , n}, we can consider the σ-algebra A of its parts
(i.e. the family all its subsets A := {A|A ⊆ Ω}), and endow (Ω,A) with some probability
P. W.l.o.g. we can (and will) assume that P({ωi}) > 0 for all i = 1, . . . , n, since otherwise
we can simply remove from the space Ω all such points as they are irrelevant, i.e. we
can replace Ω with Ω′ := {ωi ∈ Ω : P({ωi}) > 0} and A with A′ := {A|A ⊆ Ω′},
and P with its restriction P′ to A′. We will call a triple (Ω,A,P) as above a finite
probability space. When working with it, we will use the very convenient practice of
representing a random variableX on Ω by the vector x = (xi)i ∈ Rn whose ith component
is xi = X(ωi). Analogously, we will represent the random vector X = (Xj)mj=1 with the

matrix x = (xi,j)i,j given by xi,j := Xj(ωi) (here i enumerates the rows and j the
columns, so that a random variable is represented by a column vector). Analogously a
measure52 P on (Ω,A) will be represented by the arbitrary vector p = (pi)i ∈ Rn through
the following identification

pi = P(ωi) := P({ωi}) P(A) =
∑
i:ωi∈A

pi, for all A ⊆ Ω

and P is a probability (i.e. a positive measure of norm53 1) iff p is a positive vector
(i.e. p ∈ Rn+) such that

∑
i p1 = 1. Keeping the above identifications in mind, instead

of pedantically distinguishing between X and x, P and p, we will normally simply write
X to mean x, and P to mean p; whether X (resp. P) should be considered as a random
variable (resp. a probability) or a vector will become clear from the context.

Thanks to our assumption of linearity, if we work in a finite probability space, all
pricing and hedging problems in our model of eq. (5) are reduced to questions about
systems of finitely-many linear equalities and inequalities (from an algebraic point of
view), i.e. questions about finite-dimensional vector spaces and polyhedra54 (from a

52i.e. a function P : A → R which is σ-additive, i.e. s.t. P(∪nAn) =
∑

n P(An) for every sequence of
disjoint sets An ∈ A, n ∈ N.

53Using the total variation norm.
54By definition, polyhedra are finite intersections of half-spaces; this corresponds to systems of linear

inequalities, since one linear inequality a · x ≤ b with a, x ∈ Rn, b ∈ R defines the half-space {x :
a · x ≤ b}.
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geometric point of view). Thus, we will often consider a finite market, i.e. a market
model based on a finite probability space.

Remark 23. If our model (B,S), with S = (S1, . . . , Sm), on a finite Ω = {ωk}nk=1 is such
that there exists i, j ∈ {1, . . . , n}, i 6= j s.t. S1(ωi) = S1(ωj), then (Bt, St)(ωi) =
(Bt, St)(ωj) for all t = 0, 1 (since B0, B1, S0 are constants), i.e. our model cannot
distinguish between the two points ωi 6= ωj . In this case, we can throw away one
of those points, say ωj , i.e. build our model on the smaller probability space Ω′ :=
{ωk}k∈{1,...,n},k 6=j , on which we consider the σ-algebra A′ of its parts, and the probabil-
ity

P′(ωk) :=

{
P(ωk) if k 6= i

P(ωi) + P(ωj) if k = i .

Thus, we can and will assume w.l.o.g. that the probability space is chosen so that, given
any two distinct points ωi 6= ωj in it, we have S1(ωi) 6= S1(ωj) (i.e. Sk1 (ωi) 6= Sk1 (ωj) for
some k = 1, . . . ,m). Thanks to this assumption, any random variable on our probability
space is55 a function of S1, i.e. any random variable is the payoff of a derivative.

Remark 24. We remark that in one-period models (and more generally in finite discrete
time models, i.e. models with time index {0, 1, . . . , T} for some T ∈ N, T ≥ 1), every
complete model can56 be built on a finite probability space. Since we are most interested
in complete models, it is not much of a limitation to assume that we are working on a
finite probability space (when working in finite discrete time models). As these allow
also to consider incomplete models, and they allow to simplify the required probability
theory (by making not reliant on measure theory), we choose to work in this setting.

If instead we consider a general probability space (Ω,A,P), we will have to work
with the set L0(P) of random variables (on such space), and the set of probabilities on
(Ω,A). Here L0(P), and the set of measures, are infinite dimensional vector spaces with
some topology. Since studying these objects is a lot more complicated from a technical
point of view (in particular it requires a good knowledge of functional analysis), we will
often prove theorems only under the additional (unnecessary, but strongly simplifying)
assumption that the probability space is finite.

2.14 Lecture 5, How to find arbitrage

So, let us consider our usual linear model for a market (B,S), where S = (S1, . . . , Sm),
on a the finite probability space Ω = {ωi : i = 1, . . . , n}, and let us see how we can
discover there is an arbitrage, and how to find one, relying not on intuition (which only
works for simple problems) but on linear algebra. We will follow the good practices

55Indeed, since S1 is (injective and thus) invertible, given any X1 there exists f s.t. X1 = f(S1): just
define f := X1 ◦S−1

1 , i.e. take f := Im(S1)→ R given by f(sk) := X1(ωk) on the point sk := S1(ωk).
56Indeed, in the market (B,S1, . . . , Sm) the replication equation has m+1 unknowns, and so if it always

has a solution this means that the vector (B,S1, . . . , Sm) takes at most m+ 1 values, and so we can
assume w.l.o.g. that it is defined on a set made of m + 1 points. For a more formal proof see [?,
Corollary 1.42].
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of working in discounted terms, and of using vector notation for representing random
variables and probabilities.

Expressed in the language of random variables, the trading strategy (x, h) ∈ R× Rm

is an arbitrage if x = 0 and V
0,h
1 s.t. V

0,h
1 ≥ 0 a.s. and V

0,h
1 is not a.s. = 0, i.e.

P(V
0,h
1 ≥ 0) = 1 and P(V

0,h
1 = 0) < 1,

or equivalently

P(V
0,h
1 < 0) = 0 and P(V

0,h
1 > 0) > 0.

Since x always has to be 0, we often more simply say that ‘h is an arbitrage’. Identifying
random variables with vectors we find that, in the language of linear algebra, h is an

arbitrage if the vector wh ∈ Rn, corresponding to the random variable V
0,h
1 = h · (S1 −

S0), satisfies whi ≥ 0 for all i, and wh 6= 0 (i.e. whi ≥ 0 for some i). Thus, if we

finally really start identifying random variables as vectors and just write that S
j
1 − S

j
0

is ((S
j
1 − S

j
0)(ωi))

n
i=1 (where, to be pedantic, instead of ‘is’ we should say ‘is identified

with’), if we denote with W the vector space of discounted payoffs replicable at cost 0,
i.e.

W := {
m∑
j=1

hj(S
j
1 − S

j
0) : h ∈ Rm} = span

{
(S

j
1 − S

j
0)mj=1

}
, (8)

then we find that

the set of all arbitrage payoffs is W ∩ (Rn+ \ {0}); (9)

so, there is no arbitrage iff the set W ∩Rn+ (which always contains the origin 0, since W
is a vector space) contains only the origin (i.e. W ∩ Rn+ = {0}). Accidentally, we notice
that the set of discounted payoffs replicable at cost x is x + W := {x + w : w ∈ W},
since V

x,h
1 = x+ V

0,h
1 .

2.15 Lecture 6, The Fourier-Motzkin algorithm

As we saw above, it is important to be able to compute the setW∩Rn+, and to determine if
it contains just the origin. Since any vector space can be described as the set of solutions
of a system of linear equalities, any vector space is a polyhedron. Since obviously the
intersection of two polyhedra is a polyhedron, W ∩ Rn+ is a polyhedron. Thus, to be
able to figure out if a finite market has arbitrage, we need a method to find out if a
polyhedron is empty or not.

Given a system of linear equalities, one way to find its solutions it to eliminate the
variables one by one; the FM (Fourier-Motzkin) elimination algorithm generalises this
procedure to solve a system of linear inequalities. We will now introduce the FM algo-
rithm, and see how it can be used to explicitly calculate which points belong to a given
polyhedron; in the next sections, we will see how to apply it to determine if a market
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is arbitrage-free, to find the arbitrage-free prices of a derivative, and more generally to
solve LPs.

For pedagogical reasons, let us first consider the simpler case of linear equalities,
already familiar to all students. Given x ∈ Rn, b ∈ Rm and a m× n matrix A with rows
a1, . . . , am, to solve the system Ax = b, we write x = (y, z) with y := (x1, . . . , xn−1) ∈
Rn−1, z := xn ∈ R, so that ai ·x = ci · y+ diz for some ci ∈ Rn−1, di ∈ R, and we rewrite
each equation

ci · y + diz = bi, i = 1, . . .m

in the form z = ei · y + f i (if di 6= 0), or in the form 0 = ei · y + f i (if di = 0), for some
ei ∈ Rn−1, f i ∈ R, to find the equivalent57 system{

z = ei · y + f i for i ∈ I 6= := {i : di 6= 0}
0 = ei · y + f i for i ∈ I= := {i : di = 0}

(10)

where I6=, I= are two disjoint subsets whose union is {1, . . . ,m}. Notice that I6= = ∅
iff the last system, or equivalently the system Ax = b, does not actually involve the
variable z; in this case, to find all and only the solutions (y, z) of eq. (10), we just take
any y which solves the system 0 = ei · y+ f i, i ∈ I= (which involves one fewer variable),
and any z ∈ R. If instead I6= 6= ∅, fix arbitrarily i∗ ∈ I 6=, then all and only the solutions
(y, z) of eq. (10) are found by taking a solution y of the system{

ei · y + f i = ej · y + f j for i, j ∈ I 6=
0 = ei · y + f i for i ∈ I=,

(11)

which involves one fewer variable, and taking z := ei
∗ · y + f i

∗
; in particular, eq. (11)

has no solution iff so does Ax = b.
Iterating this procedure yields a sequence of linear systems Aixi = bi, i = n, n −

1, . . . , 1, where the ith system has variables xi := (x1, . . . , xi), starting from Ax =
Anxn = bn = b and deleting the last variable, one at the time, until we get to the
system A1x1 = b1 in the only variable x1 = x1 ∈ R, which is thus trivial to solve. Then
A1x1 = b1 has no solution iff so does Ax = b, and since we can use the solutions of
Aixi = bi to construct the solutions of Ai+1xi+1 = bi+1, we can, by iteration, construct
all the solutions of Ax = b from the solutions of A1x1 = b1.

Example 25. To solve the system{
2x + 3y + 0z = 6

x + 3y + 0z = 1
(12)

we isolate the z variable and rewrite it as{
2x + 3y = 6

x + 3y = 1
(13)

57To systems of linear equalities/inequalities are said to be equivalent if they have the same set of
solutions (possibly empty).
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which has one fewer variable. We then isolate the y variable and rewrite the latter as{
y = 2− 2

3x

y = 1
3 −

1
3x

(14)

This leads to the ‘system’ of one equation 2 − 2
3x = 1

3 −
1
3x, whose unique solution is

x = 5. Thus taking y = 2 − 2
3x (or equivalently y = 1

3 −
1
3x) gives y = −4

3 , and so
x = 5, y = −4

3 solves eq. (13), and (x, y, z) is a solution of eq. (12) iff x = 5, y = −4
3 (z

can be chosen arbitrarily).

Remark 26. Notice how we could have chosen, in eq. (13), to eliminate x instead of y.
This would have been a better idea, since the resulting system{

x = 3− 3
2y

x = 1− 3y
(15)

has fewer fractions, and thus leads to quicker calculations. Since the system here was
very simple this hardly made any difference, but for systems with many variables and/or
many equations choosing properly which variable to eliminate can make a real difference
(when performing calculations by hand).

Let us now generalise the above procedure to the case of a system of linear inequalities,
which clearly can be always be written as Ax ≥ b. Like before, we write x = (y, z) with
y := (x1, . . . , xn−1), z := xn, so that ai · x = ci · y + diz, and we rewrite each inequality

ci · y + diz ≥ bi, i = 1, . . .m

in the form z ≥ ei · y + f i (if di > 0), or in the form z ≤ ei · y + f i (if di < 0), or in the
form 0 ≥ ei · y+ f i (if di = 0), for some ei ∈ Rn−1, f i ∈ R, to find the equivalent system

z ≥ ei · y + f i for i ∈ I> := {i : di > 0}
z ≤ ei · y + f i for i ∈ I< := {i : di < 0}
0 ≥ ei · y + f i for i ∈ I= := {i : di = 0}

(16)

where I<, I>, I= are disjoint sets whose union is {1, . . . ,m}. Notice that I< ∪ I> = ∅ iff
the last system, or equivalently the system Ax ≥ b, does not involve the variable z; in
this case, all and only the solutions of eq. (16) are found taking y as a solution to the
system 0 ≥ ei · y + f i, i ∈ I=, which has one fewer variable, and taking arbitrary z ∈ R.

Let us now consider the case I< ∪ I> 6= ∅. If I> = ∅ then I< 6= ∅, and all and
only the solutions x = (y, z) of eq. (16) are found by taking a solution y of the system
0 ≥ di + fi · y, i ∈ I= if I= 6= ∅ (if I= = ∅ then just take any y ∈ Rn−1), and taking any
z ≤ mini∈I< di + fi · y.

Analogously if I< = ∅ then I> 6= ∅, and we take any y solving 0 ≥ di + fi · y, i ∈ I=

if I= 6= ∅ (if I= = ∅ then just take any y ∈ Rn−1), and any z ≥ maxi∈I> di + fi · y, and
find all and only the solutions of eq. (16).
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In the more interesting case where I>, I< are both not empty, all and only solutions
x = (y, z) of eq. (16) are obviously obtained like this: take a solution y of the system{

ei · y + f i ≥ ej · y + f j for i ∈ I<, j ∈ I>
0 ≥ ei · y + f i for i ∈ I=,

(17)

which involves one fewer variable, and then choose any

z ∈ [max
j∈I>

ej · y + f j ,min
i∈I<

ei · y + f i]; (18)

notice that there exists at least one such z if and only if eq. (17) has solution, and so
eq. (16) has a solution iff eq. (17) does. Notice also that, if taking into account the usual
conventions that sup ∅ := −∞, inf ∅ :=∞ (and replacing max,min with sup, inf), when
I> = ∅ (resp. I< = ∅) we have that eq. (18) turns into z ≤ mini∈I< di + fi · y (resp.
z ≥ maxi∈I> di + fi · y), and in particular if I< ∪ I> = ∅ eq. (18) turns into z ∈ R; so,
with these conventions, no matter whether I<, I> are empty or not, (y, z) solves eq. (16)
iff y solves eq. (17) and z solves eq. (18).

Iterating this procedure shows that the FM algorithm yields a sequence of linear
systems of inequalities Aixi ≥ bi, i = n, n− 1, . . . , 1, where the ith system has variables
xi := (x1, . . . , xi), starting from Ax = Anxn ≥ bn = b and deleting the last variable, one
at the time, until we get to the system A1x1 ≥ b1 in the only variable x1 = x1 ∈ R, which
is thus trivial to solve. Then A1x1 ≥ b1 has no solution iff so does Ax ≥ b, and since we
can use the solutions of Aixi ≥ bi to construct the solutions of Ai+1xi+1 ≥ bi+1, we can,
by iteration, construct all the solutions of Ax ≥ b from the solutions of A1x1 ≥ b1.

Example 27. Let us illustrate the use of the FM algorithm. Consider the system
x1 + x2 + 2x3 ≥ 2

x1 + x2 ≥ 1

x1 − 4x3 ≥ 4

2x1 + 3x3 ≥ 3

2x1 − x2 + x3 ≤ −5

We first rewrite it as the equivalent system

x3 ≥ 1− 1
2x1 − 1

2x2

x3 ≥ 1− 2
3x1

x3 ≤ −1 + 1
4x1

x3 ≤ −5− 2x1 + x2

0 ≥ 1− x1 − x2

(19)

where notice that, when necessary, we have changed the order in which the inequalities
appear, so as to have first the inequalities of the form x3 ≥ f(x1, x2), then of the form
x3 ≤ f(x1, x2), and then of the form 0 ≥ f(x1, x2).
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From this last system, we build the system in only two variables

−1 + 1
4x1 ≥ 1− 1

2x1 − 1
2x2

−1 + 1
4x1 ≥ 1− 2

3x1

−5− 2x1 + x2 ≥ 1− 1
2x1 − 1

2x2

−5− 2x1 + x2 ≥ 1− 2
3x1

0 ≥ 1− x1 − x2

We now rewrite this system as 

x2 ≥ 4− 3
2x1

x2 ≥ 4 + x1

x2 ≥ 6 + 4
3x1

x2 ≥ 1− x1

0 ≥ 2− 11
12x1

(20)

This leads to the ‘system’ of one inequality 0 ≥ 2− 11
12x1, whose solution is any x1 ≥ 24

11 .
Since this has solution, the original system has some solutions: let us find them all.
Taking any x1 ≥ 24

11 , and then any

x2 ≥ max
(

4− 3

2
x1, 4 + x1, 6 +

4

3
x1, 1− x1

)
, (21)

gives all solutions of eq. (20). For each such solution, taking any

x3 ∈ [max
(

1− 1

2
x1 −

1

2
x2, 1−

2

3
x1

)
,min

(
− 1 +

1

4
x1,−5− 2x1 + x2

)
] (22)

gives all solutions of eq. (19), i.e. of the system we started with. To illustrate further, if
we were to specifically identify (any) one solution (x1, x2, x3) of eq. (19) (e.g. to explicitly
prove that it has a solution), we can choose x1 = 3 (since 3 ≥ 24

11), and then x2 = 10
(since it satisfies eq. (21) with x1 = 3), and then x3 = −1 (since it satisfies eq. (22)
x1 = 3, x2 = 10). Notice that, once chosen x1 = 3, x2 = 10, the only choice for
x3 is x3 = −1; but that for other values of x1, x2 we could find other values of x3

(e.g. x1 = 3, x2 = 20, x3 = −1/2 also solves eq. (19)).

Remark 28. Unless the set of solutions of the system of linear inequalities is unique, the
FM algorithm (unlike the simplex algorithm) does not provide a convenient description
of it.

Remark 29. Since eliminating variables corresponds to computing projections, the Fourier-
Motzkin algorithm can be interpreted in a geometrical way, as follows. Consider P ⊆
Rk+m, and write Rk+m

x = Rky × Rmz to indicate that we look at x ∈ Rk+m as the couple

(y, z) ∈ Rk × Rm. Then the projection of P onto Rky is defined as being the image of P

via the map πy(y, z) := y, defined on Rky × Rmz , i.e. the set

πy(P ) := {πy(x) : x ∈ P} = {y ∈ Rk : ∃z ∈ Rm s.t. (y, z) ∈ P}.
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Notice that P is empty iff πy(P ) is empty. If k ≤ n, let πnk : Rn → Rk be the projection
of a vector of n coordinates onto the first k coordinates, i.e. πnk (x) = (x1, . . . , xk) for
x = (x1, . . . , xn) ∈ Rn.

So, what each iteration of the FM algorithm does is to compute the projection
πnn−1(P ) = πy(P ) of a polyhedron P ⊆ Rn = Rn−1

y × Rz on the58 subspace Rn−1
y ,

and shows that πnn−1(P ) is itself a polyhedron, by explicitly computing a representation
of πnn−1(P ) as a system of linear inequalities. Notice that

πnk = πk+1
k ◦ πk+2

k+1 ◦ . . . ◦ π
n
n−1,

i.e. the elimination of the last n − k variables can be achieved by eliminating the last
variable n − k times; so, iterating n − k ∈ {1, . . . , n − 1} steps of the FM algorithm
computes πnk (P ), and shows that it is a polyhedron.

Remark 30. The FM algorithm is one of the oldest methods for solving systems of
linear inequalities. It is not very practical, because it requires a large number of steps:
each time we eliminate a variable, we find a system which has potentially many more
inequalities. The number of inequalities can increase fast with the number of iterations,
essentially making it impossible to use this algorithm to find solutions to systems of
inequalities with many variables.

For this and other reasons, normally textbooks use a different algorithm (the simplex
algorithm) to solve such problems, and develop all the relative theory; this is surely the
best course of action when one has a whole book to devote to the topic of LP (linear
optimisation problems). For our limited purposes however, it is definitely better to use
the Fourier-Motzkin algorithm: while it is much slower when dealing with LPs involving
many variables and constraints, and it gives us a more limited understanding of LPs, it
is far simpler, and it still allows us to solve LPs, and to prove the few theoretical results
on LPs which we will need.

2.16 Lecture 7, How to find arbitrage with the FM algorithm

To figure out if a finite market has arbitrage (and, if so, to find one), we can use the FM
algorithm to check whether W ∩ Rn+ equals {0}, as we now illustrate with an example.

Example 31. Consider the trinomial model with r = 1/9, S1
0 = 5, S2

0 = 10 and

S1
1 =

10

9

 6
6
4

 , S2
1 =

10

9

 12
8
8

 ,

Here the number m of stocks if 2, and the probability space has cardinality n = 3.
Notice that in what follows S1

0 is considered to be a random variable (with constant
value 5), and is thus represented by the vector whose components are all equal to 5, and

58Obviously the algorithm can be easily modified to eliminate any one variable of our choice, instead of
always the last variable as assumed here.
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analogously for S2
0 = 10. We first compute the discounted values as

S
1
1 − S

1
0 =

 6
6
4

−
 5

5
5

 =

 1
1
−1

 ,

S
2
1 − S

2
0 =

 12
8
8

−
 10

10
10

 =

 2
−2
−2

 ,

and then we plug in the values for S into the eq. (6) for the discounted value of the
portfolio (x, h) and get

V
0,h
1 = h1

 1
1
−1

+ h2

 2
−2
−2

 , (23)

to find that

W = {V 0,h
1

∣∣∣h ∈ R2} = span


 1

1
−1

 ,

 2
−2
−2

 . (24)

Since we are only working in dimension 3, you could now use a drawing to figure out
whether W ∩R3

+ = {0} or not; let us instead solve this with linear algebra, which works
in any dimension. By definition, h is an arbitrage iff it solves the system of inequalities

V
0,h
1 ≥ 0 and it does not solve the system of equalities V

0,h
1 = 0. Keeping in mind

eq. (23), we look for solutions of 
h1 + 2h2≥ 0

h1 − 2h2≥ 0

−h1 − 2h2≥ 0

(25)

for which not all of the above ≥ are satisfied with =. In this particular example, since

the above vectors multiplying h1 and h2 are independent, the system V
0,h
1 = 0 has only

the solution h = 0, so, any h 6= 0 s.t. V
0,h
1 ≥ 0 is an arbitrage.

Since the system eq. (25) only has two variables, the simplest way to solve it would be
to draw the intersection of the 3 half-planes represented by the 3 above inequalities. We
will instead solve it using the FM algorithm (which works for any number of variables),
to illustrate its use. As a first step, we isolate h1 and get

h1 ≥ −2h2

h1 ≥ 2h2

h1 ≤ −2h2

which leads to the system in the h2 variable{
−2h2 ≥ −2h2

−2h2 ≥ 2h2
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whose solutions are all h2 ≤ 0, and for each such h2 we take any

h1 ∈ [max
(
− 2h2, 2h2

)
,−2h2] = {−2h2}

and find a solution (h1, h2) of eq. (25). Thus, h is an arbitrage iff h2 < 0, h1 = −2h2; in
particular, there are arbitrages.
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Week 4
2.17 Lecture 1, The no-arbitrage and the domination principles

Whenever a derivative is replicable, using the law of one price we have been able to
determine at what (fair) price we ‘should’ trade it for. What should we do when a
derivative is not replicable? We should use the more general assumption that there
exists no arbitrage, and see where that leads us. Let us start by considering the following
generalisation of the law of one price:

Principle 32 (Weak Domination Principle). If there are two possible investments, and
the first one has, under all possible market outcomes59, a smaller60 value then the second
at time T , then this holds also at all previous times.

This principle can be used to price derivatives; in general however it will provide
us with a whole interval of ‘fair’ prices which satisfy principle 32 as follows. Sup-
pose we can find a portfolio U which super-replicates (resp. D which sub-replicates)
a derivative, i.e. which has a bigger (resp. smaller) final value with certainty (i.e. under
all possible market outcomes). More formally, U (resp. D) is super-replicating (resp.
sub-replicating) the derivative X if its value V U

T (resp. V U
T ) satisfies XT ≤ V U

T (resp.
XT ≥ V D

T ) a.s.61, i.e. if the event {XT > V U
T } (resp. XT < V D

T ) has probability 0.
Then principle 32 implies that:

Principle 33 (Pricing via super- and sub-replication). At any time t ∈ [0, T ], the
derivative’s price must be smaller ( resp. bigger) than the value of any super-replicating
( resp. sub-replicating) portfolio.

We can then define the price bounds for the derivative as the smallest (resp. biggest)
initial capital of a super-replicating (resp. sub-replicating) portfolio

u(X) := inf{V U
0 : V U

T ≥ XT }, d(X) := sup{V D
0 : V D

T ≤ XT }; (26)

notice that trivially a portfolio value V satisfies VT ≥ XT iff V T ≥ XT (and VT ≤ XT

iff V T ≤ XT ), and so

u(X) = inf{V U
0 : V

U
T ≥ XT }, d(X) = sup{V D

0 : V
D
T ≤ XT }, (27)

which is a more useful expression than eq. (26), given that the formula for V T is more
convenient than that for VT .

59Meaning, no matter what the value of the traded instruments turns out to be, among those values
which are considered possible, i.e. which have a non-zero probability of happening.

60By which we always mean ≤, not <.
61A.s. is a common abbreviation which stands for almost surely ; in measure theory one often uses the

analogous abbreviation a.e., which means almost everywhere. One says that a statement hold a.s. if
is holds with probability 1 ; to be precise, we should specify the probability (/the measure) in question,
e.g. saying P a.s..
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Of course, principle 32 implies that d(X) ≤ u(X), principle 6 is a simple corollary
of principle 33, and when X is replicable at initial cost p then interval [d(X), u(X)]
collapses to being just a point (the point p), which is a very desirable outcome.

Principle 34 (Domination Principle). We say that Strict Domination Principle holds
if, whenever there are two investments L,M such that

1. the first one has a value a.s. smaller62 than the second, i.e. P({V L
t ≤ VM

t }) = 1

2. the first one has a value not a.s. equal63 to the second, i.e. P({V L
t 6= VM

t }) > 0

at time t = T , then necessarily items 1 and 2 hold also at all previous times t ∈ [0, T ).
We will say that the Domination Principle holds if both the law of one price 5 and the

Strict Domination Principle hold.

Of course, if the domination principle 34 holds and V L
T ≤ VM

T holds a.s., then either it
holds with = a.s. (and we can then apply the Law of One Price), or it does not (and we
can then apply the Strict Domination Principle), so either way we can conclude V L

t ≤
VM
t a.s. for all t ∈ [0, T ), i.e. the domination principle 34 implies the weak domination

principle 32. The above domination principles may or may not hold, depending on the
particular market one is considering; the values of d(X), u(X) depend not just on X,
but also on the market that one is considering, i.e. in the portfolios which one can use
to super- and sub-replicate.

Remark 35. When working in one-period models, items 1 and 2 in principle 34 are just
required to hold for t = 0. Since V0 is known at time 0, it is a constant, so items 1 and 2
become more simply V L

0 < VM
0 .

Theorem 36. In the linear one-period market model of eq. (5), the following are equiv-
alent:

1. the Domination principle 34 holds.

2. the Strict Domination principle holds.

3. there exists no-arbitrage.

Proof. The implication (1. =⇒ 2.) is a trivial, and so is (2. =⇒ 3.), since an arbitrage
is an investment which, when compared64 to the zero investment65 violates the strict
domination principle (for t = 0). Let us prove the implication (3. =⇒ 1.), by contra-
diction. If the domination principle fails, then either the law of one price fails, or the
strict domination principle fails. If the law of one price fails, there are two portfolios

62i.e. the event that the first investment has value ≤ than the second has probability 1.
63i.e. the event where these two random quantities are equal does not have probability 1 (equivalently,

they are different with non-zero probability).
64Considering the 0 investment as the first investment, an the arbitrage as the second one.
65i.e. to having no capital and doing nothing.
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L = (x, g),M = (y, h), with values V L, VM given as in eq. (5), s.t. V L
T = VM

T and
x = V L

0 6= VM
0 = y. By remark 35, we can then assume w.l.o.g that x > y (if x < y,

just reverses the role of L and M). Thus the portfolio M −L = (y−x, h− g) has initial
capital y − x < 0 and final value VM

T − V L
T = 0. Consider now the portfolio that starts

with no capital, sells g and buys h shares, i.e. the portfolio

N = (0, h− g) = (M − L) + (x− y, 0). (28)

Since the final value of the portfolio (x− y, 0) is (x− y)(1 + r) > 0, and the final wealth
V N
T of N equals

(VM
T − V L

T ) + (x− y)(1 + r), (29)

whose first term equals 0, N is an arbitrage.
Analogously, if the strict domination principle fails there are L = (x, g),M = (y, h) s.t.
V L
T ≤ VM

T a.s., the equality V L
T = VM

T does not hold a.s., and yet x ≥ y. In this case
the portfolio N of eq. (28) is again an arbitrage, since the first term of eq. (29) is now
≥ 0 a.s. but not a.s. = 0, whereas the second term is ≥ 0.

The above theorems shows that, while the domination principle is the most desirable
property, it is actually equivalent to the no-arbitrage assumption, which is easier to
check. We will say that a market satisfies NA (/the NA qcondition) if it admits no
arbitrage.

The previous theorem admits the following variant, which is not nearly as useful, since
what we really care about is the domination principle. To state it, we66 define a uniform
arbitrage as a portfolio L with zero initial capital and whose final wealth V L

T satisfies
V L
T ≥ c P a.s. (i.e. P(V L

T < c) = 0) for some constant c > 0.

Remark 37. Notice that, if the probability space Ω is finite, asking that a random variable
X satisfies X ≥ c P a.s. for some constant c > 0 is equivalent to asking that X > 0 P
a.s., since one can take c := min{X(ω) : ω ∈ Ω,P({ω}) > 0}.

Theorem 38. In the linear one-period market model of eq. (5) the Weak Domination
principle 32 holds if and only if there exists no uniform arbitrage. Moreover, the Dom-
ination principle 34 implies the Weak Domination principle 32, which implies the Law
of One Price, and the two opposite implications do not hold.

Proof. If L = (x, g) is a uniform arbitrage, i.e. V L
T ≥ c a.s. and x = V L

0 = 0, then the
portfolio

M :=
(
− c

1 + r
, g
)

has final wealth VM
T = −c+V L

T ≥ 0 a.s. and initial wealth VM
0 = −c/(1 + r) < 0, so the

Weak Domination principle 32 fails. Conversely, if the Weak Domination principle 32
fails, there are portfolios L,M s.t. V L

T ≤ VM
T a.s. and V L

0 > VM
0 . The portfolio

N := M − L = (y, h) has final value V N
T = VM

T − V L
T ≥ 0 a.s. and initial value

66I made the name up, as I don’t know of any source which discusses this.
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y = V N
0 = VM

0 − V L
0 < 0. Thus the portfolio O := (0, h) = (|y|, 0) + N is a uniform

arbitrage, since it has initial value 0 and final value

V O
T = V N

T + |y|(1 + r) ≥ |y|(1 + r) =: c > 0.

Trivially the Domination principle 34 implies the Weak Domination principle 32, and
this implies the Law of One Price, since if portfolios L,M has the same final value
V L
T = VM

T then principle 32 applied to L−M and to M − L implies V L
0 − VM

0 ≥ 0 and
V L

0 − VM
0 ≤ 0, and so V L

0 − VM
0 = 0.

Finally, let us show that the other implications do not hold. Working as in example 14
shows that a binomial model satisfies principle 32 iff d ≤ 1+r ≤ u, and so if d = 1+r < u
it satisfies principle 32 but not principle 34. Moreover, if u > d > 1 + r > −1 then
principle 32 fails, yet the law of one price still holds: since the replication equation is a
system of two independent equations in two unknowns, it has a unique solution.

Remark 39. We warn the reader that the theorems in this section strongly depend on
the assumptions that we are working in the linear one-period market model of eq. (5).
As soon as one starts to generalise this model even slightly, and allow for ‘market im-
perfections’ (i.e., not allowing the possibility of short-selling, or considering different
interest rates for borrowing and lending), the theory can change significantly, even for
linear models with constraints.

2.18 Lecture 2, No-arbitrage prices

Consider the linear one-period market model (B,S) of eq. (5) in which there is no
arbitrage, and an illiquid derivative X, which has a payoff XT at maturity T . The prices
at which we could then reasonably choose to trade X in this market are its ‘fair’ prices,
defined as follows.

Definition 40. p ∈ R is a fair price (a.k.a. Arbitrage-Free Price) of X in the mar-
ket (B,S) if the enlarged market (B,S,X), composed of the original market plus the
derivative X traded has price X0 = p at time 0, is also arbitrage-free.

Often we will abbreviate Arbitrage-Free Price as AFP. Notice that pricing by the no-
arbitrage principle is simply a consistency requirement (which depends on the original
market (B,S)): if X is to be traded at a price p, p should be chosen in a way that does
not conflict with the prices in the market (B,S), in the sense that the enlarged market
(B,S,X) is still arbitrage-free.

It would be natural if replicable derivatives were the only ones with a unique fair price,
i.e. for which the interval [d(X), u(X)] collapses to a point. For this to be indeed the
case, we need to make the following somewhat technical fact, which we will prove later
on (see corollary 48) using the FM algorithm: among all the portfolios which super-
replicate (resp. sub-replicate) a derivative, there is one with minimum (resp. maximum)
initial value, i.e.:

Lemma 41. The infimum and supremum in eq. (27) are attained.
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We can now use principle 33 to give an intuitive characterisation of the set of fair
prices of X.

Proposition 42. In the arbitrage-free one-period market (B,S), if a derivative X is

1. replicable, then its fair price X0 is unique, it equals the initial value x of any
replicating portfolio, and u(X) = X0 = d(X).

2. not replicable, then the set of its fair prices is the open interval (d(X), u(X)).

Proof. In both cases we will use that, if p is a fair price for X, then by theorem 36 the
Domination principle 34 holds, and so the law of one price (principle 5) holds, in the
market (B,S,X) where X is sold at price X0 = p.

Now, assume X is traded at price X0 = p, and let us look for an arbitrage in the
(B,S,X) market, i.e. for a portfolio (0, g, h) with initial capital 0, g shares of S and h
units of X s.t. its final wealth67

V 0,g,h
1 = g · (S1 − (1 + r)S0) + h(X1 − (1 + r)X0) (30)

is a.s. ≥ 0 and is not a.s. = 0. If X can be replicated by the portfolio M = (x, c) in the
(B,S) market, we have that

X1 = x(1 + r) + c · (S1 − (1 + r)S0),

and so
V 0,g,h

1 = (g + hc) · (S1 − (1 + r)S0) + (x− p)(1 + r)h.

If p = x then
V 0,g,h

1 = (g + hc) · (S1 − (1 + r)S0),

which equals the final wealth V 0,g+hc
1 of the portfolio (0, g + hc) in the (B,S) market.

Thus, if (0, g, h) is an arbitrage in the (B,S,X) market, then (0, g + hc) is an arbitrage
in the (B,S) market, a contradiction. This shows that p is an arbitrage-free price of X
in the (B,S) market.

Notice that x is the only fair price for X, since by the law of one price X0 must equal
the initial value of any replicating portfolio (principle 6); more precisely, if p 6= x then
the portfolio (0, g, h) with

h :=
1

(x− p)(1 + r)
, g := −hc

has final wealth V 0,g,h
1 = 1, so it is an arbitrage.

Since M is simultaneously super- and sub-replicating, we get that u(X) ≤ VM
0 and

VM
0 ≤ d(X). Since d(X) ≤ u(X) always holds (by the domination principle), it follows

that d(X) = VM
0 = x = u(X).

67That this is the right formula for V 0,g,h
1 follows considering X as the m+ 1 component of S in eq. (5).
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If X is not replicable and is sold at a fair price X0, let U and D be super- and sub-
replicating portfolios with extremal initial values V U

0 = u(X) and V D
0 = d(X), whose

existence is ensured by lemma 41. The inequalities V D
T ≤ XT ≤ V U

T hold a.s., and do
not hold a.s. with equality (since X is not replicable). By the domination principle
V D

0 ≤ X0 ≤ V U
0 and (using also remark 35) V D

0 < X0 < V U
0 , i.e. any fair price belongs

to (d(X), u(X)). Let us prove that conversely any X0 ∈ (d(X), u(X)) is a fair price for
non replicable X (in the market (B,S)). Consider the portfolio68 N = (0, g, h) in the
(B,S,X) market; its wealth is given by eq. (30). If N is an arbitrage then V N

T is ≥ 0
a.s., and is not a.s. = 0. This implies h 6= 0, since otherwise (0, g) would be an arbitrage
in the (B,S) market, a contradiction. If h > 0 we get that

X1 ≥ X0(1 + r)− g

h
· (S1 − S0(1 + r)) = V L

1 (31)

holds a.s. (and = does not hold a.s., though we won’t use this); here L is the portfolio
(X0,− g

h) in the (B,S) market, which by eq. (31) sub-replicates X, and thus satisfies
V L

0 ≤ d(X). Analogously if h < 0 we get that V L
0 ≥ u(X). Since V L

0 = X0, we proved
that if X0 ∈ (d(X), u(X)) there cannot be any arbitrage in the (B,S,X) market, i.e. any
such X0 is a fair price for X.

Remark 43 (Other notions of price in incomplete models). Traders need to come up with
one price at which they should trade a derivative, not a whole interval of them. Thus,
the larger the interval of fair prices for a derivative, the less useful the option pricing
theory is. As the real world is of course a messy place, derivatives are never (exactly)
replicable; however, as long as it is not too unreasonable to do so, it is convenient to
consider models where all derivatives are replicable; these important models deserve a
definition.

Definition 44. A market model (B,S) is called complete if any derivative X can be
replicated (in such market); otherwise it is called incomplete.

The point is that in a complete model all derivatives have a unique price. The most
important models we will consider (the binomial and the Black-Scholes models) are
complete models. The way traders deal with incomplete models in the real world, is to
use statistical considerations to pick one price inside the interval of arbitrage-free prices;
we will not discuss how to do this in this module. Alternatively, one could consider other
notions of price, which lead to a smaller interval of prices (ideally just a point). The
above price bounds were derived by demanding that super- and sub-replication happen
with certainty (i.e. a.s.), which is a very strong requirement (thus what we called fair
prices would be more aptly described as not utterly unfair prices). One could instead
allow for super- and sub-replication to fail ‘only a little’, which would lead to a smaller
interval of prices. As there are many ways to interpret ‘only a little’, this topic is quite
rich (see e.g. [?]), but of little relevance to how option pricing is done in the real world
(as far as I know).
68i.e. we start with 0 initial capital, buy g units of S, and buy h ∈ R units of X at price X0.
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2.19 Lecture 3, Linear Programming, option pricing and arbitrage

Below we show how the set of arbitrage-free prices of a derivative (replicable or not) can
be calculated solving a linear optimisation problem, which we now introduce.

Definition 45. A set P ⊆ Rk is called a polyhedron if it of the form

P := {z ∈ Rk : Az ≥ b, Cz ≤ d, Ez = f},

where A,C,E are matrices and b, d, f are vectors. A problem of the form

minimise a+ c · z
subject to z ∈ P,

or of the form

maximise a+ c · z
subject to z ∈ P,

where a ∈ R, c, z are vectors and P is a polyhedron, is called a linear optimisation
problem, or a Linear Program, abbreviated as LP.

Remark 46. Notice that a polyhedron P can always be written in the form P = {z ∈
Rk : Az ≤ b}: indeed, clearly z satisfies v · z ≤ b iff it satisfies v′ · z ≥ b′ (with
v′ = −v ∈ Rm, b′ = −b ∈ R), and it satisfies v · z = b iff it satisfies both v · z ≤ b and
v · z ≥ b. From a geometrical point of view, the set {z ∈ Rk : v · z ≤ b} is a half-space,
and thus P ⊆ Rk is a polyhedron iff it is an intersection of finitely many half-spaces. In
particular, polyhedra are always closed convex sets.

Computing the set of arbitrage-free prices boils down to solving LPs, since propo-
sition 42 identifies the set AFP(X) of arbitrage-free prices of X as the open interval
(d(X), u(X)) if d(X) < u(X), and as the singleton {d(X)} = {u(X)} if d(X) = u(X),
and u(X), d(X) are solutions to some LPs, as we now show.

Indeed, since the random variable h · (S1 − S0) is identified with the vector whose

ith component is h · (S1 − S0)(ωi), calling M the matrix Mi,j := (S
j
1 − S

j
0)(ωi) we can

represent the random variable h · (S1 − S0) as the vector Mh. If z := (x, h) ∈ R × Rm
and N is the matrix whose (k + 1)th-column equals the kth-column of M (for k which
enumerates all columns of M), and whose first column has all elements equal to 1,
then Nz = x + Mh, which is the vector which represents the discounted final wealth

V
x,h
1 = x + h · (S1 − S0) relative to the portfolio x, h. Moreover, since the dot product

between c = (1,0m) and z := (x, h) ∈ R× Rm equals x (as usual ym denotes the vector
in Rm with all components equal to y ∈ R), the expression eq. (27) for u(X), d(X) reads

u(X) = inf{c · z : z ∈ P≥}, d(X) = sup{c · z : z ∈ P≤}, (32)

where the polyhedra P≥, P≤ are defined as

P≥ := {z ∈ Rm+1 : Nz ≥ b}, P≤ := {z ∈ Rm+1 : Nz ≤ b},
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where b is the vector representing the random variable X1.
Moreover, also the problem of existence of an arbitrage can be reduced to a LP. One

way to see this it to notice that, since w ∈ Rn+ is the origin in Rn iff the dot product
w · 1n equals 0, @ arbitrage iff the LP

sup{w · 1n : w ∈W ∩ Rn+} (33)

has optimal value 0. Another way is to notice that, given any polyhedron P , to determine
whether P is empty or not is equivalent to determining whether the feasibility LP

sup{0 : z ∈ P} (34)

has optimal value (i.e. supremum) −∞ or 0 (since by convention sup ∅ := −∞).
Identifying a problem as a LP is important because LPs arises whenever one consid-

ers a linear model; in other words, LPs are ubiquitous in science, and as such they are
extremely well studied. LPs have a rich and beautiful theory (called linear program-
ming) behind them, and while there is no formula which produces their solution, they
can be solved by hand using some simple algorithms69. Moreover, there are complex
algorithms70 which are able to solve LPs numerically by blazing speed, can be proved
to always converge with such speed, and are capable of routinely handling LPs with
hundreds of thousands of variables.

Of course, if one considers not a finite probability space but a general one, the price
bounds u(X), d(X) are still defined as the solutions to a linear optimisation problem,
but one in infinite dimension, and so everything becomes more complicated.

2.20 Lecture 4, Solving LPs with the FM algorithm

As we have seen, if we work with a model on a finite probability space, we can price
derivatives by solving the LPs (32) (whose solutions also allows us to find a super- and
a sub-replicating portfolio); later we will see that one can also use an alternate set of
LPs. Let us then see how can can solve LPs using the FM algorithm; by this we mean
that, given a polyhedron P ⊆ Rn and c ∈ Rn, and the LP

inf c · z (35)

subject to z ∈ P

we want to compute such infimum y∗, and find any z∗ ∈ P at which such infimum is
attained (i.e. such that c · z∗ = y∗), if it exists; analogously for the problem where inf is
replaced by sup. It is customary to call such z∗ an optimiser (a.k.a. optimal solution, or
even just solution) of the LP, and such y∗ the optimal value of the LP. If an optimiser
exists, the LP is called solvable. We recall the conventions that sup ∅ := −∞, inf ∅ :=∞,
so by definition the LP (35) has optimal value ∞ iff P = ∅.

69The Fourier-Motzkin algorithm, the simplex algorithm, etc.
70Which use the so-called interior point methods.
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To solve the LP (35), we can define the polyhedron

R := {(y, z) : y = c · z, z ∈ P} (36)

and use the FM algorithm to compute its projection πn+1
1 (R), where πn+1

1 = πy is defined
on R1

y ×Rnz . Since πn+1
1 (R) ⊆ R is a polyhedron involving only a single variable, i.e. the

set of solutions of a system of linear equations in a single variable, it is easy to handle.
In particular, πn+1

1 (R) is either empty (which happens iff R = ∅, i.e iff P = ∅), or a
closed interval, i.e. a set of the form (−∞, b] or [a, b], or [a,∞), with a ≤ b. The infimum
of πn+1

1 (R) ⊆ R is then easy to determine, as it equals +∞,−∞, a, a respectively, if the
polyhedron is of the form ∅, (−∞, b], [a, b], [a,∞). This allows us to solve the LP (35),
as follows.

Theorem 47. inf πn+1
1 (R) equals the optimal value y∗ of the LP (35), and z∗ solves

(35) iff (y∗, z∗) ∈ R.

Proof. By definition of projection, and of R, we get respectively

πn+1
1 (R) = {y : ∃z ∈ Rn s.t. (y, z) ∈ R} = {y : ∃z ∈ P s.t. y = c · z}

whose infimum is y∗. By definition z∗ solves (35) iff z∗ ∈ P and c · z∗ = y∗, i.e. iff
(y∗, z∗) ∈ R.

Corollary 48. A LP is solvable if and only if its optimal value is finite.

Proof. Since supz∈P c · z = − infz∈P (−c) · z, by replacing c with −c if necessary we can
assume w.l.o.g. that we consider a minimisation LP, as in (35).

If the optimal value y∗ of the LP (35) is ∞ or −∞, then trivially (35) is not solvable.
Conversely, if y∗ = inf πn+1

1 (R) ∈ R, it means that πn+1
1 (R) is of the form [a, b], [a,∞),

and so y∗ = a ∈ πn+1
1 (R). We can then use the FM algorithm to compute a z∗ s.t.

(y∗, z∗) ∈ R by proceeding backwards, one variable at the time (i.e., we compute z∗k s.t.
(y∗, z∗1 , . . . , z

∗
k) ∈ πn+1

k+1 (R) for k = 1, then for k = 2 etc until k = n). Theorem 47 shows
that z∗ solves (35).

Remark 49. Instead of the minimisation LP (35), we could analogously solve the LP

sup c · z (37)

subject to z ∈ P

with the FM algorithm, since the supremum of πn+1
1 (R) ⊆ R equals the optimal value

y∗ of the LP eq. (37), and its optimisers are the z∗ s.t. (y∗, z∗) ∈ R.

Remark 50. To solve eq. (35) we could have equivalently used the polyhedron

R≥ := {(y, z) : y ≥ c · z, z ∈ P}

instead of R, since inf πn+1
1 (R≥) also equals the optimal value of eq. (35). Analogously,

to solve eq. (37) we could have equivalently used the polyhedron

R≤ := {(y, z) : y ≤ c · z, z ∈ P}
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instead of R, since supπn+1
1 (R≤) also equals the optimal value of eq. (37). We cannot

however use R≥ to solve eq. (37), nor R≤ to solve eq. (35).

Remark 51. When the set of optimisers of the LP (35) is not a singleton, the FM
algorithm does not provide a convenient description of it; we only know that such set is
a polyhedron, since it equals {z ∈ P : y∗ = c ·z}, and it is described is some constructive,
iterative fashion. For example, if the set of solutions is a vector space, it is described as
the set of variables which solve a system of linear equalities, whereas a more convenient
description would be in terms of determining a basis of such vector space. It is actually
possible to produce an analogous and convenient description of any polyhedron, as the
set spanned by the linear/conical/convex combinations of some ‘basis’, by applying the
simplex algorithm (which we do not study, as it would take too long).

2.21 Lecture 5, How to price a derivative using the FM algorithm

Let us now see an example of how the FM algorithm can be used to compute arbitrage-
free prices. Consider the following model with two stocks and a bank account with
interest rate is r = 1. The prices at time t = 0 equal to S1

0 = 5 and S2
0 = 5. The prices

of the two stocks at time t = 1 are given by the following vectors:

S1
1 =


12
12
8
6

 and S2
1 =


16
8
6
4

 .

In this model, we want to price a call option X on S2, with strike K = 14; this we do by
applying the FM algorithm to compute the price bounds. To work in discounted terms,
we compute:

S
1
1−S

1
0 =


6
6
4
3

−


5
5
5
5

 =


1
1
−1
−2

 , S
2
1−S

2
0 =


8
4
3
2

−


5
5
5
5

 =


3
−1
−2
−3

 , X1 =


1
0
0
0

 ,

and in particular the discounted value of the portfolio (x, h1, h2) at time t = 1 is

V
x,h
1 =


x
x
x
x

+ h1


1
1
−1
−2

+ h2


3
−1
−2
−3

 .

Before we can compute the arbitrage-free prices of X, one should always check that the
model is free of arbitrage; let us do that.

We write the system V
0,h
1 ≥ 0, i.e.

h1 + 3h2 ≥ 0

h1 − h2 ≥ 0

−h1 − 2h2 ≥ 0

−2h1 − 3h2 ≥ 0

.
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To minimise the number of fractions appearing, we first eliminate h1: we write
−3h2 ≤ h1

h2 ≤ h1

−2h2 ≥ h1

−3
2h

2 ≥ h1

(38)

from which we get the system 
−3h2 ≤ −2h2

−3h2 ≤ −3
2h

2

h2 ≤ −2h2

h2 ≤ −3
2h

2

whose unique solution is h2 = 0. To solve (38) we then take any

h1 ∈ [max(−3h2, h2),min(−2h2,−3

2
h2)] = {0},

i.e. the only solution of V
0,h
1 ≥ 0 is h = 0, and so there is no arbitrage.

Let us now illustrate how to find the price bound u(X), by solving the LP

u(X) = inf
{
x : (x, h) ∈ R× Rm s.t. V

x,h
1 ≥ X1

}
. (39)

As we clarify in remark 52 below, to solve (39), we should apply the FM algorithm to
the polyhedron

R′ = {(x, h) ∈ R× Rm : V
x,h
1 ≥ X1}

eliminate the h ∈ Rm variables to compute the interval πx(R′) = πm+1
1 (R′), and then

u(X) = inf πx(R′) is the optimal value of (39), and its optimisers are the h∗ s.t.
(u(X), h∗) ∈ R′. Thus, we start writing the inequalities defining R′, i.e. the system

x + h1 + 3h2 ≥ 1

x + h1 − h2 ≥ 0

x − h1 − 2h2 ≥ 0

x − 2h1 − 3h2 ≥ 0

, (40)

which is of course very similar to (but more complicated of) the system V
0,h
1 ≥ 0, to

which one has to first apply the FM algorithm to check for arbitrages (noticing this can
speed up calculations somewhat). To minimise the number of fractions appearing, we
again eliminate first h1: we write

−x −3h2 +1 ≤ h1

−x +h2 ≤ h1

x −2h2 ≥ h1

1
2x −3

2h
2 ≥ h1

(41)
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from which we get the system
−x −3h2 +1 ≤ x −2h2

−x −3h2 +1 ≤ 1
2x −3

2h
2

−x +h2 ≤ x −2h2

−x +h2 ≤ 1
2x −3

2h
2

whose set of solutions is π3
2(R′). To eliminate h2, we rewrite this as

h2 ≥ −2x +1
h2 ≥ −x +2

3
h2 ≤ 2

3x
h2 ≤ 3

5x

(42)

from which we get 
2
3x ≥ −2x +1
3
5x ≥ −2x +1
2
3x ≥ −x +2

3
3
5x ≥ −x +2

3

which is equivalent to 
x ≥ 3

8
x ≥ 5

13
x ≥ 2

5
x ≥ 5

12

(43)

i.e. to x ≥ max(3
8 ,

5
13 ,

2
5 ,

5
12) = 5

12 . Thus π3
1(R′) = πx(R′) = [ 5

12 ,∞), and its inf is
u(X) = 5

12 . To find the lower price bound d(X), we have to solve the LP

d(X) = sup
{
x : (x, h) ∈ R× Rm s.t. V

x,h
1 ≤ X1

}
. (44)

This simply results in reversing all the inequalities (i.e. replacing ≥ with ≤, and vice
versa) in all the linear systems of inequalities from (40) to (43), which leads to x ≤
min(3

8 ,
5
13 ,

2
5 ,

5
12) = 3

8 , and so d(X) = 3
8 . In summary the set of arbitrage-free prices of

X is the interval (d(X), u(X)) = (3
8 ,

5
12).

Remark 52. While to solve (35) we started with the variable x ∈ Rn and defined the
additional variable y = c · x to build the polyhedron R as in eq. (36), in the LP (39) the
variables are (x, h) ∈ R×Rm, and we need to minimise x, so there is no point in defining
the additional variable y, since c = (1,0m) and so y = c · (x, h) = x. In other words, if
we were to solve (39) by blindly following the procedure outlined when considering the
generic LP (35), we would apply the FM algorithm to the set

R := {(y, x, h) ∈ R× R× Rm : y = x, (x, h) ∈ R′},

we would compute y∗ := inf πy(R), and work backward to find (x∗, h∗) s.t. (y∗, x∗, h∗) ∈
R′, and use theorem 47 to conclude that y∗ is the optimal value and (x∗, h∗) the optimal
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solution of (39). However, we can more simply solve (35) by applying the FM algorithm
to R′ to compute a∗ := inf πx(R′), and then work backward to find b∗ s.t. (a∗, b∗) ∈ R′:
indeed, we claim that a∗ = y∗ and (a∗, b∗) is the optimal solution of (39). To prove this,
notice that, since the projection on the (y, x) plane of R is

π(y,x)(R) = {(y, x) : y = x, x ∈ π3
1(R′)} = {(x, x) : x ∈ π3

1(R′)},

from which it follows that

πy(R) = πy(π(y,x)(R)) = π3
1(R′) = πx(R′). (45)

Thus, if a∗ := inf πx(R′) and (a∗, b∗) ∈ R′, then eq. (45) gives a∗ = y∗, and so the fact
that

(y, x, h) ∈ R ⇐⇒ y = x, (x, h) ∈ R′,

which holds simply by definition of R, shows that (y∗, y∗, b∗) ∈ R, i.e. (y∗, b∗) = (a∗, b∗)
is the optimal solution of (39) (by theorem 47).

2.22 Lecture 6, How to find the optimisers of a LP using the FM algorithm

Let us illustrate how, using the FM algorithm, once determined the optimal value y∗ ∈ R
of (35), we can compute its optimisers. By definition of projection, the polyhedron

{z ∈ R : (y∗, z) ∈ πn+1
2 (R)} = πz(π

n+1
2 (R))

is not empty, and so it is a closed interval, and so we can easily find a point z = z∗1 in
it: for example, if πn+1

2 (R) was given by eq. (16), from which we are to eliminate the
variable z to get to the polyhedron πn+1

1 (R), which is the set of solution of eq. (17), then
z∗1 would be any z given by eq. (18). By the same reasoning,

{z ∈ R : (y∗, z∗1 , z) ∈ πn+1
3 (R)} = πz(π

n+1
3 (R))

is a closed interval, and we can find a point z∗2 in it, etc. Iterating like this, we eventually
find a point (y∗, z∗1 , . . . , z

∗
n) ∈ πn+1

n+1(R) = R, and now Theorem 47 shows that z∗ solves
(35). Notice that at every step, we could choose which point z∗i to consider, within
the polyhedron πz(π

n+1
i+1 (R)); as we have shown, all possible such choices leads to an

optimiser z∗. Conversely, any optimiser z∗ is obtained in this way, since it satisfies

z∗i ∈ {z ∈ R : (y∗, z∗1 , . . . , z
∗
i−1, z) ∈ πn+1

i+1 (R)}

if i = n (because (y∗, z∗) ∈ R = πn+1
n+1(R)), and so also if i < n (by definition of

projection).

To clarify the above procedure, we let us consider again the example in section 2.21,
and illustrate how to find the solutions (x, h) of the LP (39), i.e. the portfolios which
super-replicate X starting with initial capital x = 5

12 . Using (42) and substituting x = 5
12

we find

h2 ∈
[

max(−2x+1,−x+
2

3
),min(

2

3
x,

3

5
x)
]

=
[

max(
1

6
,
1

4
),min(

5

18
,
1

4
)
]

=
[1

4
,
1

4

]
= {1

4
}
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and finally using (41) we find

h1 ∈
[

max(−x− 3h2 + 1,−x+ h2),min(x− 2h2,
1

2
x− 3

2
h2)
]

and substituting x = 5
12 and h2 = 1

4 we get

h1 ∈
[

max(− 5

12
− 3

4
+ 1,− 5

12
+

1

4
),min(

5

12
− 1

2
,

5

24
− 3

8
)
]

and so

h1 ∈
[

max(−1

6
,−1

6
),min(− 1

12
,−1

6
)
]

= {−1

6
}

In summary, the LP (39) has the unique solution (i.e. optimiser)

x =
5

12
, h1 = −1

6
, h2 =

1

4
,

and optimal value x = 5
12 .
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Week 5
2.23 Lecture 1, Foreign currency

The FX (Foreign eXchange) market is huge and very liquid, since companies which sell
their products/services in several markets receive income in multiple currencies, and then
want to convert it to their domestic currency. This exposes them to FX risk, i.e. the
risk that comes from the fact that exchange rates change unpredictably over time. To
avoid such risk, companies commonly trade options based on exchange rates.

Example 53. Consider that Spotify, which sells subscriptions in AC to its EU-based cus-
tomers, also sells subscriptions to its UK-based customers, who pay in £. Spotify, which
is headquartered in Sweden, may want a predictable revenue measured in AC, yet it does
not want to charge its UK costumers a monthly fee which changes monthly, so as to

track the exchange rate E := EAC£ between £ and AC (defined as the cost of one AC in
£). Instead, to get a predictable revenue in AC, Spotify could buy a forward contract on
the exchange rate, which fixes in advance the rate E at which it will exchange a certain
amount M of £ to AC at time T . It could then choose M to be the profits generated by
its UK operations between now and maturity T .

Given that the value of the exchange rate at the future time t > 0 is unpredictable, we
describe it with a random variable Et. Given that such value Et changes over time, the
exchange rate E should then be modelled with a (strictly positive) stochastic process
E = (Et)t≥0.

Recall that we chose to describe the money market using the simple idealisation of
‘the bond’ (or ‘the bank account’). Analogously, if we can trade in two currencies, we
should consider a domestic bond Bd, whose value is given in £, and a foreign bond Bf ,
valued in the foreign currency. These two bonds would normally have different interest
rates, though both of their values at time 0 can assumed to be 1 (by normalisation). So,
in one period models, we take

Bd
0 = 1, Bf

0 = 1, Bd
0 = 1 + rd, Bf

0 = 1 + rf ,

where rd, rf > −1 are the domestic and foreign interest rates. On top of the domestic
and foreign bond, the market under consideration could also include domestic assets,
valued in the domestic currency, and foreign assets, valued in the foreign currency.
When considering a market with assets valued in multiple currencies, one should always
measure all values in the same currency, so as not to ‘compare apples with oranges’.
So, consider an investment (e.g. bond, stock, etc.) in Europe, whose price (in AC) is

S; its price in £ is then SE, where E := EAC£ is the cost of one AC in £. Conversely,
if U is the value in £ of an investment, its value UE′ in AC, where the exchange rate
E′ := E£

AC between AC and £, which is defined as the cost of one £ in AC, obviously satisfies

E£
AC = 1/EAC£ . Notice that one cannot invest directly in exchange rates, so the processes

E,E′ are not to be considered as part of the market.
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Example 54. Consider as possible investments ‘the UK and EU bonds’, with values
Bd, Bf , a British stock Sd, and a European stock Sf . Obviously the values of Bd, Sd

are given in £, while those of of Bf , Sf are given in AC. Since the price in £ of the EU

bond and stock are EBf and ESf , where E := EAC£ , a British investor would model
this market with the processes (Bd, Sd, EBf , ESf ), whereas a Europeans one would
model the same market as (Bd/E, Sd/E,Bf , Sf ). Moreover, the British investor would
normally use Bd as numeraire, whereas the European one would use Bf .

To clarify further, compare these two simple possible investments. At time 0 I could
deposit AC1 in the foreign bank, in which case at time 1 I’d have AC(1+ rf ), which I could
convert to £E1(1 + rf ). Alternatively, at time 0 I could convert the AC1 in £ to get £E0,
and then deposit that in the domestic bank account would yield £E0(1 + rd) at time 1.

Finally, we remark that clearly the qualitative properties of the market do not de-
pend on the currency in which one does the accounting. For example, in the setting of
example 54, (Bd, Sd, EBf , ESf ) is arbitrage free/complete iff (Bd/E, Sd/E,Bf , Sf ) is
such.

2.24 Lecture 2, Formulas for the binomial model

Let is consider for the moment the one-period binomial model (B,S). W.l.o.g. we
assume that S0d = S1(T ) < S1(H) = S0u, as it is convention to do; we do not yet
assume that the model is free of arbitrage, i.e. d < 1 + r < u (see example 14). To price
a derivative, we can to try to replicate it, i.e. we look for x, h such that

V
x,h
1 (H) = X1(H), V

x,h
1 (T ) = X1(T ). (46)

Since V
x,h
1 = x+ h(S1 − S0), this system of two (independent, since u 6= d) equations is

in the two unknowns x, h, and so for every derivative the system has a unique solution,
i.e. the binomial model is complete. In particular, if d ≥ 1+r or 1+r ≥ u, we have built
an example of a complete model with arbitrage; and if you assign to each derivative as
price the initial value of a replicating portfolio, we have a model which satisfies the law
of one price but does not satisfy the71 domination principle.

Let us find the formula that gives h (resp. x) as a function of X1(H), X1(T ) by taking
linear combinations of the two eq. (46) so as to obtain an equation only in h (resp. x),
making easy to solve. We first consider

h(S1(H)− S1(T )) = V
x,h
1 (H)− V x,h

1 (T ) = X1(H)−X1(T ),

from which we get the delta-hedging formula

h =
X1(H)−X1(T )

S1(H)− S1(T )
. (47)

71If moreover the inequality d ≥ 1 + r (or 1 + r ≥ u) holds strictly, the model does not even satisfy the
weak domination principle
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To find x we instead fix p̃ and consider

p̃V
x,h
1 (H) + (1− p̃)V x,h

1 (T ) = p̃X1(H) + (1− p̃)X1(T ),

or equivalently

x+ h
(

(p̃S1(H) + (1− p̃)S1(T ))− S0

)
= p̃X1(H) + (1− p̃)X1(T ),

and call Cp̃ the quantity multiplying h on the LHS of the above equation. Then we
choose p̃ such that Cp̃ = 0, and so we get

x = p̃X1(H) + (1− p̃)X1(T ). (48)

This equation provides the value of x given p̃; to find p̃ we solve

0 = Cp̃ := (p̃S1(H) + (1− p̃)S1(T ))− S0. (49)

Written in terms of the interest rate r, and of the up and down factors u := S1(H)/S0

and d := S1(T )/S0, the solution of 0 = Cp̃ is

p̃ :=
(1 + r)− d
u− d

. (50)

Notice that the value of p̃ does not depend on X1, and that d < 1+r < u ⇐⇒ p̃ ∈ (0, 1).
Thus, if d < 1 + r < u and we define

q̃ := 1− p̃ =
u− (1 + r)

u− d
, Q(H) := p̃, Q(T ) := q̃, (51)

we have build a probability Q on {H,T} which satisfies Q({ω}) > 0 for all ω ∈ Ω =
{H,T}, and satisfies S0 = EQS1, since this is just eq. (49) in a different notation.
Conversely, if there exists a probability Q on {H,T} which satisfies Q({ω}) > 0 for all
ω ∈ {H,T}, and S0 = EQS1, then p̃, defined in eq. (50), satisfies p̃ = Q(H) ∈ (0, 1),
and so d < 1 + r < u. In summary, the binomial model has no arbitrage iff there exists
a probability Q s.t. Q({ω}) > 0 for ω ∈ {H,T}, and S0 = EQS1, and in this case the
price X0 = X0 of any derivative is given by the Risk-Neutral Pricing Formula

X0 = EQX1, (52)

which is just eq. (48) in a different notation

Example 55. In the binomial model with r = 1, S0 = 6, S1(H) = 18, S1(T ) = 2, let us
price and hedge the derivative with payoff X1 at time 1 given by X1(H) = 4, X1(T ) = 16,
in the following two ways:

1. by using the risk neutral pricing formula and the delta hedging formula

2. by computing by hand a replication strategy and its cost
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First notice that the up and down factors are u := S1(H)/S0 = 3, d := S1(T )/S0 = 1/3,
and so d < 1+r < u, which means that this binomial model is arbitrage free (a fact that
you should always check, before trying to price something). Let us now apply each of
the two above mentioned methods to solve the problem, so we can then compare them.

1. The risk neutral probability Q is given by

Q(H) =
2− 1

3

3− 1
3

=
6− 1

9− 1
=

5

8
, Q(T ) = 1−Q(H) =

3

8
,

so the risk neutral pricing formula gives the price

X0 =
1

1 + r
E[X1] =

1

2

(
5

8
· 4 +

3

8
· 16

)
=

17

4
,

and the delta hedging formula states that to hedge X1 one needs to buy

h =
X1(H)−X1(T )

S1(H)− S1(T )
=

4− 16

18− 2
= −3

4

stocks (i.e. shortsell 3/4 stocks), starting with initial capital X0 = 17
4 and putting

the remaining cash X0 − hS0 = 17
4 + 3

4 · 6 = 35
4 in the bank.

2. Setting V1 = kB1 + hS1 equal to X1 gives the following system{
2k + 18h = 4

2k + 2h = 16

whose solution is k = 35
4 , h = −3

4 , which corresponds to starting with initial cash
kB0 + hS0 = 35

4 · 1−
3
4 · 6 = 17

4 .

Remark 56. Both of the above approaches can be generalised to work in general models,
not just the binomial one. With this in mind, let us compare them.

The replication equation approach is much more intuitive than the EMM one. Solving
the replication equation not only allows to find out whether a derivative is replicable,
it also explicitly provides a replicating strategy when there is one. The EMM method
instead tells us whether a derivative is replicable or not, and which are its prices, finding
actually finding the replicating strategy: for that one has to additionally apply the
delta-hedging formula.

When working on a finite probability space, solving the replication equation leads to
somewhat less computations than the EMM method if one has to price only one replicable
derivative; when there are two of more derivatives to be priced, the EMM method is
quicker. Indeed, while the first replication method requires to solve a system of equations
for each replicable derivative (and two systems of inequalities for each non-replicable
derivative, as explained below), the EMM method requires to solve a system only once
(to find the EMM), and then to evaluate an integral for each replicable derivative (and
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then also to find the range of a function for each non-replicable derivative). Analogously,
notice that when an option is not replicable, the replication equation cannot be solved, so
to find the AFP one has to solve two systems of inequalities to find instead the smallest
super-replication and largest sub-replication prices, which is at least twice as laborious
as solving the replication equation; so, also in this case it is quicker to use the EMM
approach.

There are at least two very considerable advantages of using EMMs. One is that,
when working in continuous-time models, the replication approach is hard to implement,
whereas the EMM approach is as straightforward as in discrete time; for example, when
working in the Black and Scholes model (which is complete), one has a nice formula72 for
the (unique) EMM Q (analogous to eqs. (50) and (51)), and to price a derivative with
payoff XT one simply needs to compute EQXT . Then, using a delta-hedging formula
somewhat analogous to eq. (47), one can use the formula for the price of the derivative
to find the hedging strategy.

Another advantage is that, when working with models with market imperfections,
principle 34 and proposition 42 do not hold, and yet one can generalise the EMM ap-
proach to hold also in this settings.

Remark 57. While it is easy to remember that to find Q we just need to solve S0 = EQS1,
it may be a good idea to remember by heart the formulas for p̃ and q̃; to do so, it helps
to think as follows. Assume that there is no-arbitrage; then p̃ and q̃ are strictly positive,
add up to one, and depend on the parameters d, 1 + r, u (not on S0) of the model, which
satisfy d < 1 + r < u. It is then reasonable that they should be given by how long the
subintervals [d, 1 + r] and [1 + r, u] are relative to the whole interval [d, u].

2.25 Lecture 3, The Fundamental Theorem of Asset Pricing

Given a probability space (Ω,A,P), if Q is another probability on (Ω,A), Q is said to be
absolutely continuous with respect to P (in symbols Q� P), if P(A) = 0 =⇒ Q(A) = 0
for any A ∈ A, i.e. if any null set of P is a null set of Q. The probabilities P,Q are said
to be equivalent (in symbols Q ∼ P) if Q � P and P � Q, i.e. if they have the same
null sets. Notice that, if Ω is finite (or countable) and every singleton {ω}, ω ∈ Ω, is
measurable, then Q � P holds iff P({ω}) = 0 implies Q({ω}) = 0; in particular, if Ω
is finite and P({ω}) > 0 for all ω ∈ Ω then any probability Q satisfies Q � P, and Q
satisfies Q ∼ P iff Q({ω}) > 0 for all ω ∈ Ω.

Thus, in section 2.24 we have proved that the (one-period) binomial model is arbitrage-
free if and only if there exists a probability Q on {H,T} which is equivalent to P and
such that S0 = EQS1 holds. This suggests the following definition and theorem. In all
that follows (Ω,A,P) is an arbitrary probability space (not assumed finite), on which
are defined some processes B,S = (S1, . . . , Sm) s.t. B > 0, and as usual W := W/B
denotes discounting.

We recall that, if Y is a positive random variable then its expectation EY ∈ [0,∞]

72More precisely, the formula is for the Radon-Nikodym density dQ/dP and, more importantly, this
allows to obtain the law of the underlying under Q, which is one what one needs to compute EQXT .
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is always defined73, though it could take the value ∞. If X is a random variable s.t.
E|X| < ∞ (i.e. the expectation of its absolute value is finite), then we say that X is
P-integrable, and we denote the (vector) space of all P-integrable random variables with
L1(P). This space matters since the expectation EX ∈ R is defined for all X ∈ L1(P). If
we want to clarify that the expectation is with respect to the probability P we can write
EP instead of E; thus, EQ denotes the expectation with respect to the probability Q.

Definition 58. A probability Q on (Ω,A) is a S-Martingale Measure (a.k.a. a Martin-
gale Measure for S/for (B,S), or a risk-neutral measure), if Q� P and

S
j
1 ∈ L1(Q), S

j
0 = EQ(S

j
1), ∀j = 1, . . . ,m. (53)

A martingale measure equivalent to P is called an Equivalent Martingale Measure.

We will normally just use the abbreviations MM and EMM for the above probabilities.
We will denote with

M(S) := {Q ∼ P : eq. (53) holds }, M(S) := {Q� P : eq. (53) holds }, (54)

the families of all EMM/MM for S, often abbreviated as M,M.

Remark 59 (MM in finite Ω). Any random variable defined on a finite Ω is integrable

with respect to any probability; thus, if Ω is finite, the assumption S
j
1 ∈ L1(Q) is

automatically satisfied. Moreover, because of our assumption that P({ω}) > 0 for all
ω ∈ Ω, Q� P is satisfied by any probability Q, and Q ∼ P holds iff Q({ω}) > 0 for all
ω ∈ Ω.

Remark 60 (Why Q ∼ P). It is obvious that, if for any reason we are to ever consider
another probability Q on (Ω,A), it is essential that Q � P. Indeed, since all that we
know about the model are statements74 that have probability 1 under P, i.e. we don’t
know anything about sets that have probability 0 under P, it is then essentially that
these sets have probability 0 also under Q (i.e. are irrelevant also under Q). Analogously
the property P� Q allows us to deduce that if some facts hold under Q, than they hold
under P. So, it is not surprising that the property Q ∼ P (i.e. Q � P and P � Q) of
being equivalent to P is important. Sometimes however it is useful to consider the (more
general) absolutely continuous martingale measures, i.e. MM s.t. Q� P.

Remark 61. Note that definition of arbitrage (and thus of arbitrage-free prices) does not
involve the full knowledge of the probability measure P (i.e. it does not depend on the
exact values which P(A) takes), as it only depend on the family of null75 sets of P. One
could then hope to switch from P to another measure Q ∼ P, under which all AFPs will
be the same, and such that using Q simplifies the calculations. This is exactly what we
have done, since using Q it suffices to use eq. (52) to price a derivative. A risk-neutral

73For example one can define it as supn∈N E[min(Y, n)], once E has been defined for bounded random
variables.

74Statements like ‘this strategy super-replicates that payoff’, or like ‘this strategy is an arbitrage’.
75A null set is a set of probability 0.
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measure is then just a mathematical object, which has no relation with the real world,
and it is to be seen as simply an artefact which conveniently allows us to simplify proofs
and calculations.

Remark 62 (Risk-Neutral measures). Since any investor is risk-averse, i.e. is only willing
to take more risks in exchange for higher returns, in any realistic model the average
return76 of any stock should77 be higher than the return of the bond, or equivalently

EP(S
j
1) > Sj0 for all j; here the average is taken using the physical measure P, i.e. the

probability that an investor considers appropriate to describe the probability of events
in the real world. This shows that the physical measure does not satisfy eq. (53); if the
investor was instead indifferent to risk, and all (s)he cared about was average returns,
than eq. (53) would hold. This is why a Q s.t. eq. (53) is called a risk-neutral measure,
and why eq. (52) holds: if both the stock and the bond have the same average return r,
than so does every portfolio of stocks and bonds. Though in reality the physical measure
is subjective (i.e. depends on the investor), in our models we instead just take one fixed P
for all investors; this would clearly not be a reasonable assumption if different investors
had different information about the market.

We have seen how to characterise the validity of the domination principle via the lack
of arbitrage. Generalising the result which we obtained in Section 2.24 for the binomial
model, the absence of arbitrage can also be characterised using EMMs, as follows.

Theorem 63 (1st Fundamental Theorem of Asset Pricing). Consider the linear one-
period market model (B,S) of eq. (5). This model is free of arbitrage ⇐⇒ M(S) 6= ∅.

In the very special and simple case of the binomial model, we have proved the im-
plication =⇒ of the above crucial theorem (normally abbreviated as FTAP), which is
the difficult one. We will not present here the proof of this implication for general Ω,
as it is very technical (we refer the interested reader to [?, Theorem 1.7]). However, we
will present one possible proof in the case where Ω is finite, using the following classic
theorem, which has an extremely intuitive statement.

Theorem 64 (Separation Theorem). If C,K ⊆ Rn are convex, C is closed and K is
compact then there exists z ∈ Rn, a, b ∈ R s.t.

x · z ≤ a < b ≤ y · z, ∀x ∈ C, y ∈ K.

In particular, if C is a vector space then x · z = 0 for all x ∈ C.

Proof. Here only the idea: just take z := c∗ − k∗, where c∗, k∗ are minimisers of the
optimisation problem minc∈C,k∈K ||c− k||, where || · || is the usual (Euclidean) norm on
Rn. If C is a vector space then x · z = 0 for all x ∈ C, since otherwise by linearity for
every b ∈ R there would exists x ∈ C s.t. x · z > b, a contradiction.

76The return of a portfolio M is the random variable R defined by the equation VM
0 (1 +R) = VM

1 .
77In our models we do not assume that E(S

j
1) > Sj

0 holds, since this would not help us in any way.
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The above separation theorem can be generalised to many78 infinite dimensional vector
spaces (e.g. to Banach spaces), in which case it is known as the Hahn-Banach theorem,
which is probably the most important theorem in analysis.

Proof of the 1st FTAP. (⇐=) Let us assume by contradiction that h is an arbitrage, so

V
0,h
1 ≥ 0 P a.s. and so Q a.s., and {V 0,h

1 > 0} is not a null set under P and thus also

under Q; it follows that EQ(V
0,h
1 ) > 0. This contradicts the fact that, since Q is a MM

for (B,S),

EQ(V
0,h
1 ) = h · (EQ(S1)− S0) = 0.

(=⇒) We only sketch the proof of this implication, and only for finite Ω = {ωi}ni=1.
By eq. (9) the set W of discounted wealths attainable at cost 0, and the set Rn+ \ {0},
are disjoint, so a fortiori W ∩∆n = ∅, where ∆n := {q ∈ Rn+ :

∑n
i=1 qi = 1} is compact

and convex. From theorem 64 it follows that ∃z s.t. 0 = w · z < b ≤ y · z for all
w ∈W, y ∈ ∆n. Since the elements (ei)i of the canonical basis of Rn belong to ∆n, this
implies 0 < ei · z = zi for all i, so c :=

∑n
i=1 zi > 0. Thus q := z/c ∈ M, since 0 = w · q

means 0 = EQX1 for all X1 ∈W .

Remark 65. Theorem 63 gives us one way to prove whether there exists an arbitrage:
one needs to solve the system of linear equations

1n · q = 1,Mq = 0, q ∈ Rn

and then impose the condition qi > 0 for all i to compute the set of q ∈M.
Here is yet another way. Recall that

M = {q ∈ Rn : qi > 0 ∀i, 1n · q = 1,Mq = 0},

and define

D := {z ∈ Rn : z ≥ 1n,Mz = 0}. (55)

Since the function z(q) := 1
mini qi

q maps M to D, and the function q(z) := 1∑
i zi
z maps

D to M, we see that M 6= ∅ iff D 6= ∅, and so by theorem 63

∃ arbitrage ⇐⇒ D = ∅. (56)

This is useful since D (unlike M) is a polyhedron, so to determine if it is empty we
just need to solve a LP (the feasibility problem); so, this second method is in a way
better than the first, when working on a finite probability space. Of course, in such a
setting, one may as well attack the problem directly, as done in section 2.16; this is not
harder, and has the added advantage of explicitly computing an arbitrage when there
is one. However, if working with an infinite probability space (which is essential in the
continuous-time setting) theorem 63 proves to be an invaluable result, as it is the way
in which one proves that a model admits no arbitrage.

78In holds for locally-convex topological vector spaces.
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Analogously to theorem 63, one can use martingale measures to characterise the exis-
tence of a uniform arbitrage (i.e. the failure of the weak domination principle) as follows.

Theorem 66. Consider the linear one-period market model (B,S) of eq. (5), and assume
that Ω is finite. In this model there exists no uniform arbitrage ⇐⇒ M(S) 6= ∅.

Now we present only the proof of the simple implication⇐=. If Ω is finite, the opposite
implication can be easily proved using the theory of linear programming (in this setting
also theorem 63 can be proved using linear programming, though its proof is harder).
The correct way to generalise theorem 66 so as to have a statement for general (infinite)
Ω is considered in [?, Theorem 3.9].

Proof. (⇐=) Let us assume by contradiction that h is an uniform arbitrage, so V
0,h
1 ≥

c > 0 P a.s.. and so79 Q a.s.; it follows that EQ(V
0,h
1 ) ≥ c > 0. This contradicts the fact

that, since Q is a MM for (B,S),

EQ(V
0,h
1 ) = h · (EQ(S1)− S0) = 0.

Remark 67. There many possible notions of arbitrage which have been studied in the
literature, and ultimately one should pick one based not just on the financial interpre-
tation but also choosing a notion that leads to a good mathematical theory (e.g. a nice
characterisation as in theorem 63). Thus, normally people choose either the notion of
no free lunch with vanishing risk, or the notion of no unbounded profit with bounded
risk, which have been characterised with a FTAP-like theorems in [?] and [?]. These
differences however are too technical to be of interest to us, and what we care about
is theorem 63, not theorem 66. We have mainly mentioned the notion of uniform arbi-
trage to draw attention to the following details: the difference between the domination
principle and the weak domination principle, and correspondingly between EMM and
MM, and between the open and closed intervals (d(X), u(X)) and [d(X), u(X)] of prices,
appearing in Section 2.26, for which no arbitrage (either standard or uniform) exists.

2.26 Lecture 4, The Risk Neutral Pricing Formula

We assume throughout that we are working in the linear one-period market model (B,S)
of eq. (5). The following immediate corollary of theorem 63 is most important.

Corollary 68 (Risk-Neutral Pricing Formula). The set of arbitrage-free prices for an
illiquid derivative with payoff X1 in a one-period arbitrage-free market model (B,S) is

AFP(X1) = {EQ[X1] : Q ∈M(S) and EQ[|X1|] <∞}.

79Since Q� P, the set {V 0,h
1 < c} is also a null set under Q.
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Proof. By theorem 63 the setM(S) is non-empty, and X0 = X0 is an AFP for X iff the
market (B,S,X), where X is traded at price X0 at time 0, has no arbitrage, i.e. iff the
set M(S,X) ⊆ M(S) is also non-empty. The thesis then follows from the fact that by
definition Q ∈M(S) belongs to M(S,X) iff EQ[|X1|] <∞ and X0 = EQ[X1].

The same proof, applied using theorem 66 instead of theorem 63, leads to following
alternative version of the RNPF.

Corollary 69 (Risk-Neutral Pricing Formula). If (B,S) is a one-period market model
with no uniform arbitrage, based on a finite80 probability space, the set of prices for an
illiquid derivative with payoff X1 for which the extended market (B,S,X) has no uniform
arbitrage equals

{EQ[X1] : Q ∈M(S) and EQ[|X1|] <∞}. (57)

Remark 70. It follows from corollary 68 and proposition 42 that the price bounds for X
are given by

u(X) = sup{EQ(X1) : Q ∈M(S),EQ[|X1|] <∞}, (58)

d(X) = inf{EQ(X1) : Q ∈M(S),EQ[|X1|] <∞}, (59)

The sup and inf in eqs. (58) and (59) are attained if and only if X1 is replicable. Indeed,
by corollary 73 they are trivially attained if X1 is replicable. If instead X1 is not
replicable, by proposition 42 the set of its AFPs is the open interval (d(X), u(X)),
and so by corollary 68 {EQ[X1] : Q ∈ M(S)} = (d(X), u(X)), which does not have a
minimum nor a maximum.

Remark 71. Assume that Ω = {ωi}ni=1 is finite, so M is (identified with) the polyhedron

M = {q ∈ Rn : q ≥ 0,1n · q = 1,Mq = 0},

where 1Tn denotes the transpose of the vector with n components all equal to 1, and as

usual Mj,i := (S
j
1 − S

j
0)(ωi). In this case, M is compact: any polyhedron is obviously

closed, and M is bounded since M ⊆ [0, 1]n.
If Q ∈M, then Q ∈M iff the inequalities Q(ωi) > 0 are satisfies strictly for all i, and

so M is (identified with) the set

M = {q ∈ Rn : qi > 0 ∀i, 1n · q = 1,Mq = 0}.

If R ∈ M then Qt := tR + (1− t)Q ∈ M for any t ∈ (0, 1], and since81 Qt → Q as t ↓ 0
we find that M, if not empty82, is dense in M. Thus, if M 6= ∅, M is83 the closure of
M.
80If Ω is not finite, one should assume not the absence of uniform arbitrage, but rather the absence of

weak instantaneous profit, since this is equivalent to M being non-empty, see [?, Theorem 3.9].
81With convergence in the sense of vectors in Rn, i.e. Qt(ωi)→ Q(ωi).
82It can of course happen that there exists MMs but there do not exists any EMMs: for example this

happens in the binomial model with d = 1 + r < u, as it can easily be proved directly (is also follows
from theorems 38 and 66).

83Since M is dense in M, and M is closed.
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Remark 72. Assume that Ω is finite. Then, any random variable on Ω is integrable with
respect to any probability, so the sup and inf in eq. (58) and eq. (59) are over the set of
all Q ∈ M(S). If we assume that (B,S) is arbitrage-free, then M is the closure of M
(by theorem 63 and remark 71), and so we can equivalently84 replace EMM with MM
in eq. (58) and eq. (59). This is convenient for two reasons.

First, in this case the sup and inf are then attained: since Q 7→ EQ(X1) is (linear and
thus) continuous, its inf and sup on the compact set M are attained. In particular, the
set which appears in eq. (57) is the closed interval [d(X), u(X)]. The inf and sup are
attained by MM which are not equivalent to P, by remark 70.

Second, M being a polyhedron, eqs. (58) and (59) state that we can obtain the price
bounds as a solution to the LPs

u(X) = max{b · q : q ∈M}, d(X) = min{b · q : q ∈M}, (60)

where b is the vector X1 (i.e. bi = X1(ωi) for i = 1, . . . , n). This gives us an alternative
to using the LP eq. (32) to calculate the price bounds.

We can easily compute if X1 is replicable without even having to find the replicating
strategy (by solving the replication equation), as follows.

Corollary 73 (Characterisation of replicable derivatives). X1 is replicable ⇐⇒ EQ[X1]
is constant across all Q ∈M(S) s.t. EQ[|X1|] <∞.

Proof. This trivially follows from proposition 42 and corollary 68.

The following simple characterisation of complete models is often called the 2nd Fun-
damental Theorem of Asset Pricing.

Corollary 74. Let (B,S) be a market model free of arbitrage. Then (B,S) is complete
⇐⇒ the EMM is unique (i.e. M(S) is a singleton).

Proof. (⇐=) If the EMM Q is unique then by corollary 73 any derivative is replicable,
i.e. the market is complete. (=⇒) Given an arbitrary A ∈ A, since the derivative with
payoff X1 = 1A is replicable, by corollary 68 we have that, given any Q1,Q2 ∈M(S),

Q1(A)/(1 + r) = EQ1
[X1] = EQ2

[X1] = Q2(A)/(1 + r).

This shows Q1(A) = Q2(A) for all A ∈ A, i.e. Q1 = Q2, i.e. M(S) is a singleton.

84Since the function Q 7→ EQ(X1) is (linear and thus) continuous, its inf and sup overM yield the same
value as over its closure M.
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2.27 Lecture 5, Dividends

To simplify matters, we have so far ignored a complication which presents itself when
pricing options whose underlying is a stock or a bond. Some85 companies, instead of
investing all of its profits (in its own operations, in the stock market, etc.), choose to
hand out some of them in cash to its share-holders; such payments are called dividends,
and are of the two main reasons why people buy stocks (the other being the hope to
realise capital gains, i.e. to be able to resell the shares at a higher price at a later
time). The stock-holder can then reinvest such cash in the same stock by buying more
shares, or deposit it in the bank account, or use it in other ways. Although the size
of such payments (called dividend rate, or simply just dividend), and times of payment
(called ex-dividend dates), can depend on several quantities (time, stock price, market
conditions, etc.), in general the dividends get paid every 3 months, always in the same
amount.

Analogously, a bond can specify that its buyer is entitled not just to receive a large
payment (called principal, or face value, or par value, or simply par) at maturity, but also
smaller payments (called coupons) at intermediate times. A bond paying no coupons is
called a zero-coupon bond. Bonds can have variable coupons, but many bonds pay fixed
coupons, every 6 months.

Of course, paying out dividends decreases the value of the shares by the same amount.
Thus, if we denote with S the price of one share just after the dividend D is paid (called
ex-dividend, or post-dividend) and V the price of one share just before the dividend D
is paid (called cum-dividend), then clearly V = S +D, S ≥ 0, D ≥ 0.

Let us now mention some complications created by considering dividends, in relation
to arbitrage, numeraire, short-selling, and option pricing.

To define arbitrage, one has to keep in mind that the value of a portfolio holding one
share depends also of the value of the associated dividends, and of how they have been
reinvested. In particular, when working in a one-period model, it is the cum-dividend
price that one has to use in order to determine whether there exists an arbitrage. For
example, consider the one-period binomial model with r = 3, one asset with initial
price S0 = 2, and ex-dividend price S1 which can take values 4, 8, and assume that the
dividend is the constant D = D1 = 2 (paid at time 1; no dividend is paid at time 0).
Then this model is arbitrage free, even if the two values u, d taken by S1/S0 do not
satisfy d < 1 + r < u, because what matters is that the two values u′, d′ taken by V1/V0

do indeed satisfy d′ < 1 + r < u′ (since d′ = (4 + 2)/2 = 3, 1 + r = 4, u′ = (8 + 2)/2 = 5).
Analogously, one should use V , not S, as a numeraire, because it is V which represents

the value of a portfolio, not S.
We then point out that after you short-sell a share, when you have to return the

share to the broker you borrowed it from, you owe him/her also compensation for the
dividends issued by the stock in the meantime.

We now show with an example how the pricing of options is affected by dividends,

85Normally only well established companies, with predictable profits, pay dividends, whereas companies
in the early stages of development prefer to invest any profits back into their business to grow faster.
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by calculating the forward price F of a stock paying dividends in a one-period model.
Clearly F depends on the dividend D, because while the forward contract pays S1 − F ,
which does not depend on D, the stock does pay dividends. Notice that if we buy one
share at cost S0, while borrowing F+D

1+r from the bank, we replicate the payment of S1−F
of the forward contract, since the final wealth corresponding to this trading strategy is

(S1 +D)− (1 + r)

(
F +D

1 + r

)
= S1 − F.

Since the initial cost of such replicating strategy is S0 − F+D
1+r , setting this to 0 shows

that the forward price of S is F = S0(1 + r)−D = 2 · (1 + 3)− 2 = 6, which does indeed
depend on D as expected.

3 Multi-Period models
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Week 6
3.1 Lecture 1, Measurability

We will consider in this section multi-period market models. To consider these, we need
to consider the notion of a stochastic processes; this is a family X = (Xt)t∈I (i.e. a
function I 3 t 7→ Xt) of random (real) numbers or vectors, all defined on the same
probability space (Ω,A,P), and indexed by some set I. In the case of real numbers,
Xt is a random variable; in the case of vectors in Rn, Xt = (X1

t , . . . , X
n
t ) is a random

vector, i.e. a finite family of random variables.
When we write that two processes X,Y satisfy X ≤ Y we mean that Xt ≤ Yt holds

for all t ∈ I a.s., i.e.

P({ω : Xt(ω) ≤ Yt(ω)∀t ∈ I}) = 1; (61)

notice that the condition Xt ≤ Yt holds a.s. for all t ∈ I, i.e.

P({ω : Xt(ω) ≤ Yt(ω)}) = 1, ∀t ∈ I,

is equivalent86 to the condition in eq. (61) whenever I is countable (like when I = T),
and thus also87 when I = [0,∞) if X,Y are continuous (but not in general). Analogous
definitions are used for the relations =,≥, <,> between processes.

Normally one considers I ⊆ [0,∞] as representing time: now we will consider the
case I = T := {0, 1, . . . , T} (in continuous time one takes I = [0, T ]), with T ∈ N (one
could also consider T = ∞, but we won’t as it would lead to complications). Thus our
multi-period market model will be described by the (vector-valued) stochastic process
(B,S1, . . . , Sm) indexed by T, where B > 0 represents the value of the bond and each
Sj the value of the jth underlying.

One new difficulty is that we need to introduce a way to express, using mathematics,
the intuitive concept that a trading strategy (K,H) = (Kt, Ht)t∈T is non-anticipative,
i.e. for each t, the random quantities Kt, Ht can depend only on the past, i.e. on informa-
tion known (before or) at time t. We could do this by declaring what is the set of random
variables St which are known at time t, and then asking that (Kt, Ht) is a (non-random)
function of those random variables, so that all the randomness in (Kt, Ht) comes from
St, i.e. once the value of all random variables in St is known, the value of (Kt, Ht) is
known, is not anymore random. So for example if we assume that St = {Bu, Su}u∈T,u≤t,
we could ask that for every t there exists a function f (which can depend on t) s.t.

(Kt, Ht) = f(t, B0, S0, . . . , Bt, St).

86Since the union of countably many null sets (i.e. sets of probability 0) is a null set.
87Because the set Q ∩ [0,∞) is countable, and by the continuity assumption

{ω : Xt(ω) ≤ Yt(ω) ∀t ∈ [0,∞)} = {ω : Xt(ω) ≤ Yt(ω) ∀t ∈ Q ∩ [0,∞)}
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The above definition has the problem that, for some function f , the quantity

f(t, B0, S0, . . . , Bt, St)

is not a random variable. This problem is solved by restricting f to being a Borel-
measurable function; let us briefly review what this means, by also introducing the
concept of generated σ-algebra, which we will also need later on. The following two
remarks are highly technical, and the reader should not worry about the proofs of any
statements made therein.

Remark 75 (Generated sigma algebra). It follows trivially from the definition that the
intersection G := ∩j∈JGj of σ-algebras Gj , j ∈ J , where J is any set, is a σ-algebra.
Thus, given an arbitrary collection C of subsets of Ω, one can define the σ-algebra σ(C)
generated by C as being the intersection of all σ-algebras which contain C (there exists
at least one such σ-algebra: the family of parts of Ω, i.e. of all subsets of Ω). It is
obviously the smallest σ-algebra containing C, meaning that if C′ ⊇ C is a σ-algebra then
C′ ⊇ σ(C).

Given f : A → B and a σ-algebra B on B, the family {f−1(B) : B ∈ B} is a σ-
algebra, denoted by σ(f). If A is a σ-algebra on A, then f is said to be A/B-measurable
if σ(f) ⊆ A. More generally, given fj : A→ B, j ∈ J , the family of sets

∪j∈J{f−1
j (B) : B ∈ B},

is not necessarily a σ-algebra, but one can consider the σ-algebra it generates, which is
denoted with σ((fj)j∈J); it is obviously the smallest σ-algebra A on A for which every
fj , j ∈ J is A-B measurable.

Remark 76 (The Borel σ-algebra). If C is the family of all open sets of Rn, the generated
σ-algebra σ(C) defined in remark 75 is called the Borel σ-algebra, and denoted with
B(Rn). One could equivalently take many other choices of C to generate the Borel sets,
e.g. the family of all closed sets, or of all rectangles88, or of all balls89; one could even
additionally impose that each set is bounded, that rectangles/balls are open (or closed),
and that each interval has rational endpoints and each ball has rational centre and radius.
Recall that a function X : Ω → Rn defined on the probability space (Ω,A,P) is called
a random vector (or random variable, if n = 1) if it is A/B(Rn)-measurable. One can
show that

σ(X) := {X−1(B) : B ∈ B(Rn)}

equals
σ(X1, . . . , Xn) := σ(∪ni=1{X−1

i (B) : B ∈ B(R)}),

and so X is a random vector iff every component Xi of X = (Xi)
n
i=1 is a random

variable. A set B ⊆ Rn is called Borel -measurable if B ∈ B(Rn), and a function
f : Rn → Rk is called Borel -measurable if it is B(Rn)/B(Rk)-measurable. In this class,

88A rectangle R ⊆ Rn is a set of the form R = I1 × . . .× In, where each Ii, i = 1, . . . , n is an interval.
89A ball B ⊆ Rn is a set of the form {x ∈ Rn : ||x − c|| < r} (open ball) or of the form {x ∈ Rn :
||x− c|| ≤ r} (closed ball), where c ∈ Rn is the center, r ≥ 0 the radius, and || · || the Euclidean norm.
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and throughout much of mathematics, Rn is always endowed with its Borel σ-algebra,
so one can simply state that B ⊆ Rn and f : Rn → Rk are measurable to mean Borel-
measurable; alternatively, one can also simply say Borel, instead of Borel-measurable.
Because the composition of measurable functions is measurable, f(X) is a random vector
and g ◦ f is Borel if X is a random vector and f, g are Borel (where g : Rk → Rm).
Because the Borel σ-algebra is ‘very big’, it is very hard to construct a non-Borel set,
and a non-Borel function, so essentially you will never encounter them (unless you search
for counter-examples in a book); for example, any continuous function is Borel, and the
(pointwise) limit of Borel functions is Borel. However, unfortunately one really has to
make the assumption of Borel-measurability, because one cannot define a reasonable
notion of volume (Lebesgue measure) on the σ-algebra of all subsets of Rn, e.g. because
of the Banach-Tarski paradox (look it up, it is insanely awesome!).

Remark 77. In probability and measure theory, one always identifies sets with {0, 1}-
valued functions, using the bijection

A 7→ 1A =: X, with inverse X 7→ {ω : X(ω) = 1} =: A,

where the function

1A(ω) :=

{
1 if ω ∈ A
0 if ω ∈ Ω \A

is called the indicator of A.

It is possible to reformulate the above condition in an equivalent way which is less
intuitive, but more convenient to work with, as we show in the next lemma.

Lemma 78 (Doob-Dynkin). Suppose X and Y are random vectors with n and k com-
ponents, defined on the measurable space (Ω,A), then the following are equivalent:

1. There exists a Borel function f : Rk → Rn such that X = f(Y )

2. X is σ (Y )-measurable, i.e. σ (X) ⊆ σ (Y )

Proof. The implication (1) =⇒ (2) is trivial. While we won’t give a full proof of the
opposite implication (which can be found in any book on measure theory), we sketch
here the idea. Given a σ-algebra G, obviously A ∈ G iff 1A is G-measurable. As we
have characterised the sets in σ(Y ) as being those of the form {Y ∈ B} := Y −1(B), for
some B ∈ B(Rk), a set A is in σ(Y ) iff 1A = 1B(Y ) for some B ∈ B(Rk). Thus, by
remark 77, we proved the thesis when X is a {0, 1}-valued random variable. By taking
linear combinations of such functions, we see that the lemma holds whenever X takes
finitely many values. By taking limits of such functions, the results holds for any X.

To verify the condition in lemma 78 becomes particularly easy when Y only takes
countably many values {yn}n∈N, using the next simple lemma.

Lemma 79. Given random vectors X,Y on the same measurable space (Ω,A), if Y only
takes countably many values {yn}n∈N then the t.f.a.e.
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1. There exists a function f : Rn → Rk such that X = f(Y )

2. X takes a constant value xn on each set of the form {Y = yn}, n ∈ N.

In this case one has to choose f s.t. f(yn) = xn for all n ∈ N, and can choose f = 0 on
Rk \ {yn}n∈N, in which case f is Borel-measurable.

Proof. If X = f(Y ) then X = f(yn) on {Y = yn} for each n ∈ N. Conversely, if X = xn
on {Y = yn} for each n ∈ N, then defining f as

f(y) :=

{
xn if y = yn, n ∈ N
0 if y ∈ Rk \ {yn}n∈N

we obtain a function f s.t. X = f(Y ). Such f is trivially Borel, since any set of the
form f−1(B) is of the form ∪n∈K{yn} or of the form (∪n∈K{yn}) ∪ (Rk \ {yn}n∈N) (for
some K ⊆ N), and every singleton is a Borel set.

Because of lemma 78, in probability theory, information is modelled using σ-algebras,
and we can interpret σ(Y ) as encoding all the information contained in Y . Since we
assume that information accumulates over time (i.e. that no information is ever lost), we
should consider a σ-algebra Ft (which represents the information known at time t) which
is increasing in t. We can now formalise the above discussion with some definitions.

Definition 80. A family F = (Ft)t∈T of σ-algebras is called a filtration if Fs ⊆ Ft for
all s ≤ t, s, t ∈ T.

Definition 81. The stochastic process X = (Xt)t∈T is said to be adapted to the filtration
F = (Ft)t∈T (or F-adapted) if Xt is Ft-measurable for all t ∈ T. The natural filtration
generated by a process X is the smallest filtration FX to which X is adapted, i.e. FXt =
σ((Xu)u≤t,u∈T).

So, given a market model (B,S) on some probability space (Ω,A,P), we will always
endow such space with a filtration F to which (B,S) is adapted: unless stated otherwise,
we will choose the natural filtration of (B,S). It could make sense to include a larger
filtration, as information other than past asset prices could be of value in determining
future asset prices (e.g. information about weather, political events etc.). The quadruple
(Ω,A,F ,P) is then called a filtered probability space; in fact, since the filtration is so basic
to the definition of a stochastic process, the more modern term for a filtered probability
space is a stochastic basis.

When trading, we will only consider strategies (K,H) which are adapted to F (since
(K,H) should be non-anticipative), and a process X represents the stream of payoffs
of a derivative iff it is adapted to the filtration generated by the underlying and the
bond. Moreover, the interest rate Rt > −1 which one receives for investing money in the
bond between time t and time t+ 1 should be known at time t, i.e. R must be adapted;
thus Bt = B0(1 + R0) · . . . · (1 + Rt−1) should be known at time t − 1, i.e. B must be
F-predictable, i.e. Bt is Ft−1-measurable for all t ∈ T, t > 0. One can interpret the bond

69



being predictable as being less risky: its value is known one time step in advance. To
be precise Ht and Rt are not defined at time t = T .

We warn the reader that some authors call Ht+1 what here we call Ht (i.e. the number
of shares between time t and time t + 1), and correspondingly they demand that H be
predictable; this is just a matter of taste.

We will often assume that Rt = r is constant in time (and so Bt = B0(1 + r)t)
and deterministic (i.e. not random); while this is of course an unrealistic and extreme
over-simplification, it can be a convenient one.

3.2 Lecture 2, Self-financing portfolios

If at time t we own Hj
t ∈ R units of the jth asset with price Sjt , and Kt units of the bond

with price Bt, at time t our portfolio’s value will be KtBt +Ht · St, and at time t+ 1 it
will be KtBt+1 +Ht ·St+1. At time t+ 1 we will then re-adjust our portfolio, and decide
to own Kt+1 bonds and Ht+1 shares between time t + 1 and t + 2. The values of our
portfolio just before and just after this re-adjustment at time t+1, are KtBt+1 +Ht ·St+1

and Kt+1Bt+1 +Ht+1 · St+1, and of course they should be equal, since we are assuming
that while trading we are not consuming our wealth nor investing new wealth, we are
just re-investing, shuffling it around between the bonds and the various underlying, the
wealth that we have thus far accumulated by trading when starting from some initial
wealth x. Thus, we require the our portfolio (K,H) to be self-financing, i.e. to satisfy
the self-financing condition

KtBt+1 +Ht · St+1 = Kt+1Bt+1 +Ht+1 · St+1, t ∈ T, t < T. (62)

In particular, while to invest we need to choose the values of the variables Kt, H
1
t , . . . ,H

m
t

for each t ∈ T, t < T , not all these random variables are free ones, since they need
to satisfy the T constraints of eq. (62). Since B > 0, we could consider eq. (62) as
determining the value of Kt+1 given the values of Kt, Ht, Ht+1, for every t, in which case
the variables K0 and Ht, t ∈ T, t < T would be chosen freely and the value of Kt for
t ∈ T∩ (0, T ) would be determined by induction: knowing the value of Kt we could then
calculate that of Kt+1 as

Kt+1 =
KtBt+1 + (Ht −Ht+1) · St+1

Bt+1
. (63)

Once calculated K by induction from the value of K0 and H, we could compute the
wealth as KtBt +Ht ·St. Doing this would be laborious; it would be much preferable to
obtain instead formula for the wealth V K,H

t (and possibly also for Kt) as a function of
K0, H. This can be done, as follows.

We can express the change in value of the portfolio as the sum of the change in value
of the investments in bonds, plus the change in value of the investments in stocks, as
follows

Vti+1 − Vti = Kti(Bti+1 −Bti) +Hti(Sti+1 − Sti);
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since Bti+1 − Bti = Btir, and KtiBti = Vti − HtiSti is the value of the investments in
bonds at time ti, we have that

Kti(Bti+1 −Bti) = KtiBtir = (Vti −HtiSti)r,

and so

Vti+1 − Vti = Hti(Sti+1 − Sti) + (Vti −HtiSti)r (64)

Summing over i, where 0 = t0 < t1 < . . . < tk, we get

Vtk − V0 =

k−1∑
i=0

Hti(Sti+1 − Sti) + (Vti −HtiSti)r, (65)

since the telescopic sum
∑k−1

i=0 Vti+1 − Vti equals Vtk − V0. The above equation, together

with the identity V0 = K0B0 +H0 · S0, allows us to express V K,H
t as a function only of

K0, H; moreover, since it shows that Vtk−V0 only depends on H, it suggests considering
as variables the initial capital x := V0 (and the number of assets Ht, t ∈ T, t < T )
instead of K0, as this makes the formula for V x,H

t a little simpler and, most importantly,
explicitly keeps track of x, which is a quantity of greater interest than K0. If we work
in discounted terms, we can express the wealth even more conveniently: indeed eq. (7)
shows that the discounted equivalent of eq. (64) is the simpler equation

V
x,H
ti+1
− V x,H

ti = Hti · (Sti+1 − Sti),

which summed over i gives the neat formula

V
x,H
t = x+ (H · S)t, t ∈ T (66)

where the ‘discrete-time stochastic integral’ (a.k.a. martingale transform) of H with
respect to Y is defined as

(H · Y )t :=
t−1∑
s=0

Hs · (Ys+1 − Ys), t ∈ T (67)

where the · on the RHS (appearing after the term Hs) denotes the dot product in Rm
(both H and Y are Rm-valued processes).

Either way, using (K0, H) or (x,H) as variables, and working in discounted terms
or not, we can easily and directly express the wealth at time t, without having to first
compute the number of bonds we need to buy. If we actually want to compute Kt, we
can do so using the wealth Vt (or V t) at time t, which we just calculated, using the
formula KtBt = Vt −Ht · St, so that

Kt =
1

Bt
(Vt −Ht · St) = V t −Ht · St.

So, from now on, we will always work in discounted terms and use (x,H) to describe a

portfolio. Notice that, as H,B, S are adapted, so are V
x,H

and K...as it should be the
case: they should be known at time t!
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3.3 Lecture 3, Arbitrage and arbitrage-free prices

In a multi-period model (Bt, St)t∈T (where St = (S1
t , . . . , S

m
t )), the notion of arbitrage

is essentially unchanged: a trading strategy H (i.e. an adapted process with values in

Rm) is an arbitrage if V
0,H
T ≥ 0 a.s. and V

0,H
T is not a.s. = 0.

When we consider a derivative which has a payoff XT only at time T , we need to
determine the fair value Xt of X at all t ∈ T, t < T . If T = 1 (one-period model) this
means we only have to determine X0, which is deterministic; if T > 1 (multi-period
model) we have to determine X0, X1, . . . , XT−1, where Xt will be known at time t; since
normally we prefer to talk about processes as being defined for all t ∈ T, we will use the
following definition.

Definition 82. An adapted process (Pt)t∈T is an Arbitrage Free Price for the derivative
with payoff XT at maturity T in the arbitrage-free market model (Bt, St)t∈T if PT = XT

and the enlarged market (Bt, St, Pt)t∈T is arbitrage-free.

From now on we will use the notation X instead of P to denote an AFP of X (we
didn’t do so in the above definition to be able to write PT = XT ). Clearly the above
definition when applied to a one-period model states that (X0, X1) is an AFP of X1

(in the sense of definition 82) iff X0 is an AFP of X1 (in the sense of definition 40), so
the two definitions essentially coincide. The following is the multi-period analogue of
theorem 36.

Theorem 83. In the linear multi-period market model (Bt, St)t∈T of eq. (66), the Dom-
ination Principle holds ⇐⇒ there exists no-arbitrage.

Proof. (Implication =⇒:) By definition, an arbitrage is an investment which, when
compared90 to the zero investment91 violates the strict domination principle (for t = 0).
(Implication ⇐=:) If the law of one price fails, there are two portfolios L = (x,G),M =
(y,H), with values V L, VM given as in eq. (66), s.t. V L

T = VM
T a.s. and yet V L

t is not a.s.
equal to VM

t . We can92 then assume w.l.o.g that p := P({V L
t > VM

t }) > 0. Consider
then the portfolio N = (0, I), where

Is(ω) :=


0 if s < t

0 if s ≥ t, ω ∈ {V L
t < VM

t }
(Hs −Gs)(ω) if s ≥ t, ω ∈ {V L

t ≥ VM
t }.

(68)

Clearly93 I is adapted. To show that I is an arbitrage, use that, if s ≥ t, ω ∈ {V L
t ≥ VM

t },

V
N
s+1− V

N
s = Is · (Ss+1−Ss) = (Hs−Gs) · (Ss+1−Ss) = (V

M
s+1− V

M
s )− (V

L
s+1− V

L
s ),

90Considering the 0 investment as the first investment, an the arbitrage as the second one.
91i.e. to having no capital and doing nothing.
92Otherwise P({VM

t > V L
t }) > 0, so we can just reverses the roles of L and M .

93Since one can write the value of Is as a function of quantities that are known at time s.
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and otherwise V
N
s+1 − V

N
s = 0, and so summing over s we get that

V
N
T − V

N
0 = 1{V L

t ≥VM
t }((V

M
T − V

M
t )− (V

L
T − V

L
t )),

and since V
N
0 = 0 we get

V
N
T = 1{V L

t ≥VM
t }(V

M
T − V

L
T ) + 1{V L

t ≥VM
t }(V

L
t − V

M
t )). (69)

Since we assumed V L
T = VM

T a.s., we get V
N
T = 1{V L

t ≥VM
t }(V

L
t − VM

t ), which is ≥ 0 a.s.
and > 0 with probability p > 0, so I is an arbitrage.

Analogously, if the strict domination principle fails there are L = (x,G),M = (y,H)
s.t. V L

T ≤ VM
T a.s., the equality V L

T = VM
T does not hold a.s., and yet either V L

t ≤ VM
t

does not hold a.s. (i.e. P({V L
t > VM

t }) > 0), or V L
t = VM

t a.s.. It is easy to see that

also in this case I defined in eq. (68)) is an arbitrage, as eq. (69) expresses V
N
T as the

sum of two random variables which are both ≥ 0 a.s., and the second (resp. first) one
of which is not a.s. = 0 if P({V L

t > VM
t }) > 0 (resp. if V L

t = VM
t a.s.).

Theorem 83 establishes the link between the absence of arbitrage (a property about
what happens over the time span from 0 to T ) and the domination principle (a property
about what happens over the time span from t to T , for any t). It is then not surprising
that one can reduce the study of existence of arbitrage in multi-period models to one-
period models; this is indeed the message of the following theorem.

Theorem 84. There exists an arbitrage in the multi-period model (Bt, St)t∈T if and only
if there exists a s ∈ T, s < T such that there exists an arbitrage in the one-period model
(Bt, St)t=s,s+1.

Proof. We only prove the simpler implication ⇐=. Let the Fs-measurable random
variable As be an arbitrage in the one-period model (Bt, St)t=s,s+1, so that W :=
As · (Ss+1 − Ss) ≥ 0 a.s. and it not a.s. = 0. Consider then the strategy (Ht)t∈T,t<T
given by: Ht = 0 if t 6= s, Hs = As, which corresponds to doing nothing before time s, at
s ‘buying’ As shares (‘borrowing’ from the bank), at time s+ 1 ‘selling’ those As shares
(‘depositing94’ money in the bank) and then doing nothing, so that until maturity we
hold 0 shares. Then H is clearly an arbitrage in (Bt, St)t∈T, since it is adapted and its
payoff at time T is V 0,H

T = WΠT−1
t=s+1(1 +Rt), which is ≥ 0 a.s. and it not a.s. = 0, since

such is W , and R > −1.

3.4 Lecture 4, The multi-period binomial model

Let us now consider the multi-period binomial model. Just like in the one-period setting,
we consider only one underlying, whose price S at each time can jump to only two
possible values. Correspondingly, we can think of a coin being tossed at every time,
and determining the value to which S will jump to. To describe this, we can consider

94As usual if As < 0 we are actually selling −As shares and depositing money in the bank, etc.
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a process X representing the results of the coin toss: if at time n is we get Heads the
process takes the value Xn = H, and if Tails then Xn = T . From now on we will denote
maturity with N , not with T , and the trading strategy with G, not with H to avoid
confusion (as the symbols T,H are used for Tails and Heads). We can then build the
N -period binomial model on the following filtered probability space (Ω,A,F ,Pp):

1. Ω = ΩN := {H,T}N , i.e. ω = (ω1, · · · , ωN ) ∈ Ω with ωn ∈ {H,T} ∀n.

2. A := P(Ω) := all subsets of Ω.

3. F = (Fn)Nn=0 is the natural95 filtration of X, where Xn(ω) := ωn for any ω =
(ω1, · · · , ωN ) ∈ Ω, i.e. Xn is the projection from the product space Ω = {H,T}N
to the nth-component {H,T} in that product.

4. Given p ∈ (0, 1), define the probability Pp on {H,T} by setting Pp({H}) := p,
Pp({T}) := 1 − p. Given p = (pn)Nn=1 ∈ (0, 1)N , define Pp on Ω = {H,T}N as
ΠN
n=1Ppn , i.e.

Pp({(ω1, · · · , ωN )}) = ΠN
n=1Ppn({ωn}) for any ω = (ω1, · · · , ωN ) ∈ Ω,

and then P(A) =
∑

ω∈A P({ω}) for all A ∈ A. For example, if N = 2 then96

P(HH) = p1p2, P(HT ) = p1(1−p2), P(TH) = (1−p1)p2, P(TT ) = (1−p1)(1−p2).

Notice that Pp is a probability, since clearly Pp({ω}) ≥ 0 for every ω ∈ Ω (because
the product of positive numbers is positive), and Pp(Ω) = 1 (because97 1N = 1).

In what follows we will always consider processes on (Ω,A,F ,Pp). Notice that a process
Y is adapted if, for each n, Yn is a function of X(n) := (Xk)k≤n, or equivalently if Yn(ω)
it depends only on ω(n) := (ω1, . . . , ωn): it does not depend on (ωn+1, . . . , ωN ). In this
case we may write (slightly improperly) Yn(ω(n)) to mean the constant value Yn(ω′)
which Yn takes on the set {ω′ : X(n)(ω′) = ω(n)} =: {X(n) = ω(n)}. Analogously, we
may improperly98 write {HHT} to mean

{X(3) = HHT} := {ω′ : X(3)(ω′) = HHT} = {ω′ ∈ {H,T}N : ω′1 = H,ω′2 = H,ω′3 = T}.

We identify adapted processes with binary trees, as we now illustrate for N = 2. If Y
is an adapted process, i.e. Y0 is constant and Y1(ω) only depends on the value of ω1, we
can write its values on a binary tree as follows

95i.e. Fn := σ((Xk)k≤n) for all n.
96The expression P(HH) (and similar ones) is a convenient abbreviation for P({HH}).
97For example if N = 2 we get

Pp(ΩN ) = p1p2 + p1(1− p2) + (1− p1)p2 + (1− p1)(1− p2) = [p1 + (1− p1)][p2 + (1− p2)] = 12 = 1.

98This is improper since {HHT} is a subset of {H,T}3, not of {H,T}N .
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Y0

Y1(H)

Y2(HH)

Y2(HT )

Y1(T )

Y2(TH)

Y2(TT )

H

H

T

T

H

T

Conversely, writing on a binary tree some values, e.g.

8

16

32

8

4

8

2

H

H

T

T

H

T

identifies a unique adapted process Y which takes those values on those nodes, given by

Y0 = 8, Y1(H) = 16, Y1(T ) = 4, Y2(HH) = 32, Y2(HT ) = 8 = Y2(TH), Y2(TT ) = 2.

On (Ω,A,F ,Pp) we build the binomial market model (B,S) by asking that:

• the bond price process B is given by Bn = B0Πn−1
k=0(1 +Rk) for each n ∈ T, where

the interest rate process R > −1 is F-adapted.

• the price of the underlying is given by

Sn+1(ω) =

{
(SnUn)(ω) if Xn+1(ω) = H,

(SnDn)(ω) if Xn+1(ω) = T,
(70)

where the up and down factors Un, Dn are F-adapted processes s.t. 0 < D < U .

For example, in the 2-period setting, the stock price is given by

S0

S1(H) = U0S0

S2(HH) = S1(H)U1(H) = S0U0U1(H)

S2(HT ) = S1(H)D1(H) = S0U0D1(H)

S1(T ) = D0S0

S2(TH) = S1(T )U1(T ) = S0D0U1(T )

S2(TT ) = S1(T )D1(T ) = S0D0D1(T )

H

H

T

T
H

T
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Often we take the processes R,U,D to be constants r, d, u (i.e. deterministic and not
depending on time): this is the classic binomial model as considered by most authors.

The following theorem follows immediately from theorem 84, and the fact that in the
one-period binomial model with time index {n, n + 1} there is no arbitrage iff Dn <
1 +Rn < Un.

Theorem 85. The multi-period binomial model is arbitrage-free ⇐⇒ D < 1 +R < U .

3.5 Lecture 5, Example of pricing in the multi-period binomial model

Let us now show with an example how in the multi-period binomial model we can price
any derivative by replication, using the following method, called backward induction;
this shows in particular that the model is complete.

Using our knowledge of the one-period binomial model, we can determine the repli-
cating strategy Gn−1 and the wealth V x,G

n−1 at time n− 1 from the (known) wealth V x,G
n

at time n. Thus, if we start from n = N , at which time the wealth V x,G
N is known and

must equal the final payoff XN to be replicated, we can keep decreasing n until n = 1,
at which point we have computed Hn and V x,G

n for every n, and in particular we also
computed x = V x,G

0 .

Example 86. Consider the 2-period binomial model with stock price S described by this
tree

12

16

20

12

8

10

2

Consider now a derivative with maturity 2 whose payoff Y2 = f(S0, S1, S2) in the
present model is given by the following random variable:

?

?

10

8

?

4

12
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Let us work in the model where the interest rate R equals 0 (i.e. R0 = R1 = 0 a.s.),
which is only a very mild simplification99.

To price Y2, imagine that we are at time 1, that the first coin has been tossed and
resulted in Heads, i.e. ω1 = H. Then it is like if we were in a binomial model with 1
time period, i.e. the values of stock and derivative (S, Y ) are

(16, ?)

(20, 10)

(12, 8)

Thus, to compute the price Y1(H) we can apply our knowledge of the one-period
binomial model: we can replicate any payoff in a unique way, and the time 1 value of
the portfolio replicating Y2 knowing that ω1 = H is found using the risk neutral pricing
formula. To do so, we compute the up and down factors

U1(H) =
S2(HH)

S1(H)
=

20

16
=

5

4
, D1(H) =

S2(HT )

S1(H)
=

12

16
=

3

4

and from them we compute the ‘risk-neutral probability given {X1 = H}’

P̃1(H) :=
1 +R1 −D1

U1 −D1
(H) =

1 + 0− 3/4

5/4− 3/4
=

1

2
, Q̃1(H) := 1− P̃1(H) =

1

2

and we use them to evaluate the expectation under the ‘risk-neutral measure given
ω1 = H’ by taking ω1 = H in the formula

V x,G
1 (ω1) = EQ

[
Y2

1 +R1

∣∣∣X1 = ω1

]
:=

P̃1(ω1)Y2(ω1H) + Q̃1(ω1)Y2(ω1T )

1 +R1(ω1)
(71)

which gives

V x,G
1 (H) =

10 + 8

2
= 9.

Since V x,G
1 (H) = 9 equals the value (at time 1 and if ω1 = H) of a portfolio replicating

replicating Y2, by the law of one price Y1(H) = 9. we can also compute the value
G1(H) of the replicating strategy G at time 1 when ω1 = H by taking ω1 = H in the
delta-hedging formula

G1(ω1) :=
X2(ω1H)−X2(ω1T )

S2(ω1H)− S2(ω1T )
, (72)

which gives

G1(H) =
10− 8

20− 12
=

2

8
=

1

4
.

99Otherwise we would have to work in discounted terms, i.e. draw the tree of the discounted stock price
S and payoff Y 2, and price Y 2 in the binomial model with price S and interest rate 0.
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Analogously we can compute what happens when ω1 = T and find

U1(T ) =
5

4
, D1(T ) =

1

4
, P̃1(T ) =

3

4
, Q̃1(T ) =

1

4

and then the risk neutral pricing formula and the delta-hedging formula give

V x,G
1 (T ) =

3

4
· 4 +

1

4
· 12 = 6, G1(T ) =

4− 12

10− 2
= −1.

Remark 87. The quantity R2
1(Y2) = EQ[ Y2

1+R1
|X1 = ω1] which appears in eq. (71) repre-

sents the value at time 1 which, appropriately invested, replicates the payoff Y2 at time
2; in other words, R2

1(Y2) represents the value at time 1 of having the amount Y1 at time
2. Analogously one can consider the operator Rnk which, given a payoff Yn at time n,

returns its value Yk = Rnk(Yn) at time k ≤ n. Clearly RjiRkj = Rki for i ≤ j ≤ k, and so

Rki = RiRi+1 . . .Rk−1 for Rn := Rn+1
n ; thus, to compute Rki it is enough to be able to

compute the rollback operator

Rn(Yn+1)(ω1, . . . , ωn) = EQ
[
Yn+1

1 +Rn

∣∣∣X1 = ω1, . . . , X1 = ωn

]
, (73)

which we write more succinctly as

Rn(Vn+1) = EQ
[
Vn+1

1 + r

∣∣∣X1, . . . , Xn

]
,

and whose definition is entirely analogous to that of R2 which appears in eq. (71); we
will later see how more generally we can formally define EQ[Y |X], where Y is a random
variable, X a random vector, and Q a probability.

We can now add the values of Y1(H) = V x,G
1 (H) = 9, Y1(T ) = V x,G

1 (T ) = 6 in the
tree of Y as follows

?

9

10

8

6

4

12

To conclude, we just need use the one-period binomial model on the time {0, 1} to price
and hedge a derivative with payoff Y1. In other words, we consider the values of stock
and derivative (S, Y ) to be

(12, ?)

(16, 9)

(8, 6)
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from which we compute

U0 =
S1(H)

S0
=

16

12
=

4

3
, D0 =

S1(T )

S0
=

8

12
=

2

3

and the ‘risk-neutral probability’

P̃0 =
1 + r0 − d0

u0 − d0
=

1− 2/3

4/3− 2/3
=

3− 2

4− 2
=

1

2
, Q̃0 = 1− P̃0 =

1

2

and finally the initial value of a portfolio replicating Y1 (and thus Y2) is

x = V x,G
0 =

P̃0X1(H) + Q̃0X1(T )

1 + r0
=

1

2
(9 + 6) =

15

2

and the initial value of the replicating strategy is

G0 =
V x,G

1 (H)− V x,G
1 (T )

S1(H)− S1(T )
=

9− 6

16− 8
=

3

8
.

Remark 88. As the reasoning used to work out the above example 86 makes clear, the
N -period binomial model is complete, i.e. for any payoff XN at maturity N one can find
a replicating portfolio, i.e. a (x,G) s.t. V x,G

N = XN .

Given ω1 ∈ {H,T}, we have interpreted the quantities P̃1(ω1) and Q̃1(ω1) as ‘risk-
neutral probabilities, of {X2 = H} and of {X2 = T}, given {X1 = ω1}’; analogously we
interpreted P̃0 and Q̃0 as ‘risk-neutral probabilities of {X1 = H} and of {X1 = T}’. This
suggests that we should indeed define what is means to be a risk-neutral probability Q
on ΩN , and show that there exists a unique such Q which, for all ω1 ∈ {H,T}, satisfies

Q(H) = P̃0, Q(T ) = Q̃0, Q(X2 = H|X1 = ω1) = P̃1(ω1), Q(X2 = T |X1 = ω1) = Q̃1(ω1).
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Week 7
3.6 Lecture 1, Derivatives paying a cashflow

So far we considered only derivatives which provide a payoff PT at only one, deterministic
(i.e. non-random) time T = N ∈ N. We will now discuss derivatives which provide a
payoff Pt at any time t = 0, 1, . . . , T , where T ∈ N is still called expiry (or maturity).
The same approach applies when the derivative has a payoff at time t ∈ N, as long as the
infinite sums which come up in the computations converge. The process P = (Pt)t=0,...,T

is called the cashflow of the derivative, and must be adapted (to the underlying filtration
F = (Ft)t), since the amount that a derivative pays at time t should be known at time t.
As usual, though we called it ‘payoff’, the quantity Pt ∈ R does not need to be positive.
When Pt = 0 at all times t < T , then we are back to the previous case of a payoff only
at time T , so the derivatives paying a cashflow generalise those that have a payoff at one
time only.

To price derivative with a cashflow P one can work by replication, as usual. Indeed, a
derivative with a cashflow P can be seen as the sum over n = 0, . . . , N of derivatives with
payoff Pn at expiry n, so to replicate and price the cashflow one just needs to replicate
and price each derivative with only one payoff, and then sum up the results. Of course
the underlying reason why this works is our crucial assumption of linearity of the map
that given a portfolio outputs its value. Thus, denote with Pnk the value at time k ≤ n
of the derivative which only has payoff Pn at time n, and with Hn

k the number of shares
one should hold at time k to replicate it. Notice that the value of Pnk is defined only
for k ≤ n, since the derivative has expiry n, and analogously Hn

k is defined only for
k ≤ n− 1.

Clearly at any time we can only ask to replicate the future cash flows of a derivative,
so the replicating strategy Hk (of the derivative which pays the cashflow P ) at time k
must just replicate the future cash flows. Analogously, the value Vk at time k of the
derivative which pays the cashflow P equals the present value of its future cash flows.
Thus, in formulas

Hk =
N∑

n=k+1

Hn
k , Vk =

N∑
n=k

Dn
k . (74)

We already know how to compute such Pnk and Hn
k , as this deals only with a derivative

with payoff only at time n; thus, eq. (74) allows us to price the whole cashflow P .

3.7 Lecture 2, Derivatives with random maturity

We now want to consider derivatives with random maturity. We model such maturity
using the concept of random time τ , and of evaluating a process P at a random time,
which we now define. Throughout we consider a set I ⊆ R, which represents the time-
index ; when working in discrete-time we take I = N (or sometimes I = {0, 1, . . . , N});
when working in continuous time one analogously considers I = R+ (or I = [0, T ]).
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Definition 89. A random variable with values in I ∪ {∞} is called a random time.

We allow the random time to take the value ∞, to allow for the possibility that the
derivative pays nothing at all (this happens on the event {τ =∞}).

Given a process P = (Pi)i∈I , and a random time τ (all defined on the same probability
space), we define Pτ as the random variable which takes the value Pt on the event {τ = t},
for all t ∈ I, and takes the value 0 on the event τ =∞.

A derivative with random maturity τ is then simply a derivative with cashflow P ,
which has a non-zero payoff Pτ only at one random time τ (i.e. Pt(ω) = 0 whenever
t 6= τ(ω)).

For a derivative paying a cashflow P which is non-zero at at most one time τ , to know
whether τ(ω) ≤ n (i.e. that the derivative has already provided its payoff before time
n), it is enough to know what happens up to time n; we formalise this intuitive concept
using the following definition.

Definition 90. A random time τ is called a stopping time if {τ ≤ t} is Ft-measurable
for all t ∈ I.

Notice that if I = N then τ is a stopping time iff {τ = t} is Ft-measurable for all
t ∈ I; not so for I = R, since in this case the event {τ ≤ t} is given by the uncountable
union of the events {τ = s}, s ≤ t (which may be not measurable even if each of these
events is measurable).

For an example of a stopping time with I = N, consider an arbitrary derivative paying
a cashflow, modelled as the adapted process P . Then the 1st time of payment

τ1 := τ1(P ) := inf{t ∈ I : Pt 6= 0}

of P is a stopping time, as it follows from the identity

{τ1 = t} = {Pt 6= 0} ∩ (∩t−1
s=0{Ps = 0}),

which expresses {τ1 = t} as a combination of events which are Ft-measurable (since P
is adapted to F). As usual we are using here the definition inf ∅ := ∞; in particular
τ1 has values in N ∪ {∞}, and τ1(ω) = ∞ holds if and only if Pt(ω) = 0 for all t ∈ N.
Analogously the kth time of payment τk := τk(P ) := inf{t > τk−1 : Pt 6= 0} of P is a
stopping time for any k = 1, 2, . . ., as it follows by induction using the identity

{τk+1 = t} = ∪t−1
s=k−1

(
{τk = s} ∩ {Pt 6= 0} ∩ (∩t−1

u=s+1{Pu = 0})
)
.

Clearly saying that Pt = 0 for all t 6= τ for some stopping time τ is equivalent to saying
that 2nd time of payment τ2(P ) of P equals the constant ∞. In this case the derivative
can be considered as having just one payoff Pτ at one time τ , but with τ being random
(more precisely, τ will be the stopping time τ1(P )).

This suggests that it is possible to price it by replication up to time τ (which should
be considered as a random expiry), in the same way as in the case in which the expiry
was a constant. Indeed, though one could price and replicate derivatives with random
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expiry with the same method as for those paying any cashflow, it is simpler and quicker
to instead set up and solve the replication equation only up to time τ . In this case the
replicating strategy H and the value V of the derivative are defined only up to time
τ − 1 and τ respectively (as is the case when τ is a constant); alternatively, such values
(i.e. the values of Gt for t > τ − 1, and of Xt for t > τ) could be considered as being 0.

Any derivative paying a cashflow can be seen as sum of derivatives paying only at one
time. If we write such decomposition in the case of a derivative with random expiry we
get the decomposition Pτ =

∑N
n=0 Pn1{τ=n}, where Pn1{τ=n} only pays at time n ≤ N .

The fact that Pt = 0 for all but at most one values of t corresponds to the fact that the
payoff Pn1{τ=n} is not 0 for at most one n.

In most examples, τ is the hitting time of a set C relative to some process X, which
is either the price S of the underlying, or some functional thereof (e.g. the running
maximum Xt := supu≤t Su). In other words, normally τ is the first time X hits C,
i.e. τ := inf{k ≥ 0 : Xk ∈ C}. Clearly such τ is a stopping time if X is adapted, as it
follows from the identity

{τ = t} = {Xt ∈ C} ∩ (∩t−1
s=0{Xs /∈ C}).

Let us now consider an explicit example.

Example 91. In the binomial model N = 2, r = 0, S0 = 4, u = 2, d = 1
2 , find the price

X the option which pays (SN − 3)+ at time N if S never crosses the barrier U = 6
(i.e. St ≤ 6 for all t), and instead pays a different amount, called rebate, which in the
present example we assume to equal 2, at the time

σ := inf{k = 0, 1, 2 : Sk ≥ U}

that S crosses the barrier U .

(4, ?)

(8, 2)

(16, undefined)

(4, undefined)

(2, ?)

(4, (4− 3)+ = 1)

(1, (1− 3)+ = 0)

Figure 2: Tree of (S,X).

Let us now compute the price X of the derivative up to its expiry. Notice that the
time of expiry is not σ, since by definition σ = ∞ if (and only if) S never crosses the
barrier u = 6, and in this case the derivative has a payoff at time N = 2. Thus, the
expiry of this derivative is time τ := σ ∧N .

ω HH HT TH TT

σ(ω) 1 1 ∞ ∞
τ(ω) 1 1 2 2
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Figure 3: Values of σ and τ .

To compute X we work as usual by backward induction in each branch of the binomial
tree, starting from time τ . Thus, we first consider the branch emanating from ω1 = T

(2, ?)

(4, 1)

(1, 0)

Figure 4: Branch of tree of (S,X) from ω1 = T .

Since r = 0, p̃ := (1+r)−d
u−d =

1− 1
2

2− 1
2

= 1
3 , the RNPF gives

X1(H) =
1

3
· 1 +

2

3
· 0 =

1

3
.

Given that for ω1 = H we have τ(ω) = 1, we already know the value of X1(ω) = Xτ (ω),
which by definition equals the rebate value 2. Thus having computed X1(H) = 1

3 and
knowing X1(T ) = 2, we can now compute X0 by backward induction.

(4, ?)

(8, 2)

(2, 1
3)

Figure 5: Root of tree of (S,X).

Applying the RNPF gives

X0 =
1

3
· 2 +

2

3
· 1

3
=

8

9
.

Finally, the delta-hedging formula gives the replicating strategy

G1(T ) =
X2(TH)−X2(TT )

S2(TH)− S2(TT )
=

1− 0

4− 1
=

1

3
,

G0 =
X1(H)−X1(T )

S1(H)− S1(T )
=

2− 1
3

8− 2
=

5

18
.

Thus, we have determined the replicating strategy G = (Gt)t≤τ−1 and the value X =
(Xt)t≤τ of the derivative.

(4, 8
9 ,

5
18)

(8, 2, undefined)

(16, undefined, undefined)

(4, undefined, undefined)

(2, 1
3 ,

1
3)

(4, 1, undefined)

(1, 0, undefined)
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Figure 6: Tree of (S,X,G).

3.8 Lecture 3, Chooser options

Many derivatives offer the holder (buyer) the right to make choices during the lifetime of
the contract. For example, if at time 0 I buy a chooser option, I get to choose, at time t,
whether I will receive the payoff A at time u ≥ t, or the payoff B at time v ≥ t, where A
and B can depend on t. More generally, the choice could be between many alternatives
(Ai)i∈I , instead of just two, and the corresponding times of payment (τ i)i∈I , as well as
the time τ at which we choice has to be made, could be stopping times (and (Ai)i∈I
could depend on τ). Let us consider several important sub-cases of such derivatives.

A most important example is that of an American call option. If at time 0 I buy one
then, at any time t, based on the information available at that time, I get to choose
whether I want to exercise my option and receive the payment (St−K)+ (after which I
can no longer use the option), or instead wait, in the hope that exercising the derivative
at a future time will lead to a preferable outcome. More formally, if I buy the American
call option I have the right to choose a stopping time τ at which I will receive the payoff
(Sτ −K)+. This is a special case of the above chooser option, where one considers as
the only possible payment (Sτ −K)+, which however depends on the time τ of choice,
and which is paid immediately when the choice is made. Notice that if it would be
equivalently for me to consider buying the option which gives payoff Sτ −K at a time
τ of my choose; indeed, in this case I would never choose to get paid at a time at which
the payment is negative (if they payment would be negative at all times, i.e. St−K < 0
for all t, I would just choose not to exercise the option, i.e. choose τ =∞).

Analogously, if I buy a Bermudan call option, I get to choose the (stopping) time τ
at which I will receive the payoff (Sτ −K)+, but only among those τ which take values
in a set D of possible exercise dates.

We now explain how to compute the smallest price C at which one should be willing to
sell a chooser option. This is calculated as being the smallest possible super-replication
price, so that the one call sell the chooser and hedge it, no matter what choice the
buyer makes. To compute such price, one can work by backward induction (applying
the rollback operator, see remark 87) to compute the values (Ait)

i∈I at any time t ∈ [s, T ]
of each choice. At the time of choice s the option holder chooses the best alternative, so
Cs := max((Ais)

i∈I). Then one can compute Cr by backward induction for r ≤ s.
A bit more complicated is the case in which the time s = σ at which the choice is

made is not fixed, but can itself be chosen (among some family T of stopping times), as
is the case for the American option.

Example 92. In the binomial model N = 2, r = 0, S0 = 4, u = 2, d = 1
2 , find the price C0

at which you are willing to sell the option which gives the buyer the right to choose at
time 1 whether to receive A2 := (S2 − 5)+ at time 2, or B1 := (S1 − 5)+ at time 1.
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(4, ?, ?)

(8, ?, 3)

(16, 11, undefined)

(4, 0, undefined)

(2, ?, 0)

(4, 0, undefined)

(1, 0, undefined)

Figure 7: Tree of (S,A,B).

Let us now compute by backward induction the values of the possible choices at the time
of choice s = 1.

(8, ?)

(16, 11)

(4, 0)

(2, ?)

(4, 0)

(1, 0)

Figure 8: Branches of tree of (S,A) from ω1 = H, and from ω1 = T .

Let us now apply the RNPF to the one-period model between t = 1 and t = 2, to obtain
the replication price at t = 1. Notice that this price will depend on the information
available at time 1 (i.e. the value of the first coin toss), since so does the model at time

1, so for now we will write the RNFP formally as A1 = EQ
1

[
A2
1+r

]
(later we will define

what EQ
1 actually means; for now, it is enough that it is clear to you how to compute

it). Since r = 0, p̃ = 1
3 , , the RNPF gives

A1(H) =
1

3
· 11 +

2

3
· 0 =

11

3
, A1(T ) =

1

3
· 0 +

2

3
· 0 = 0.

We can then compute the value C1 of the chooser at time 1 as C1 = max(A1, B1). Since
A1(H) > B1(H) the option holder should choose A2 if ω1 = H. Since A1(T ) = B1(T ),
the option holder is indifferent between A2 and B1 if ω1 = T .

(4, irrelevant, irrelevant, ?)

(8, 11
3 , 3,max(11

3 , 3) = 11
3 )

(2, 0, 0,max(0, 0) = 0)

Figure 9: Root of tree of (S,A,B,C).

Finally, to compute C0 we proceed again by backward induction from C1 (so we do
not need to compute the values A0, B0): since r = 0, p̃ = 1

3 , the RNPF gives

C0 =
1

3
· 11

3
+

2

3
· 0 =

11

9
.
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Finally, the hedging strategy G is given by the delta-hedging formula

G0 =
C1(H)− C1(T )

S1(H)− S1(T )
=

11
3 − 0

8− 2
=

11

18
.

If at time 1 the option holder chooses A2, the option seller should hold

G1(ω1) =
A2(ω1H)−A2(ω1T )

S2(ω1H)− S2(ω1T )
, so G1(H) =

11

12
, G1(T ) = 0.

If instead at time 1 the holder chooses B1, then the chooser expires, so no more hedging
is needed, i.e. G1 = 0. In this case, if ω1 = H the option seller makes a profit without
risk! This is however not an arbitrage for the seller, because it only occurs if the option
holder make a sub-optimal choice.

Remark 93. In example 92, the holder of the option was indifferent between A2 and B1

if ω1 = T , so in this case both choices are optimal. If ω1 = H the model says it is
optimal for the holder to choose A2, but in the real world there are often reasons why
the holder would not exercise in the way the model says is optimal. For example, buyers
of American options rarely exercise at the theoretically optimal time. For example, a
company which runs an industrial process that needs some metal, say copper, can buy an
American call option with strike K on copper to make sure that under no circumstances
it will pay more than K for it. It would then often exercise such option when it actually
needs to get copper for use in the production process, instead of at the theoretically
optimal time of exercise. This is because the simple model normally considered do not
take into account additional complication which happen in the real world; for example,
if the company exercises an the optimal time, it will need to store the copper until when
it will need it, which can have a cost that we ignored in our model.

3.9 Lecture 4, American Options

Let us consider in more detail the example of American options. A standard (European)
option has a payoff f(IT ) for some adapted functional I of S (i.e. It = f(t, S0, . . . , St)).
For example,

It = (St −K)+, It = St −minu≤t Su, It = (1
t

∑
u≤t Su −K)+

are the payoffs functionals for the call option, the floating lookback call option, and the
Asian option. Given an European option with payoff functional I, we can consider the
corresponding American option, which has payoff Iτ at time τ , where the (stopping)
time τ ≤ T is chosen by the option’s buyer. In this case, I is the called intrinsic value
of the derivative, τ the exercise date, and T is the expiry of the option. If we work on
a model with expiry N (i.e. time index 0, 1, . . . , N), the buyer can choose τ ≤ N , or
τ = ∞. He will only choose τ(ω) = t ≤ N if It(ω) ≥ 0; if It(ω) < 0 for all t, he will
choose τ = ∞, which means the option does not get exercised (so the buyer gets paid
I∞ = 0). In particular, the American option with intrinsic value (St−K)+ has the same
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value than the American option with intrinsic value St −K, since the buyer will simply
choose not to get paid anything when (St −K)+ = 0 (i.e. when St −K ≤ 0).

To price American options, denote with Vn the value at time n of the American option
(with intrinsic value I) which hasn’t yet been exercised. At the final time, if you have
not yet exercised, you can choose to either get paid I+

N or nothing, so the value is

VN = max(IN , 0) = I+
N . (75)

At time n, if you have already exercised the option in the past, it is now worth nothing.
If instead you have not yet exercised, you can choose to either get paid now the amount
In, or to wait until time n+1. In the latter case you will own at time n+1 an American
option which hasn’t yet been exercised. The value of owning this is Vn+1 at time n+ 1;
its value at time n is thus

Rn(Vn+1) = EQ
[
Vn+1

1 + r

∣∣∣X1, . . . , Xn

]
,

see remark 87. So, Vn can be calculated for all n by backward induction from eq. (75)
using the formula

Vn = max

(
In,EQ

[
Vn+1

1 + r

∣∣∣X1, . . . , Xn

])
, n = 0, . . . , N − 1. (76)

This allows to compute V0, which is simply the value of the American option at time 0.

Remark 94. Clearly I+ ≤ V (meaning I+
n ≤ Vn for all n), and the discounted value V̄

is a supermartingale (with respect to the risk-neutral measure Q), meaning

EQ[V̄n+1|X1, . . . , Xn] ≤ V̄n for all n.

Moreover, if Y ≥ I+ and Y a supermartingale then Y ≥ V .

If I0 < V0 then buyer’s optimal choice is not to exercise at time 0, since this leads to
a payoff I0 which is smaller than the value of exercising at some later time. If instead
I0 = V0 then the buyer’s optimal choice is to exercise at time 0, since waiting would lead
to a payoff which is not bigger, and which may well be smaller (it will be smaller if at no
future time k it happens that Ik = Vk). This reasoning shows that the optimal exercise
time for the buyer of the American option is

τ∗ := inf{n ≤ N : In = Vn};

and in particular the buyer should not exercise the option iff τ∗ =∞.

Remark 95. In the real world, often American option get exercised at times which are
not optimal. To understand the reason, suppose a company needs to periodically buy
large quantities of copper, and that to hedge against the risk of rising copper prices it
bought an American call option for some amount of copper. The company may not
house a lot of financial experts to determine what is the optimal exercise time of the
derivative; it will instead simply exercise the option at the time k at which it actually
needs to buy copper (if the option is in the money, i.e. if Ik > 0).
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3.10 Lecture 5, Conditional probability and conditional expectation

To get a better understanding of how to price derivatives in a multi-period model, we
need to talk about conditional probability and conditional expectation. We discuss here
these topics briefly, focusing on the case of a finite σ-algebras (which is all we need when
considering a finite probability space, as is done in the binomial model in finite time).

Recall that, given a probability space (Ω,A,P) and a B ∈ A, when P(B) > 0 we can
define the conditional probability P given B as the following function

P(·|B) : A → [0, 1], P(A|B) := P(A ∩B)/P(B) for A ∈ A.

Theorem 96. P(·|B) is a probability on A, and

EP(·|B)[X] = EP[X1B]/P(B) (77)

for any random variable X ≥ 0, and thus for all X s.t. EP(·|B)[|X|] = EP[|X|1B] <∞.

Proof. If An ∈ A, n ∈ N are disjoint then so are the sets (An ∩B)n and so

P((∪nAn) ∩B) = P(∪n(An ∩B)) =
∑
n

P(An ∩B),

and dividing times P(B) we get that P(∪nAn|B) =
∑

n P(An|B). Since P(·|B) ≥ 0
and P(Ω|B) = 1, P(·|B) is a probability. Equation (77) holds if X is an indicator
X = 1A, A ∈ A (by definition of P(·|B)), and so also for any linear combination of
indicators X =

∑n
k=1 ck1Ak

(by linearity), so for any rv X ≥ 0, by taking limits100.
Finally, if X ∈ L1(P|B) the result follows applying eq. (77) to the positive X+ ≥ 0 and
negative X− ≥ 0 parts of X = X+ −X−, by subtraction.

The interpretation of P(·|B) is as follows. If there is some phenomenon of which we do
not know for sure some characteristic ω ∈ Ω, but for which we do have some educated
guesses, we can model our lack of knowledge using a probability P, which describes
how likely ω is to belong to a collection (a σ-algebra) A of sets, called events. If we
now perform some experiment, whose result doesn’t exactly identify ω but does inform
us that ω ∈ B, then we should update our description of how likely each event is to
occur using the newly obtained information, and thus replace P with the conditional
probability P(·|B). Note moreover that eq. (77) shows that EP(·|B)(X) is the average of
X on the event B.

Suppose now that we perform an experiment, which has n possible distinct results.
Its outcome outcome tells us which Bk is s.t. that ω ∈ Bk, where {Bk}nk=1 =: Π is a
given (finite) partition of Ω, i.e. a family of disjoint, non-empty sets whose union is Ω.
If the outcome of the experiment is that ω ∈ Bk, then we should, as the probability
of the event A, consider not P(A) but rather P(A|Bk). In other words, the conditional

100To be rigorous, here one has to use measure theory, specifically the monotone convergence theorem.
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probability of A given Π should be defined as the random variable

P(A|Π) :=
n∑
k=1

1Bk
P(A|Bk) =


P(A|B1) if ω ∈ B1

. . . if . . .

P(A|Bn) if ω ∈ Bn .
(78)

A particularly common example is obtained starting from a random variable X which
only takes finitely many values x1, . . . , xn, by which we mean that

P({X = xk}) > 0 ∀k = 1, . . . , n, P(X /∈ ∪nk=1{xk}) = 0, (79)

and taking ΠX := (Bk)
n
k=1 for Bk := {X = xk}; in this case P(A|X) := P(A|ΠX) is

called the conditional probability of A given X. For notational convenience, improperly
we will often write P({X = xk}),P(A|{X = xk}) as P(X = xk),P(A|X = xk).

In the above, what mattered was not X, but rather the family {X = xk}nk=1, so if Y is
another random variable which only takes the n values y1, . . . , yn, and {X = xk}nk=1 =
{Y = yk}nk=1, then P(A|X) = P(A|Y ), since ΠX = ΠY . Just like the random variable X
leads to the finite partition ΠX := {X = xk}nk=1, given a finite partition Π′ = {Bk}nk=1

of Ω one can define the random variable X :=
∑n

k=1 xk1Bk
, which is such that ΠX = Π′,

where {xk}nk=1 are distinct points (arbitrarily chosen), normally taken in R (or more
generally in Rm).

Notice that the random variable P(A|X) is a function of X; in other words, P(A|X)
is σ(X)-measurable. These observations suggest that one should more generally be able
to define P(A|X) for any random variable X, and analogously P(A|F) for any σ-algebra
F , and that P(A|F) should then be a F-measurable random variable for every A ∈ F .
While this can be done, we will for now restrict ourselves to the simpler case considered
above, i.e. to the case where the σ-algebra F = σ(Π) is generated by a finite partition
Π; in this case P(A|F) is defined as P(A|Π); equivalently, given X which takes finitely
many values and is s.t. F = σ(X), we define101 P(A|F) := P(A|X).

It is thus of interest to understand when a σ-algebra is generated by a finite partition.
To do that, we need to be able to characterise what elements of F := σ(Π) belong to Π,
and ideally to explicitly construct them; let us do that. Clearly, the σ-algebra generated
by a finite partition Π of Ω is given by

σ(Π) = {∪P∈IP |I ⊆ Π}; (80)

in particular σ(Π) is finite, and the elements of Π are the smallest (non-empty) elements
of σ(Π), i.e. its atoms, in the following sense.

Definition 97. An atom of a σ-algebra F is a non-empty A ∈ F such that B ⊆ A,B ∈ F
imply that either B = A or B = ∅. The family of atoms of F is denoted by A(F).

101Of course this definition does not depend on the choice of X s.t. F = σ(X), since P(A|X) only depends
on the family of sets ({X = xk})k, not on the values (xk)k.
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Theorem 98. Assume F is a finite σ-algebra on Ω, and denote with AF (ω) the inter-
section of all the A ∈ F which contain ω ∈ Ω. Then AF (ω) is the smallest A ∈ F which
contains ω. The family A(F) of atoms of F is a finite partition of Ω, and

A(F) = {AF (ω) : ω ∈ Ω}, (81)

so AF (ω) is the (only) atom of F containing ω ∈ Ω. The function Π 7→ σ(Π), mapping
finite partitions of Ω to finite σ-algebras on Ω, is bijective and has inverse F 7→ A(F);
in particular, if F = σ(X) for some random variable X which satisfies eq. (79) then
A(F) = {X = xk}nk=1.

Proof. Since F is finite, the intersection of all the F ∈ F which contain ω ∈ Ω belongs
to F , contains ω, and is such the smallest possible such set (i.e. ω ∈ AF (ω) ∈ F , and
ω ∈ B ∈ F implies AF (ω) ⊆ B). Clearly AF (ω) is an atom, because if B ⊆ AF (ω), B ∈
F then either ω ∈ B, in which case B = AF (ω) (by the minimality of AF (ω)), or ω /∈ B,
in which case B = ∅ (because otherwise ω ∈ A := AF (ω) \ B ∈ F , contradicting the
minimality of AF (ω)). Conversely, if A is an atom, choose ω ∈ A, then AF (ω) ⊆ A
(since ω ∈ A ∈ F implies AF (ω) ⊆ A) and AF (ω) ⊇ A (since ω ∈ B := AF (ω) ∩A ∈ F ,
and so ∅ 6= B ⊆ A, which implies B = A by definition of atom), proving eq. (81). It
follows that {AF (ω) : ω ∈ Ω} is a finite partition of Ω, since all atoms are disjoint (by
definition), they are finitely many (since A(F) ⊆ F), and ω ∈ AF (ω) ∈ F imply that
∪ω∈ΩAF (ω) = Ω.

Clearly if Π is a finite partition of Ω then {Aσ(Π)(ω) : ω ∈ Ω} = Π. Conversely,
we proved that if F is a finite σ-algebra on Ω then Π := {AF (ω) : ω ∈ Ω} is a finite
partition of Ω and, as we will now show, σ(Π) = F , and so Π 7→ σ(Π) and F 7→ A(F)
are inverse of one another. Indeed eq. (80) shows that σ(Π) ⊆ F , and that if F ∈ F then
A := ∪ω∈FAF (ω) ⊇ F belongs to σ(Π), so the conclusion follows from A ⊆ F , which
holds since AF (ω) ⊆ F for all ω ∈ F (by minimality of AF (ω)).

Notice that eq. (80) and eq. (81) allow us to explicitly construct σ(Π),A(F) given
Π,F .

Just like using P one can then build the expectation EP(W ) of a random variable W ,
using the conditional probability P(·|X), one can consider the conditional P-expectation
of W given X, defined as the random variable

EP[W |X](ω) := EP(·|X)(ω)[W ].

In other words, EP[W |X] is the random variable which on {ω : X(ω) = xk} equals

EP(W |X = xk) := EP(·|X=xk)(W ) = EP[W1{X=xk}]/P(X = xk),

where the equality follows from theorem 96; recall that, by definition of expectation,

EP(W |X = xk) := EP(·|X=xk)(W ) =
∑

iwiP(W = wi|X = xk) (82)

if W takes finitely many values {wi}i. Thus, E(W |X) is the local average of W : it is
the random variable which at any ω ∈ {X = xk} equals the average of W on {X = xk},
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i.e. on the only set of the partition {X = xi}ni=1 which contains the point ω. Analogously
of course, if Π is a finite partition of Ω and F a finite σ-algebra on Ω, we can define
EP[W |Π] := EP(·|Π)[W ] and EP[W |F ] := EP(·|F)[W ].

Example 99. Consider the binomial model with maturity N = 2, i.e. we take Ω =
{H,T}2 = {HH,HT, TH, TT} and A := P(Ω), and assume that

P(HH) =
1

9
, P(HT ) =

2

9
, P(TH) =

1

3
, P(TT ) =

1

3
.

Assume now that the stock price S is given by the tree

16
3

8

9

6

4

6

3

H

H

T

T

H

T

and let us compute E[S2|S1]: since

P(S2 = 6|S1 = 8) = P(S1=8,S2=6)
P(S1=8) = P(HT )

P(HH,HT ) =
2
9

1
9

+ 2
9

= 2
3

and P(·|S1 = 8) is a probability, we get that

P(S2 = 9|S1 = 8) = 1− P(S2 = 6|S1 = 8) =
1

3
,

and so

E(S2|S1 = 8) = 6 · 2

3
+ 9 · 1

3
= 7.

The computation of P(S2 = 9|S1 = 4),E(S2|S1 = 4) is analogous and gives

P(S2 = 6|S1 = 4) = · · · = 1

2
, E(S2|S1 = 4) = 6 · 1

2
+ 3 · 1

2
=

9

2
.

Thus

E(S2|S1) = 71{S1=8} +
9

2
1{S1=4}.
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Week 8
3.11 Lecture 1, Properties of the conditional expectation

As the RNPF makes clear, the notion of conditional expectation will be crucially impor-
tant to us, so let us explore it in more detail. First, we define the conditional expectation
with respect to arbitrary σ-algebras; then, we need to study its properties.

We have so far defined E[X|G] for any finite σ-algebra G ⊆ F as a local average of X,
i.e. E[X|G] takes, on every atom of G, the average value that X takes on that atom. One
could then define E[X|G], for an arbitrary σ-algebra G ⊆ F , as the limit in L1 of E[X|H]
as the finite sigma algebras H ⊆ G become bigger and bigger. This approach can be
made rigorous with the following definition, which is formally identical to the definition
of limit as t→ +∞ of a function x(t) of a real variable t ∈ R (familiar to all students), as
long as one replaces the distance |x−y| between real numbers x, y ∈ R with the distance
||X − Y ||L1 := E|X − Y | between integrable random variables X,Y ∈ L1. Denote with
H(G) the family of all finite σ-algebras H ⊆ G, ordered by inclusion (i.e. H1 ≤ H2 if
H1 ⊆ H2). We say that the net102 (E[X|H])H∈H(G) converges in L1 to Y ∈ L1 if, for
every ε > 0, there exist H∗ ∈ H(G) such that, for every H ∈ H(G),H ≥ H∗ one has
||E[X|H] − Y ||L1 < ε. We can then define E[X|G] as the L1-limit of (E[X|H])H∈H(G).
This approach has the advantage of being an intuitive way of defining E[X|G] as a local
average; the disadvantage is that it is not obvious when such limit exists. It is however
possible to give a reasonably simple proof of the fact that it always does, i.e. of the
following theorem.

Theorem 100. For all X ∈ L1 and σ-algebra G ⊆ F the net (E[X|H])H∈H(G) converges
in L1. Its L1-limit is called the conditional expectation of X given G, denoted with
E[X|G].

The following equivalent characterisation (due to Kolmogorov) of the notion of condi-
tional expectation is so convenient that it is normally used as a definition103 of E[X|G];
we prefer not to do that, since we find it less intuitive.

Theorem 101. Z := E[X|G] is G-measurable and satisfies

E[ZW ] = E[XW ] for all G-measurable and bounded W ; (83)

moreover, Z = E[X|G] is the unique G-measurable random variable104 Z ∈ L1 which
satisfies eq. (83).

102A net is a generalisation of the notion of sequence, for which the indexing set N is replaced by any
(partially) ordered set I which is directed upward, i.e. such that for every i, j ∈ I there exists k ∈ I
such that i ≤ k, j ≤ k (obviously H(G) is one such set).

103In which case, one has to prove that a G-measurable random variable Z which satisfies eq. (83) exists
for every X,G.

104Of course, to be precise Z, as every element of L1(P), is an equivalence class of random variables, so
the stated uniqueness is up to P-null sets.
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Just like the expectation satisfies many useful properties which allow to perform cal-
culations with it, so does the conditional expectation. We list below some of them;
they are all easily proved when the σ-algebras G,H are finite, and passing to the limit
shows that they hold for arbitrary σ-algebras. Alternatively, these properties can be
easily proved via Kolmogorov’s characterisation given by theorem 101. In what follows
X,Z,W are random variables, all defined on the same probability space (Ω,A,P), and
G ⊆ A is a σ-algebra, and we assume that all quantities of which we take a conditional
expectation are integrable.

1. Linearity : E(X + Z|G) = E(X|G) + E(Z|G)

2. Independence: if X is independent105 of G then E(X|G) = E(X). In particular any
constant c ∈ R satisfies E(c|G) = c, and if G is the trivial σ-algebra {∅,Ω} then
any X satisfies E(X|G) = E[X].

3. Taking out what is know : if X is G-measurable then E(XZ|G) = XE(Z|G), and in
particular106 E(X|G) = X.

4. Iterated conditioning (a.k.a. tower property): If H ⊆ A is a σ-algebra and G ⊆ H
then E(E(X|H)|G) = E(X|G); in particular107 E[E(X|H)] = E[X].

5. Jensen inequality : if φ : R→ R is convex then E[φ(X)|G] ≥ φ(E[X|G])

To highlight the importance of the concept of conditional expectation, we mention its
following characterisation which, to be precise, applies only to the conditional expecta-
tion E[·|G] restricted to the space

L2 := L2(A) := L2(Ω,A,P) := {X : Ω→ R, X is A-measurable,E[X2] <∞}

of square integrable random variables. The best approximation of X with a constant is
E[X], for example108 in the sense that, if E[X2] <∞, then E[X] is the unique constant
c which minimises E[(X − c)2] across all c ∈ R. Analogously, the following theorem
characterises the conditional expectation E[X|G] as the best approximation of X which
can be achieved using the information given by G.

Theorem 102. Assume X ∈ L2(A). Then E[X|G] is the unique C minimiser of E[(X−
C)2] across C ∈ L2(A). Equivalently E[X|G] is the unique C ∈ L2(A) such that

E[(X − C)W ] = 0 for all W ∈ L2(G). (84)

105We discuss independence in section 3.15.
106Take Z = 1 and use the independence property E(1|G) = 1.
107Take G trivial and use the independence property.
108In fact, instead the function g(x, c) = (x − c)2 one could choose any g in a large family of ’loss’

functions, and for each of them the unique minimiser of Eg(X, c) over c ∈ R is c = E[X].
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Notice that theorem 102 admits the following geometrical interpretation: E[·|G] is the
projection109 of the Hilbert110 space H := L2(A) onto its closed subspace

V := L2(G) := L2(Ω,G,P) := {X ∈ L2 : X is G-measurable}.

Moreover, the characterisation eq. (84) is very similar to theorem 101.

Lemma 103. The set L2 = L2(P) of random variables X s.t. EX2 < ∞ is a vector
space, and if X,Y ∈ L2(P) then XY ∈ L1(P).

Proof. If EX2 < ∞ and c ∈ R trivially E(cX)2 = c2EX2 < ∞. The trivial inequalities
(x± y)2 ≥ 0 imply 2|xy| ≤ x2 + y2, which shows that X,Y ∈ L2(P) imply XY ∈ L1(P)
and so X + Y ∈ L2(P).

Proof of theorem 102. It follows from Jensen inequality that W := E[X|G] is in L2. Since
X ∈ L2, it is enough111 to prove that E[(X−C)2] ≥ E[(X−W )2] for E[C2] <∞; in this
case, because of lemma 103 all the random variables which we are about to consider are
in L1(P). So, to conclude assume E[C2] <∞ and notice that

E(X−C)2 = E[((X−W )+(W−C))2] = E(X−W )2 +E(W−C)2 +2E(X−W )(W−C),

which is bigger than E[(X −W )2] because (W − C)2 ≥ 0, and

E[(X −W )(W − C)|G] = (W − C)E[X −W |G] = (W − C)(W −W ) = 0,

which implies E[(X −W )(W − C)] = 0.

Notice that the interpretation of conditional expectation afforded by theorem 102
makes the properties of Independence, Taking out what is know, and Iterated condition-
ing, somewhat intuitive.

3.12 Lecture 2, The RNPF in the multi-period binomial model

As the above example 86 indicates, to price in the multi-period binomial model, for
ω ∈ {H,T}N , n ≤ N we set ω(n) := (ω1, . . . , ωn) and compute the up and down factors

Un(ω) :=
Sn+1((ω(n), H))

Sn(ω(n))
, Dn(ω) :=

Sn+1((ω(n), T ))

Sn(ω(n))
,

and define the risk-neutral transition-probabilities P̃n and Q̃n := 1− P̃n by asking that

Sn(ω(n)) = P̃n(ω(n))Sn+1((ω(n), H)) + Q̃n(ω(n))Sn+1((ω(n), T )); (85)

109If H is Hilbert with dot product 〈a, b〉H and norm ‖h‖ :=
√
〈h, h〉H , and V ⊆ H is a closed subspace

thereof, the projection of h ∈ H onto V is defined as the unique minimiser of ‖h− v‖H over v ∈ V ,
or equivalently as the v ∈ V such that 〈h, v − w〉H = 0 for all w ∈ V , and such projection always
exists unique.

110L2(A) with the dot product 〈X,Y 〉 := E[XY ] is a Hilbert space.
111Because if E[C2] =∞ then by lemma 103 E[(X −C)2 =∞, and so E[(X −C)2] =∞ > E[(X −W )2].
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solving for P̃n gives

P̃n(ω) = P̃n(ω(n)) :=
(1 +Rn)−Dn

Un −Dn
(ω(n)) n = 0, . . . , N − 1, (86)

Q̃n(ω) = Q̃n(ω(n)) :=
Un − (1 +Rn)

Un −Dn
(ω(n)) n = 0, . . . , N − 1. (87)

Then, compute Vn = V x,G
n by backward induction using the same formula as for S:

V n(ω(n)) = P̃n(ω(n))V n+1((ω(n), H)) + Q̃n(ω(n))V n+1((ω(n), T )). (88)

It turns out we can then express the above formula in a much neater way, as follows;
but first, let us describe how to use a convenient notation.

Remark 104. While to be formal we should always write e.g.

P({Z = a}|{Y ≤ b}), and Q({ω′ ∈ Ω : X3(ω′) = ω3}|{ω′ ∈ Ω : X1(ω′) = ω1, X2(ω′) = ω2}),

we will often improperly and more simply write P(Z = a|Y ≤ b) and Q(ω3|ω1ω2), so
that if e.g. ω1 = H,ω2 = T, ω3 = T then Q(ω3|ω1ω2) = Q(T |HT ) means

Q({ω′ ∈ {H,T}N : X3(ω′) = T}|{ω′ ∈ {H,T}N : X1(ω′) = H,X2(ω′) = T})

or equivalently

Q({ω′ ∈ {H,T}N : ω′3 = T}|{ω′ ∈ {H,T}N : ω′1 = H,ω′2 = T}).

Recall that eq. (88) came from considering the one-period binomial model (Bt, St)t=n,n+1

under the assumption that that the result of the first n coin tosses was ω(n), and
P̃n(ω(n)) could then be interpreted as the risk-neutral probability of Heads. Thus, we
want to consider a probability Q on Ω = {H,T}N s.t.

Q(H|{X(n) = ω(n)}) = P̃n(ω(n)) n = 0, . . . , N − 1, ω ∈ Ω, (89)

where as usual

{X(n) = ω(n)} = {ω′ : X(n)(ω′) = ω(n)} = {ω′ : (X1, . . . , Xn)(ω′) = (ω1, . . . , ωn)}

(so e.g. Q(H|{X1 = H,X2 = T}) = P̃2(HT )). Then eq. (88) can be interpreted as
saying that V n(ω(n)) is given by the expectation of V n+1 with respect to the probability
Q conditioned on the event {X(n) = ω(n)}, i.e.

V n(ω(n)) = EQ|{X(n)=ω(n)}[V n+1]. (90)

Morever, the RHS (resp. LHS ) of eq. (90) is, by definition, the constant value that the
conditional expectation EQ[V n+1|X(n)] = EQ[V n+1|Fn] (resp. that V n) takes on the set
{X(n) = ω(n)}. Thus we get the RNPF (Risk-Neutral Pricing Formula)

V n = EQ[V n+1|Fn], (91)

95



which has a very pleasant form, and extends to the multi-period setting the formula
V 0 = EQ[V 1] which we used in one-period models.

That in the binomial model a Q s.t. eq. (89) holds exists, and is unique, follows from
the following lemma when applied to the P̃ given by eq. (86).

Lemma 105. The map Q 7→ P̃ given by Equation (89) is a bijection between

1. probabilities Q on (Ω,A)

2. F-adapted processes P̃ = (P̃n)n≤N on (Ω,A) with values in [0, 1]

Moreover Q ∼ P ⇐⇒ 0 < P̃ < 1.

Proof of lemma 105. Clearly eq. (89) shows how to build P̃ given Q; such P̃ is adapted
since P̃n only depends on ω(n). To build Q from P̃ , let us just consider the case
N = 2: the idea is the same112, but the notation is less heavy. We will write Q̃ for
1 − P̃ . By definition of conditioning, any probability Q on {H,T}2 needs to satisfy
Q(ω1ω2) = Q(ω1)Q(ω2|ω1), and so eq. (89) determine Q as follows:

Q(HT ) = Q(H)Q(T |H) = Q(X1 = H)Q(X2 = T |X1 = H) = P̃0Q̃1(H),

and analogously we find

Q(HH) = P̃0P̃1(H), Q(TT ) = Q̃0Q̃1(T ), Q(TH) = Q̃0P̃1(T ).

Notice that such Q is a probability equivalent to P, since Q̃ = 1− P̃ implies

Q(HH) + Q(HT ) = P̃0, Q(TH) + Q(TT ) = 1− P̃0

and so Q(Ω) = 1, and Q > 0 is equivalent to 0 < P̃ < 1, since the product of positive
(i.e. ≥ 0) numbers is positive, and it equals 0 iff one of them equals 0.

The

P̃n := Q(Xn+1 = H|Fn), Q̃n := 1− P̃n = Q(Xn+1 = T |Fn), n ≤ N − 1

are called transition probabilities corresponding to the probability Q, since P̃n, 1 − P̃n
describe the probabilities relative to the transition between time n and time n+1. More
generally, one could consider a model where Xn+1 takes finitely many values {xkn+1}dk=1,
and consider the transition probabilities Q(Xn+1 = xkn|Fn), 1 ≤ k ≤ d.

112E.g. if N = 4 and ω(n) = (H,T, T,H) we have

Q(HTTH) = Q(H)Q(T |H)Q(T |HT )Q(H|HTT ) = P̃0Q̃(H)1Q̃2(HT )P̃3(HTT ).
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Remark 106. Often, but not always, it is more convenient to use the local113 description
of a probability given by the transition probability Q(·|Fn), rather than the global114

description Q. Too mention an example, use eq. (91) and the tower property115 of the
conditional expectation to get that

V k = EQ[V n|Fk] for any 0 ≤ k ≤ n ≤ N, (92)

and in particular

V 0 = EQ[V N ] (93)

with which we could compute the initial value without having to compute all the inter-
mediate prices by backward induction. However, unless P̃ is constant, it is in general
harder to compute Q from P̃ and then use eq. (93) to compute V 0, than it is to compute
V 0 directly from P̃ using backward induction.

3.13 Lecture 3, The FTAP in the multi-period setting

As P̃ is determined by eq. (85), which is eq. (88) with V = S, eq. (91) states that Q
satisfies

Sn = EQ[Sn+1|Fn]. (94)

This leads us to the following definitions, valid in the setting of an arbitrary filtered
probability space (Ω,A,F ,P).

Definition 107. 1. An adapted process Y = (Yt)t∈T is a martingale if Yt ∈ L1(P)
and E[Yt|Fs] = Ys for each s ≤ t, s, t ∈ T.

2. A proba Q on F is a Martingale Measure (for S := S/B) if S is a martingale
on (Ω,A,F ,Q) (we say simply: if S is a Q-martingale). Such Q is an EMM
(Equivalent MM) if Q ∼ P. The set of EMM is denoted by M(S).

As in the one-period case one can get:

Theorem 108 (1st FTAP). A multi-period market (Bt, St)t∈T is arbitrage free ⇐⇒
M(S) 6= ∅.

Proof. (=⇒) In the very special and simple case of the binomial model, this implication
follows from the fact that if there is no arbitrage then D < 1 + T < U (by theorem 85),
and so eq. (86) gives 0 < P̃ < 1, so lemma 105 provides us with a Q ∈M(S). For finite
Ω, one could prove the implication using LP, but we skip this. For general Ω the proof is
very difficult: the theorem was only rigorously proved in 1990, about 30 years after the

113Local in the sense that it clarifies what happens when moving locally, i.e. between time n and time
n+ 1.

114Global since it assigns probabilities to whole trajectory (ω1, . . . , ωn).
115i.e. the fact that Xi := EQ[Y |Fi] satisfies Xk = EQ[Xn|Fk] for all 0 ≤ k ≤ n; we will discuss the

properties of the conditional expectation later on.
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discovery of Black and Scholes formula! We refer the interested reader to [?, Theorem

6.1.1]. (⇐=) Let us assume by contradiction that G is an arbitrage, so V
0,G
N ≥ 0 P a.s.

and so Q a.s., and {V 0,G
N > 0} is not a null set under P and thus also under Q; it follows

that EQ(V
0,G
N ) > 0. This contradicts the fact that, since Q is a MM for (B,S),

EQ(V
0,G
N ) =

N−1∑
n=0

EQ(Gn · (Sn+1 − Sn))

equals zero, since it is the sum over n of the expectation of

EQ(Gn · (Sn+1 − Sn)|Fn) = Gn · EQ(Sn+1 − Sn|Fn) = Gn · 0 = 0.

As in the one-period case, from the FTAP we could derive several corollaries, e.g.

Corollary 109. Let (Bt, St)t∈T be a multi-period market free of arbitrage. Then (B,S)
is complete ⇐⇒ the EMM is unique (i.e. M(S) is a singleton).

We skip the details, as in the multi-period setting we only consider in detail the
binomial model, for which pricing is simple because the model is complete.

3.14 Lecture 4, Permutation-invariant processes and recombinant trees

Let us assume that we work in the simplest and nicest of settings: the binomial model.
To find the AFP Y := (Yn)n≤N of a derivative with payoff YN we work by backward

induction, setting V N := V
x,G
N := Y N and using the RNPF eq. (91) to compute V n =

EQ(V n+1|Fn) and Gn for each 0 ≤ n ≤ N − 1. This leads to a major problem: the
amount of computation required to compute V n = EQ(V n+1|Fn) is proportional to the
# of paths (ω1, · · · , ωn) = #{H,T}n = 2n, which growths exponentially with n. As the
binomial models used in practice have N ≥ 100, and 2100 ∼ 1030, computing P applying
plainly the RNPF as done above is impossible even on a powerful computer. What can
we do?

The first step in the solution is to consider for (B,S) only those adapted processes W
such that, for each n, Wn takes the same value at the point (ω1, . . . , ωn) as at the point
(σ(ω1), . . . , σ(ωn)) where σ is any permutation of Ωn := {H,T}n (i.e. a bijection from
ΩN to ΩN ); we116 will call such W permutation-invariant. If W is permutation-invariant,
Wn takes at most n+1 possible values, as it is a function only of the number k = 0, · · · , n
of coin tosses which result in Heads. As the number of values of Wn grows linearly in n,
instead of exponentially as it did for arbitrary (B,S), we might not encounter the same
computational problems when pricing an option with arbitrary underlying (B,S).

116We just made this terminology, since we are not aware of any commonly accepted expression for such
W .
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The typical example of a permutation-invariant process (B,S) is obtained by consid-
ering only underlying S with U,D,R = u, d, r constants (in both t and ω), in which case
we get that B = 1 and Sn takes only the values

{Sn(ω) : ω ∈ ΩN} =

{
S0u

kdn−k

(1 + r)n
: k = 0, · · · , n

}
.

Consider for example the case of one underlying S and parameters S0 = 4, u = 2 =
1/d, r = 0; then B = 1 and S is represented by the tree

S0 = 4

S1(H) = 8

S2(HH) = 16

S3(HHH) = 32

S3(HHT ) = 8

S2(HT ) = 4

S3(HTH) = 8

S3(HTT ) = 2

S1(T ) = 2

S2(TH) = 4

S3(THH) = 8

S3(THT ) = 2

S2(TT ) = 1

S3(TTH) = 2

S3(TTT ) = 1/2

Since S is permutation-invariant, its tree involves some repetition, which we high-
lighted using colors. So we could choose to more simply represent S with the following
tree

4

8
16

32

8

4

2
1

2

1/2

In this latter tree we have collapsed repeating nodes into one; more precisely, the nodes
at time n which correspond to multiple sequences of n coin tosses resulting in the same
number of Heads have been collapsed into one node. More generally, if S is permutation-
invariant and N = 3, we could represent it with the tree
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S0

S1(H)
S2(HH)

S3(HHH)

S3(HHT ) = S3(HTH)
= S3(THH)

S2(HT ) = S2(TH)

S1(T )
S2(TT )

S3(HTT ) = S3(THT )
= S3(TTH)

S3(TTT )

The one-to-one correspondence which maps adapted processes on ΩN to binary trees,
maps permutation-invariant processes one-to-one to recombining (a.k.a. recombinant)
binomial trees, i.e. trees whose branches merge back together. Recombinant trees
represent permutation-invariant processes in a conveniently compact, efficient way, which
cuts down on the unnecessary repetition. Analogously, when we store in computer
memory the values of permutation-invariant processes, we should do it without the
unnecessary repetition.

Suppose (B,S) is permutation-invariant. If the value Y N of a derivative at time N
depended just on (BN , SN ), i.e. Y N = fN (BN , SN ), then we would only need to keep
track of the N+1 values of (BN , SN ) to compute Y N . For a general derivative we would
have Y N = fN ((Bk, Sk)k≤N ), we would still only need to keep track of

∑n
k=0(k + 1) =

1
2(N + 1)(N + 2) ∼ N2 numerical values to express the discounted payoff Y N ; this is
fine, since N2 does not grow too fast in N .

However for n < N in general the random variable Y n = EQ(Y n+1|Fn) will be simply
Fn-measurable, i.e. function of the coin tosses X(n) = (X1, . . . , Xn). Since X(n) takes
#{H,T}n = 2n possible values, to be able to actually compute Y n we need to prove that
it is a function only ofWn, , i.e. Y n = fn(Wn), whereWn only takes ‘few’ values, for every
n. We already know that this is true at time n = N (taking e.g. WN = (B,S1, . . . , SN )),
and we need to find a way to conclude that this also holds at previous times. This can
be done for most derivatives using the concept of Markov process, which we will soon
introduce. To do so, we first need to talk about independence, and to study in more
detail the concept of conditional expectation.

3.15 Lecture 5, Independence

The following definition is of central importance in probability theory.

Definition 110. Given a probability space (Ω,A,P), we say two events A,B ∈ A are
independent (under P; one can also say P-independent) if P(A ∩B) = P(A)P(B).

To shine some light on the previous definition, consider that the equality P(A ∩B) =
P(A)P(B) is trivially satisfied if P(B) = 0 (because A∩B ⊆ B implies P(A∩B) ≤ P(B)),
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and if instead P(B) = 0 it satisfied iff P(A|B) = P(A), which means that the knowledge
of whether B has occurred or does not change the probability of A, corresponding with
the intuitive meaning of independence.

Given A,B ∈ A, notice that if

P(C ∩B) = P(C)P(B) (95)

holds for C = A then

P(Ac ∩B) = P(B)− P(A ∩B) = P(B)− P(A)P(B) = P(Ac)P(B),

i.e. eq. (95) also holds for C = Ac; by addition it holds if C = Ω, and it trivially holds
for C = ∅. Thus, eq. (95) holds for C = A iff it holds for all C ∈ σ(A). It turns out
however that, given events A,B,C ∈ A, the identity

P(A ∩B ∩ C) = P(A)P(B)P(C)

does not imply the identity

P(Ac ∩B ∩ C) = P(Ac)P(B)P(C),

and that if we want to generalise the notion of independence to families containing more
than two sets, and obtain a useful notion, we need to ask that both the above identities
hold. This leads us to the following definition.

Definition 111. Given a probability space (Ω,A,P), we say the (finitely many) events
Fi ∈ A, i ∈ J = {ij}nj=1 are P-independent if we have

P (Gi1 ∩ ... ∩Gin) =
n∏
j=1

P
(
Gij
)
, (96)

for any Gij ∈ {Fij , F cij}, j = 1, . . . , n.

Remark 112. Trivially, if eq. (96) holds for any Gij ∈ {Fij , F cij}, then it holds for any

Gij ∈ σ(Fij ) = {Ω, Fij , F cij , ∅}.

Thus, {Gi}i∈J are independent if and only if {Gi}i∈K are independent for every K ⊆ J ,
since if we apply eq. (96) with Gij = Ω ∈ σ(Fij ) for every ij ∈ J \K, we get that∏

i∈K
P (Gi) =

∏
i∈K

P (Gi)
∏

j∈J\K

P (Ω) = P
(
(∩i∈KGi) ∩ (∩j∈J\KΩ)

)
= P (∩i∈KGi)

holds for any Gj ∈ {Fj , F cj }, j ∈ K. This suggests the following definitions.

Definition 113. Given a probability space (Ω,F ,P), an arbitrary collection of events
Gi ∈ A, i ∈ I are independent if {Gi}i∈J are independent for every finite J ⊆ I. An
arbitrary collection {Gi}i∈I of sub-σ-algebras of A are independent if, for every choice
of sets Gi ∈ Gi, i ∈ I, the sets {Gi}i∈I are independent. An arbitrary collection of
random vectors Xi : Ω → Rki , i ∈ I are independent if the σ-algebras {σ (Xi)}i∈I are
independent.

101



Notice that, because of remark 112, if Xi = 1Ai , i ∈ I, then {Xi}i∈I are independent
iff {Ai}i∈I are independent (as it should be, given that we always identify a set with its
indicator function in probability theory, and more generally in measure theory).

Theorem 114. Given random vectors Xj : Ω → Rkj , j = 1, . . . , n, the following are
equivalent:

1. (Xj)j are independent

2.

E
[
n∏
k=1

fj (Xj)

]
=

n∏
k=1

E [fj (Xj)] (97)

holds for any bounded and Borel functions fj : Rkj → R, j = 1, ..., n.

3. eq. (97) holds for any functions fj : Rkj → C, j = 1, ..., n of the form fj(x) =
exp(i tj · x), tj ∈ Rkj .

Sketch of the proof. By definition, (Xj)
n
j=1 are independent iff eq. (97) holds whenever

the fj ’s are indicator functions. In this case by linearity it also holds whenever each
fj is a linear combination of indicator functions, and so by taking limits it is possible
to show that it holds for any Borel bounded fj . Analogously, if eq. (97) holds for any
bounded Borel function fj of the form fj(x) = exp(i tj · x), then taking limits of linear
combinations of such functions we see that it holds for every bounded continuous function
fj , and thus (taking limits again) for every bounded Borel function fj .

Remark 115. With a similar proof, if more is known about the law of Xj , j ≤ n, then
we can also choose other families of functions which satisfy eq. (97). For example:

1. if Xj has values in R+ for each j and eq. (97) holds for every fj of the form
fj(x) = exp(tjx), tj ∈ R, or

2. if each Xj has values in a bounded set Bj (meaning that P(Xj /∈ Bj) = 0) and
eq. (97) holds for every fj which is a polynomial,

then the (Xj)j are independent.

Remark 116. Using a little bit of measure theory, it is possible to show that the following
are equivalent, whether T = {0, 1, . . . , N} or T = N:

1. (Xi)i∈T are independent

2. For every J,K ⊆ T s.t. J ∩ K = ∅ the two random vectors Y := (Xi)i∈J and
Z := (Xi)i∈K are independent

3. For every k ∈ T \ {0}, the two random vectors X(k − 1) := (Xi)
k−1
i=0 and Xk are

independent
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We can characterise independence making use of the concept of conditional probability,
as follows.

Theorem 117. Given two σ-algebras B, C ⊆ A, the following are equivalent:

1. B, C are P-independent,

2. for all B ∈ B, the random variable P(B|C) is constant,

3. for every B-measurable Y ∈ L1(P), the random variable E(Y |C) is constant,

and in this case P(B|C) = P(B), and E[Y |C] = E[Y ].

Proof. Trivially item 3 implies item 2, and so does item 1. To conclude, let us prove that
item 2 implies item 1, and show how this implies E[Y |C] = E[Y ] (and thus item 3 holds
and P(B|C) = P(B)). We only prove this for finite C and117 s.t. every atom C of C has
probability P(C) > 0. In this case P(B|C) = c means that P(B|C) = c holds for every
atom C of C, i.e. P(B ∩ C) = cP(C) holds for every atom C of C, and thus (since the
atoms are disjoint) it holds whenever C is a finite union of atoms, i.e. for every C ∈ C.
Taking C = Ω implies c = P(B). Thus P(B ∩ C) = P(B)P(C) holds for every C ∈ C,
i.e. B, C ⊆ A are P-independent. This shows that, if Y is an indicator function of a set
in B, then E(Y |C) = E(Y ). By linearity this is true if Y is a linear combination of such
indicators, and by taking limits this holds for every integrable and B-measurable Y .

Theorem 118. If two random variables X,Y take finitely many values {xi}ni=1, {yj}mj=1,
then X,Y are independent iff, for each i, j, the two sets {X = xi}, {Y = yj} are inde-
pendent.

Proof. It follows from theorem 117 that X,Y are independent iff P(B|σ(Y )) = P(B) for
all B ∈ σ(X), or equivalently118 for all atoms B of σ(X), i.e. iff P({X = xi}|σ(Y )) =
P({X = xi}) for each i, i.e. iff P({X = xi}|{Y = yj}) = P({X = xi}) for each i.

Remark 119. Notice that, if B is finite, if P(B|C) = P(B) holds for every atom B of
B then (since atoms are disjoint) it holds for every finite union of atoms, i.e. for every
B ∈ B; moreover if P(B|C) = P(B) then

P(Bc|C) = 1− P(B|C) = 1− P(B) = P(Bc).

Thus, a random variable X which only takes two values x1, x2 is independent of a σ-
algebra G if and only if119 P(X = x1|G) is constant.

Remark 120. Combining remarks 116 and 119 it follows that random variables (Xi)
N
i=1

with values in {H,T} are P-independent iff, for every k ∈ {1, . . . , N − 1},

P(Xk+1 = H|σ(X1, . . . , Xk)) is constant.

Since we will normally deal with transition probabilities, this will be the most important
independence criterion for us.
117If P(C) = 0, then P(B|C) can be defined arbitrarily on the atom C, and it does not matter since it is

a null set.
118Since the atoms form a finite partition which generates σ(X).
119Because the atoms of σ(X) are only {X = x1} and {X = x2} = {X = x1}c.
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Remark 121. We warn the reader that it is not true that, given 3 random variables
X,Y, Z which are pairwise independent (i.e are s.t. X,Y are independent, Y,Z are
independent, and X,Z are independent), then X,Y, Z are independent. For a counter-
example, in the binomial model with maturity 2, let X1, X2 be the coin tosses and Pp

the probability with p = (p1, p2) = (1
2 ,

1
2), and consider the random variables

X :=

{
1 if X1 = H

−1 if X1 = T
, Y :=

{
1 if X2 = H

−1 if X2 = T
, Z := XY.

To prove the above statements, one can explicitly compute

P(Z = 1|X = 1) = 1/2 = P(Z = 1|X = −1),

which, by theorem 117 and remark 119, shows that X,Z are independent; analogously
one proves that Y,Z are independent. X,Y are obviously independent (since X1, X2

are independent). However X,Y, Z are not independent, since Z = XY is σ(X,Y )-
measurable, and thus, for every Borel function f s.t. f(Z) ∈ L1, E(f(Z)|X,Y ) equals
f(Z), which is not always a constant (for example, take f(z) = z for all z ∈ R), so the
thesis follows from theorem 117.
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Week 9
3.16 Lecture 1, Pricing and hedging fast using Markov Processes

Intuitively a process is Markov if, to estimate its future behavior, knowing the whole
past is the same as knowing just its present value. Since information is represented by σ-
algebras, and the (most common) estimator of a random variable Y given the σ-algebra
G is the conditional expectation E[Y |G], we arrive at the following definition, in which
σ(Xs) represents the information given by the present value of X, Fs represents the
whole past, and T ⊆ [−∞,∞].

Definition 122. An adapted process X = (Xt)t∈T on a filtered prob. space (Ω,A,F ,P)
is Markov if

∀f Borel-measurable , ∀s ≤ t, s, t ∈ T, E(f(Xt)|Fs) = E(f(Xt)|Xs). (98)

It is not hard to see that there are many conditions equivalent to the one in eq. (98).
For example, we could have replaced Xt for s ≤ t with a whole vector (Xt1 , . . . , Xtn)
for s ≤ t1 ≤ . . . ≤ tn. This makes is clear that a F-adapted process X is Markov iff
the conditional law of Xt given Fs equals the conditional law of Xt given σ(Xs), for all
s ≤ t; but since it is normally easier to work with the conditional expectations than with
conditional probabilities, we do not often adopt this point of view. We could also have
equivalently asked that

∀f Borel ∀s ≤ t, s, t ∈ T,E(f(Xt)|Fs) is σ(Xs)-measurable, (99)

i.e. that

∀f Borel ∀s ≤ t, s, t ∈ T, ∃ g Borel s.t. E(f(Xt)|Fs) = g(Xs). (100)

Thus, if we want to prove that a process X, which only takes countably many values, is
not Markov, we would normally show that E(f(Xt)|Fs) is not constant on some set of
the form {Xs = c}, and thus is not σ(Xs)-measurable (for some choice of s, t, f), thanks
to lemma 79. If T = {0, · · · , N}, we could also have equivalently considered only the
s ≤ t of the form t = s + 1 in eqs. (98) and (99). As eq. (99) is the easiest equivalent
condition to check, it is the way one normally uses to prove that X is Markov (and, if
T = {0, · · · , N}, one only needs to check eq. (99) for t = s+ 1).

Now, consider a complete market model (Bt, St)t∈T, in discrete time, on a stochastic
basis (Ω,A,F ,P). Let Q ∈ M(S) be the risk-neutral measure. If a derivative has a
discounted payoff Y N of the form fN (WN ) for some function fN and some Q-Markov
process120 W , by the RNFP eq. (91) we find that the AFP (Yn)n of YN satisfies the
following equation for n = N − 1

Y n = EQ[Y n+1|Fn] = EQ[fn+1(Wn+1)|Fn] = fn(Wn) (101)

120i.e. a Markov process on (Ω,A,F ,Q).
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for some (Borel) measurable function fn, i.e. Y n is of the form fn(Wn) also for n = N−1.
We can then apply eq. (101) again with n = N − 2 etc., so by backward induction we
obtain that Y n is of the form fn(Wn) (for some measurable function fn) for every
n = 0, . . . , N . Thus, to compute Y n, fn from Y n+1, we just need to keep track of the
values of Wn,Wn+1, we do not need to know all the values of (Xk)k≤N . In particular, if
given the choice between two Q-Markov processes W,W ′ s.t. Y N = fN (WN ) = f ′N (W ′N ),
between W,W ′ one should choose the process which takes the smallest possible number
of values, to minimise the time it takes to compute Y . To actually compute the prices
(Y n)n, we need to explicitly compute the pricing functions (fn)n by backward induction,
starting from fN (which is known); we shall soon see how to do it.

Remark 123. Normally one has to take W to be a multi-dimensional process, which has
the underlying S as ‘one121’ of its components, and as another component has a process
C s.t. the payoff of the derivative is of the form fN (SN , CN ). It often happens that fN
does not even depend on SN (i.e. the payoff is actually of the form fN (CN )), but that
C is not Q-Markov while (S,C) is Q-Markov; in this case one has to apply the above
reasoning with W = (S,C), and cannot apply it with W = C.

To prove that a process is Markov, and to compute the pricing functions (fn)n≤N ,
normally122 one uses the following lemma, typically taking G = σ(Y ), to compute the
conditional expectation.

Lemma 124 (Independence Lemma). If X a Rk-valued, and Y is a Rn-valued, random
vector on (Ω,A,P), G ⊆ A is a σ-algebra, X is G-measurable and Y is independent of G,
f : Rk × Rn → R is a Borel function, then

E(f(X,Y )|G) = g(X) for g(x) := E(f(x, Y )), g : Rk → R.

We should stress that in the above lemma x ∈ Rk (and thus g(x)) is not random,
whereas X,Y (and thus g(X)) are random. Also, although the lemma is stated for
x ∈ Rk, notice that to compute g(X) we really only need to compute g(x) for all x in
the image123 of X. In particular, if X only takes124 (finitely or) countably many values
(xk)k, we only need to compute (g(xk))k. Let us now illustrate how to use the above
lemma.

Example 125. Given X,Y independent and uniformly distributed in [0, 1], we can com-

121Here S could be multi-dimensional.
122If the (joint) law of (X,Y ) is known, there is another method commonly used to compute E(X|Y ),

but we will not need it in this class.
123To be precise, since X, being a random variable, is only defined up to P-null sets, we should look at

the P-essential image of X, defined as the support of the law of X, i.e. the intersection of all closed
sets C ⊆ Rk s.t. X ∈ C P a.s..

124Meaning P(X = xk) > 0,P(X /∈ ∪k{xk}) = 0.
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pute E(X ∧ Y |X): it equals g(X), where

g(x) = E(x ∧ Y ) = E(Y 1{Y≤x} + x1{Y >x}) =

∫ 1

0
y1{y≤x}dy + x

∫ 1

0
1{y>x}dy

=

∫ x

0
ydy + x

∫ 1

x
1dy =

x2

2
+ x(1− x) = x− 1

2
x2, ∀x ∈ R.

Thus E(X ∧ Y |X) = g(X) = X − 1
2X

2.

Corollary 126. If a F-adapted process W satisfies Wk+1 = fk(Wk, Xk+1) for each
k ∈ Z, where fk is some Borel function and Xk+1 is independent of Fk, then W is
Markov and E(f(Wk+1)|Fk) = g(Wk) for all k ∈ Z, where

g(w) := E[f(fk(w,Xk+1))] (102)

Proof. For every k we have that

E(f(Wk+1)|Fk) = E((f ◦ fk)(Wk, Xk+1)|Fk) = g(Wk)

where g is the Borel function in eq. (102), so W is Markov.

Obviously corollary 126 also applied if the time index Z is replaced by any subset
thereof. Let use illustrate the use of corollary 126 in proving that a process is Markov.

Example 127. Assume that in the binomial model Sn+1 = fn(Sn, Xn+1), where Xn+1

is the (n + 1)th-coin toss and fn is a (Borel) function (this happens for example when
the up and down factors un, dn are deterministic). Since S is F-adapted and Xn+1 is
independent of Fn under P for all n, S is a Markov process under P. Analogously, S is
Markov under the risk neutral measure Q if Xn+1 is independent of Fn under Q for all
n (i.e. if the (Xn)n are Q-independent); this happens if and only if P̃n is deterministic125

for all n, because of remark 120.

Remark 128 (Hedging fast using Markov Processes). Assume we are in the binomial
model and choose an adapted W process s.t. Y N = fN (WN ), Wk+1 = hk(Wk, Xk+1)
and Sk = sk(Wk) for each k, where hk, sk are some Borel functions and (Xk)k are the
coin tosses. If126 W is Q-Markov then Y n = fn(Wn) for all n ≤ N for some (fn)n. Since
the delta-hedging formula gives

Gn(ω) = Gn(ω(n)) =
Y n+1(ω(n)H)− Y n+1(ω(n)T )

Sn+1(ω(n)H)− Sn+1(ω(n)T )

we get

Gn(ω(n)) :=
fn+1(Wn+1)(ω(n)H)− fn+1(Wn+1)(ω(n)T )

sn+1(Wn+1)(ω(n)H)− sn+1(Wn+1)(ω(n)T )

125Though it is allowed to depend on n, it cannot be random, i.e., it cannot depend on ω.
126Which, by corollary 126 happens in particular if the (Xn)n are Q-independent, i.e. if P̃n is deterministic.
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and since

Wn+1(ω(n)H) = hn(Wn(ω(n)), H), Wn+1(ω(n)T ) = hn(Wn(ω(n)), T )

we find that Gn(ω(n)) = gn(Wn(ω(n)) for some Borel function gn, which can be calcu-
lated explicitly as

gn(w) :=
fn+1(hn(w,H))− fn+1(hn(w, T ))

sn+1(hn(w,H))− sn+1(hn(w, T ))
. (103)

Thus, not only the price Y n but also the hedging strategy Gn = gn(Wn) can be quickly
computed by looking only at the values of Wn, and by calculating the portfolio function
gn, which only needs to be calculated for w in the ‘image’127 of Wn.

3.17 Lecture 2, Example of Markov pricing

Let us illustrate with an example the method described in the previous section by com-
puting the price V a (floating) lookback put option, i.e. the derivative which has payoff
VN := MN −SN at maturity N , where Mn := maxi=0,...,n Si is the running maximum of
the price S of the underlying. We describe S = (Sn)Nn=0 with a N -period binomial model
with constant parameters S0, u, d, r > 0, which are assumed to satisfy the no-arbitrage
condition 0 < d < 1 + r < u.

Notice that the (discounted) payoff of the derivative in question can be written as

V N = fN (SN ,MN ), for fN (s,m) :=
1

(1 + r)N
(m− s).

This suggests to consider the process W := (S,M), and to try to prove that it is Q-
Markov. As we saw in eq. (102), an easy way to do that would be to prove the existence
of hn s.t. Wn+1 = hn(Wn, Xn+1), by computing it explicitly. To this end, notice that

Sn+1

Sn
= q(Xn+1), where q(x) :=

{
u, if x = H

d, if x = T
,

and this allows to write

Sn+1 = Snq(Xn+1), Mn+1 = Mn ∨ Sn+1 = Mn ∨ (Snq(Xn+1))

from which we conclude that indeed Wn+1 = hn(Wn, Xn+1) if we take

hn(s,m, x) := (sq(x),m ∨ (sq(x))).

We can then apply the Markov pricing method to the problem at hand, as follows. Since

V n = EQ[V n+1|Fn] = EQ[fn+1(Wn+1)|Fn] = fn(Wn),

127See the discussion right after lemma 124.
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and V N = fN (SN ,MN ) for some function fN , we conclude by backward induction that
V n = fn(Wn) for every n, and to compute the price V of the derivative the pricing
functions fn can (and should) be explicitly calculated by backward induction as follows.
By the independence lemma EQ[f(Wn+1)|Fn] = g(Wn), where

g(s,m) := EQ[f(hn(s,m,Xn+1))] = p̃f(su,m ∨ (su)) + q̃f(sd,m ∨ (sd)),

where p̃ := Q(Xn+1 = H), q̃ := 1− p̃; notice that

Q(Xn+1 = H) = EQ[Q(Xn+1 = H|Fn)],

and so in the present setting p̃ equals

p̃n := Q(Xn+1 = H|Fn) =
(1 + r)− d
u− d

,

since the latter is deterministic. In summary, the pricing functions are given by

fN (s,m) :=
1

(1 + r)N
(m− s),

fn(s,m) :=p̃fn+1(su,m ∨ (su)) + q̃fn+1(sd,m ∨ (sd)), n = 0, . . . , N − 1.

Finally, the replicating strategy Gn = gn(Sn,Mn) is given by eq. (103), where sn is the
function sn(w) = sn(s,m) := s (since it satisfies Sn = sn(Wn)), and so

gn(s,m) :=
fn+1(su,m ∨ (su))− fn+1(sd,m ∨ (sd))

su− sd
, n = 0, . . . , N − 1.
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4 Continuous time models

EVERYTHING FROM NOW ON IS NOT EXAMINABLE
We will conclude this module with a brief introduction to the most important model

in continuous time (the Black and Scholes model), and show how it is obtained by taking
limits of the multi-period binomial model. We will also show how the risk-neutral pricing
method can be applied in this setting; we will not discuss replication in the BS (Black
and Scholes) model, since this would require very sophisticated mathematics (namely,
stochastic calculus).

4.1 Lecture 3, From the Binomial to the Black and Scholes model

Suppose now we want to consider models with price movements at arbitrary dates and
of arbitrary size. This is not really because it makes the models more realistic: after all,
taking a discrete-time model with extremely small time intervals based on a probability
space made of really many points, one can approximate arbitrarily well any continuous-
time model. The real reason for wanting to work in continuous time here is the same
as for in classical physics: we want to use the power of differential calculus and its rich
bag of tools (integrals, ODEs, the fundamental theorem of calculus. . . ) to be able to
make explicit calculations which are just not possible when working in discrete-time
(using sums, difference equations, . . . ). The only difference is that, when working with
stochastic processes in continuous time, one deals with a much more complicated type of
calculus (called stochastic calculus), and its tools (stochastic integrals, SDEs (Stochastic
Differential Equations), Ito’s formula, . . . ).

So let use as time index the interval [0, T ], and consider a price process (Bt)t∈[0,T ]

for the bond and (St)t∈[0,T ] for the underlying. How should we model (B,S)? It is
quite intuitive that B,S should be continuous128 processes; whether this can actually
be concluded applying statistical considerations to market data is still the subject of
debate. To determine what model we could plausibly choose, let us see what happens
when taking the limit of binomial models with constant coefficients in the most intuitive
way possible. For N = 1, 2, . . . let ∆ := T/N , and consider as discrete-time index for a
binomial model (BN

t , S
N
t )t∈πN the following partition πN , which is a discretized version

of [0, T ]
πN := {0,∆, 2∆, · · · , N∆} = {tNi }Ni=0, where tNi := i∆.

In order to have πN ⊆ πN+1, one should only consider N of the form N = 2i for some
i ∈ N, though we won’t indicate that in our notation, to keep it lighter. We should also
extend our model (BN

t , S
N
t )t∈πN to all t ∈ [0, T ]; we can do so by declaring t 7→ BN

t , S
N
t

to be affine in each interval [tNi , t
N
i+1], so that (BN

t , S
N
t )t∈[0,T ] is a continuous process.

For each N , for simplicity we take the parameters r, u, d of the model (BN
t , S

N
t ) to be as

simple as possible: they should be constants in t, ω, but they should depend on N to have
a non-trivial limit (B,S) of (BN , SN ). How exactly should the parameters be chosen to
depend on N it is not clear for now. The right dependence for rN is easy to guess: if in

128(Xt)t is continuous if t 7→ Xt(ω) is continuous P a.e. ω.
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discrete time the bank account has an (un-compounded) interest rate r per unit time,
i.e. investing 1 at time i∆ we get back (1 + r∆) at time (i+ 1)∆, then the interest rate
in the model (BN , SN ) should be given by r times the step of the partition πN , i.e. rN =
rT/N . This dependence in N gives the following reasonable result: compounding the
interest we get BN

T = (1 + rT/N)N , and so BN
T → exp(rT ) = BT for N → ∞. Thus

taking rN := rT/N results in the limit B of BN to be given by the model of a bank
account B with constant short rate r.

How should be choose dN , uN to get SN to convergence in law (a.k.a. in distribution)
to a non-trivial process S, and more importantly, what will then be S? Notice that the
RNi := SN

tNi
/SN

tNi−1
are IID under the physical measure P, and SN

tNk
= S0Πk

i=1R
N
i , and it is

natural to want to transform the product of IID into a sum, so that we can apply the
CLT (Central Limit Theorem). So, we consider the process XN := ln(SN ), so that

XN
tNk

= XN
0 +

∑k
i=1 Y

N
i with Y N

i := ln(RNi ), XN
0 := ln(S0).

To have XN converge, we plan to apply the following slight extensions of the CLT.

Lemma 129. Let
(
Znj

)
j

be IID, so Znj ∼ Zn for all j. Assume Zn ∈ L2(P), E(Zn)→

m ∈ R and Var (Zn) → σ2 as n → ∞, where 0 < σ2 < ∞. Then Sn :=
∑n

j=1(Zn
j −m)

√
n

converges in distribution to the normal random variable S ∼ N (0, σ2)

The proof of the previous lemma is identical to the most commonly used proof of the
CLT (the one with characteristic functions); the statement is however more general, in
that the Znj are allowed to also depend on n, and instead of asking that Zj ∼ Z satisfy

E(Z) = m,Var (Z) = σ2

we ask that Znj ∼ Zn satisfy

E(Zn)→ m,Var (Zn)→ σ2 as n→∞.

Consider now the increment XN
tNk
− XN

tNk−1
= Y N

k of X during the interval [tNk−1, t
N
k ],

which has length tNk − tNk−1 = ∆ = T/N . Assume that uN , dN are chosen129 so that the
limits of the expected value and variance of each increment of X per unit time exist and
are non-trivial, i.e. for all i

∃ lim
N

N

T
EP(Y N

i ) = µ ∈ R, ∃ lim
N

N

T
varP(Y N

i ) = σ2 ∈ (0,∞),

and that the convergence of N
T Y

N
i to µ is faster than 1/

√
N , i.e.

1√
N

EP(
N

T
Y N
i − µ)→ 0.

129We don’t show how to choose such uN , dN for reasons of brevity. In the literature one can find several
different possible expressions of uN , dN .
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In terms of the rv ZNi := 1√
N

(NY N
i − Tµ) we can write our assumptions as

EP(ZNi )→ 0, varP(ZNi ) = varP(
√
NY N

i )→ σ2T as N →∞. (104)

Then, writing

XN
T −XN

0 − Tµ =
∑N

i=1(Y N
i − Tµ/N) = 1√

N

∑N
i=1

1√
N

(NY N
i − Tµ) = 1√

N

∑N
i=1 Z

N
i

we can apply lemma 129 and get that

XN
T −XN

0 − Tµ =
1√
N

N∑
i=1

ZNi
LAW−→ σWT , WT ∼ N (0, T ). (105)

So XN
T → X0 + µT + σWT =: XT , which implies SNT → S0 exp(µT + σWT ) =: ST for

a WT ∼ N (0, T ). This only determined the law of ST ; analogously we get that SNt
converges in law to S0 exp(µt + σWt) =: St for a Wt ∼ N (0, t); this is not enough, as
we need to determine the law of the whole process S, i.e. explain how S moves between
different times. To do so, we reason analogously, and if s, t ∈ πN ⊆ πN+1, s ≤ t, for
N →∞ we get

XN
t −XN

s − µ(t− s) −→ σ · (Wt −Ws), Wt −Ws ∼ N (0, t− s).

If r, s, t ∈ πN , r ≤ s ≤ t then XN
s −XN

r and XN
t −XN

s are independent130, i.e.

E[f(XN
s −XN

r )g(XN
t −XN

s )] = E[f(XN
s −XN

r )]E[g(XN
t −XN

s )], for all Borel f, g,

and taking N →∞ shows that Xt −Xs and Xs −Xr are independent, so Wt −Ws and
Ws −Wr are independent. Working analogously with arbitrary times 0 ≤ s0 < s1 <
· · · < sk ≤ T, k ∈ N, we could show that W satisfies

(Ws1 −Ws0 ,Ws2 −Ws1 , · · · ,Wsk −Wsk−1
) are independent. (106)

Such a process W is said to have independent increments.

In summary, we are thus lead to considering the following definition for the process
W and the limiting model (B,S).

Definition 130. A (standard, one dimensional) BM (Brownian Motion) is a process
W = (Wt)t≥0 and s.t.:

0. W0 = 0.

1. W has independent increments.

2. Wt −Ws ∼ N (0, (t− s)) for 0 ≤ s < t.

130Since XN
s − XN

r =
∑

i∈I Y
N
i and XN

t − XN
s =

∑
i∈J Y

N
i for some disjoint I, J , and the (Y N

i )i are
independent.
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3. W is continuous (i.e. t 7→Wt(ω) continuous P a.e. ω).

Remark 131. A process W = (W i)ni=1 with values in Rn is a called a n-dimensional BM
if its components W 1, . . . ,Wn are independent processes131, and each component is a
1-dimensional BM.

Remark 132 (F-Brownian Motion). Normally, one takes F to be the natural filtration
of BM, i.e. Ft = FWt := σ({Ws : s ∈ [0, t]}) for all t. It is sometimes useful to consider
a more general filtration F . Then we say that W is a F-BM if it is a BM and

W is F-adapted, Wt −Ws is independent of Fs for every t ≥ s ≥ 0. (107)

Trivially eq. (107) implies item 1 in definition 130, and is equivalent to it if F = FW (so
W is a BM iff it is a FW -BM).

Remark 133. If item 0 in definition 130 is replaced by

W0 = X

where X is any random variable independent from W , then the process Bt := X+Wt, t ≥
0, which satisfies all items in definition 130 but for item 0, is called a BM started at X.

Definition 134. The BS (Black-Scholes) model considers a bank account B and one
stock S modelled as

Bt := exp(rt), St := S0 exp(µt+ σWt) for S0, σ > 0, r > −1, µ ∈ R. (108)

where W is a (one-dimensional) Brownian Motion, and the natural filtration FW of BM.
Such process S is called a GBM (Geometric Brownian Motion).

Remark 135. The process L := log(S) is Gaussian and has independent increments,
since if s < t < u then

Lt − Ls = log(St)− log(Ss) = log (St/Ss) = µ(t− s) + σ(Wt −Ws).

In particular,
St
Ss

and
Su
St

are independent; notice that however St − Ss and Su − St are

not independent!

131By definition, processes {Xi}i∈I are independent if they generate independent σ-algebras σ(Xi) :=
σ({Xi

t}t≥0), i = 1, . . . , n.
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Week 10
4.2 Lecture 1, The EMM in the BS model

The previous calculations of convergence of the binomial model (BN , SN ) to the BS
model (B,S) were done with convergence in law under the underlying probability P,
which describes how likely is each market scenario; such P is called the physical measure.
Instead, we now look at the convergence in law of (BN , SN ) under its EMM QN to
determine the law of (B,S) under its EMM Q =: P̃. Each RNi takes132 values uN , dN

under QN , and the (RNi )i are IIDs also under QN , since the risk-neutral transition
probabilities

p̃N =
(1 + rN )− dN

uN − dN

are constants. Thus, we will still be able to carry out the same calculations as before,
and get that the limiting model is St := S0 exp(µ̃t + σ̃W̃t), where W̃ is a Brownian
Motion under Q; what changes now is that, since the expectation and variance of ZNi
under PN is not necessarily the same as under QN , the values of µ̃, σ̃ may be different
from µ, σ. It turns out that σ̃ = σ; this important fact can be proved133 by showing
that, if for some P′ ∼ P, a > 0, b ∈ R the process Yt := a(Wt + bt) is a P′-BM, then a = 1
(because the quadratic variation [Y ] of Y is a2t). As for µ̃, it is determined by using
the fact that S = S/B is a Q-martingale, i.e. Ss equals EQ[St|Fs] for all s ≤ t. Since
St := S0 exp(µ̃t+ σW̃t), we have that

St = S0 exp((µ̃− r)t+ σW̃t) = AtEt(σW̃ ), for At := S0 exp

((
µ̃− r +

σ2

2

)
t

)
. (109)

Since E(σW̃ ) is a martingale and At is deterministic we have

EQ[St|Fs] = EQ[AtEt(σW̃ )|Fs] = AtEQ[Et(σW̃ )|Fs] = AtEs(σW̃ ),

whereas applying eq. (109) with t = s we find Ss = AsEs(σW̃ ). Thus, S is a Q-martingale
iff At = As for all s ≤ t, i.e iff µ̃ = r − σ2/2. In summary, under appropriate choices of
uN , dN we will get that SN will converge in law under QN , and its limit in law S will
be given by

St = S0e
rtEt(σW̃ ) = exp

(
(r − σ2

2
)t+ σW̃t

)
, (110)

where W̃ is a BM under the EMM Q. Thus, eq. (110) provides us with the law of S
under Q, which is what we need to apply the RNPF.

132Meaning QN (RN
i = x) > 0 if x ∈ {uN , dN}, and QN (RN

i /∈ {uN , dN}) = 0.
133It could be proved also by explicitly choosing appropriate uN , dN and doing the calculations, but this

is tedious and not as insightful.
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4.3 Lecture 2, Pricing the call in the binomial model

Since the binomial model (Bt, St)t=0,1,...,N has a unique EMM Q, the price at time n ≤ N
of the call with strike K and maturity N satisfies Cn = EQ[CN |Fn], and so

Cn = EQ[
Bn
BN

(SN −K)+|Fn] =
1

(1 + r)N−n
EQ[

(
Sn
SN
Sn
−K

)+

|Fn].

Since SN/Sn = ΠN
i=n+1Ri is independent of Fn and Sn is Fn-measurable, by applying

the independence lemma we get that Cn = cn(Sn) := c(n, Sn) where

c(n, x) :=
1

(1 + r)N−n
EQ[(xΠN

n+1Ri −K)+]. (111)

Since the (Ri)i are IID under Q and Bn = (1 + r)n, c can be computed as

c(n, x) =
1

(1 + r)N−n

N−n∑
j=0

(
N − n
j

)
p̃j(1− p̃)N−n−j(xujdN−n−j −K)+. (112)

4.4 Lecture 3: Pricing the call in the BS model

Since the BS model has a unique EMM Q, the price at time t ≤ T of the call with strike
K and maturity T in the BS model satisfies Ct = EQ[CT |Ft], and so

Ct = EQ[
Bt
BT

(ST −K)+|Ft] = e−r(T−t)EQ[

(
St
ST
St
−K

)+

|Ft], (113)

Since the binomial models (BN , SN ) converge in law under QN to the BS model (B,S)
under Q, the price CNt of the call in the model (BN , SN ) converges to the price Ct in
the BS model. It would then be possible, but messy, to compute Ct by taking the limit
of CNt . Let us instead compute Ct directly from eq. (113), emulating our discrete-time
calculations. From eq. (110) we get that

ST /St = exp((r − σ2/2)(T − t) + σ(W̃T − W̃t)),

which shows that ST /St is independent of Ft (under Q). Since St is Ft-measurable, the
independence lemma gives that Ct = c(t, St), where

c(t, x) := e−r(T−t)EQ

[(
x
ST
St
−K

)+
]
. (114)

To compute c(t, x), define

Y := −W̃T − W̃t√
T − t

, h(y) := h(t, x, y) := x exp

(
−σ
√
T − ty + (r − σ2

2
)(T − t)

)
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so that

Y ∼
under Q

N (0, 1), x
ST
St

= h(t, x, Y ) c(t, x) = e−r(T−t)EQ [(h(t, x, Y )−K)+] . (115)

Since c and h only depend on (t, T ) as a function of T−t, we will express this dependence
using the variable τ := T − t. To compute c, we need to identify when the payoff of the
call option is non-zero in terms of Y , and so we write

X := x
ST
St
−K ≥ 0⇐⇒ −σ

√
τY + (r − σ2

2
)τ = ln

(
ST
St

)
≥ ln

(
K

x

)
= − ln

( x
K

)
,

which holds iff

Y ≤ d− := d−(τ, x) :=
1

σ
√
τ

(
ln
( x
K

)
+

(
r − σ2

2

)
τ

)
,

and thus {X ≥ 0} = {Y ≤ d−(τ, x)}. Using that X+ = X1{X≥0} and X = h(Y )−K, it
follows that

Ẽ((x
ST
St
−K)+) = Ẽ(1{Y≤d−}(h(Y )−K)).

Since Y ∼ N (0, 1) has density φ(y) := e−
y2

2√
2π

we get that

c(t, x) = e−rτ
∫ d−

−∞

(
x exp

(
−σ
√
τy + (r − σ2

2
)τ

)
−K

)
φ(y)dy.

In terms of the CDF of the standard Gaussian

N (x) :=

∫ x

−∞

e−
y2

2

√
2π
dy, (116)

which cannot be expressed by an analytic formula but can be calculated numerically
very fast, we can now write c(t, x) = A−B, with

A :=

∫ d−

−∞
x exp

(
−1

2
(y + σ

√
τ)2

)
dy√
2π
, B := e−rτKN (d−).

To compute A, change variable z := y + σ
√
τ , so dz = dy and

A =

∫ d+

−∞
x
e−z

2/2

√
2π

dz = xN (d+), where d+(τ, x) := d−(τ, x) + σ
√
τ .

Notice that both d+ and d− can be conveniently expressed by the formula

d± := d±(T − t, x) :=
1

σ
√
T − t

(
log
( x
K

)
+

(
r ± σ2

2

)
(T − t)

)
. (117)

In summary we obtained the celebrated Black and Scholes option pricing formula

c(t, x) = xN (d+)− e−r(T−t)KN (d−), (118)

for the price of call option at time t in the Black-Scholes model if St = x; here N and
d± are defined in eqs. (116) and (117). Notice that c, d± only depend on (t, T ) via the
time to maturity τ = T − t.
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4.5 Lecture 4, Hedging the call in the binomial and BS models

In the binomial model, the replicating strategy G = (Gn)n for the call option is given
by the delta-hedging formula as

Gn−1 =
c(n, Sn−1u)− c(n, Sn−1d)

Sn−1u− Sn−1d
, (119)

Since delta-hedging formula eq. (119) expresses the trading strategy as the slope of the
pricing function cn(·) (computed in eq. (112)) between the two possible values of Sn, one
could guess that in continuous time the hedging strategy should be

Gt =

(
∂c

∂x

)
(t, St); (120)

this turns out to be true, but its proof requires technical tools which are beyond the
scope of this class. Since for b, s ≥ 0,K ∈ R the function x 7→ b(sx −K)+ is positive,
increasing and convex, from eqs. (111) and (114) it follows that c(n, ·), c(t, ·) are positive,
increasing and convex. Since c(n, ·), c(t, ·) are increasing, eqs. (119) and (120) show that
Gn, Gt ≥ 0, i.e. the replicating strategy of the call option in the binomial and Black and
Scholes models does not involve short-selling.

4.6 Lecture 5, The Greeks

The partial derivatives of the option pricing function c given by eq. (118) with respect
to its multiple arguments are called the Greeks, because they are traditionally denoted
with the following Greek134 letters. The derivatives of c are important because they
describe how c changes when its arguments change.

1. The dependence on the price of S is measured by the Delta ∆ := ∂c/∂x.

2. Second-order effects on x involve the Gamma Γ := ∂2c/∂x2.

3. The time-dependence is given by Theta Θ := ∂c/∂t.

4. Volatility dependence is given by Vega ν := ∂c/∂σ.

5. The sensitivity to interest rates is given by Rho ρ := ∂c/∂r.

Using the explicit formula eq. (118) we could painstakingly compute the Greeks explic-
itly; as this is purely an exercise in calculus, we don’t do it here, and we just mentioned
that the most important Greek (the Delta) is given by the nice formula

∆ = N (d+) > 0.

To easily remember this formula, you should remember that while d+, d− depend on
(T − t, x), and thus ∆ = ∂c/∂x must be computed from eq. (118) using the chain rule,

134Other than Vega, which comes from Spanish, though normally people use the Greek letter ν as its
symbol.
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it turns out that their effects cancel out, so ∂c/∂x equals the value that it would take if
d+, d− did not depend on x.

Using the explicit formulas for the Greeks one can check that, for the call option,

Delta > 0, Gamma > 0, Theta < 0, V ega > 0.

The fact that Delta > 0 is intuitive: the larger St = x, the larger the payoff of the call
(xST /St −K)+, so x 7→ c(t, x) is increasing (this follows from the domination principle,
and also from the RNFP). As we already mentioned, this implies in particular that
replicating a call involves no short-selling. Analogously, since c(·, T ) = (· − K)+ is
convex, the domination principle shows that c(t, ·) is convex, and so Γ ≥ 0 for the call
option.

Also V ega > 0 is intuitive: a more volatile stock means that the outcome is more
uncertain, and so the insurance against adversity provided by the call option becomes
more valuable (you can say that options like volatility).

Suppose at time t we want to take a long position in the call option and hedge it.
We then buy one call option, spending c(t, St), and hedge it by shorting ∆t = ∂xc(t, St)
shares at time t, which generates an income of ∆tSt, so that our wealth in the bank is

M := M(t, St) := St · ∂xc(t, St)− c(t, St).

Notice that substituting the formulas for c and ∂xc we get that M = e−r(T−t)KN (d−),
and so M > 0, so to hedge a long position in a call option one never needs to borrow
any money. If x := St, and writing c(x),M(x) for c(t, x),M(t, x), our total wealth is

V (x) := V (t, x) = c(x)− x∂xc(x) +M(x) = 0.

If St were to suddenly jump to y, then V (x) would become

V (y) := c(y)− y∂xc(x) +M(x) = c(y)− (c(x) + (y − x)∂xc(x)), (121)

since the amount of money in the bank remains M(x), and the amount of shares you
own remains ∂xc(x), but the call option and the underlying change value from c(x), x
to c(y), y. Geometrically, the quantity in eq. (121) represents the difference between the
value at the point y of a strictly convex function c, and the value at y of the line tangent
to c at x; in particular V is positive and V (y) = 0 iff y = x. Thus V achieves its unique
minimum at y = x, and in particular (∂yV )(x) = 0; moreover ∂2

y2V = ∂2
y2c ≥ 0. Our

portfolio is then said to be delta-neutral, long gamma, because

(∂yV )(x) = 0, ∂2
y2V > 0.

Since V (y) > 0 for any y 6= x, we benefit from any instantaneous jumps in stock price,
no matter if the jump is up or down. So, if S turns out not to follow the Black and
Scholes model as we postulated, but instead has a jump, or follows a Black and Scholes
model but with higher volatility than we predicted (so that it oscillates in value more
wildly than we predicted), this portfolio will be profitable.
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However the equation (∂yV )(x) = 0 means that, for infinitesimal changes in value of
S, the change of portfolio value is zero; this happens because the change (∂yc)(x) in the
call option price is offset by the change ∂y(c(x) + (y − x)∂xc(x))(x) in the value of the
hedging portfolio. This strongly suggests that formula Gt = ∂xc(t, St) for the replicating
strategy G is indeed correct.

If instead the stock does follow the Black and Scholes model with the correct σ, and
−∂xc(t, St) is indeed the hedging strategy, our portfolio is worth 0 at all times. How can
this happen? After all, the change in portfolio value should be 0 only for infinitesimal
changes in the value of the underlying, so that as time increases and the value of S
changes from x to y the portfolio value should increase from 0 to V (y) > 0, because of
this portfolio is long gamma (i.e. ∂2

y2V > 0). Moreover, as time increase the value of
the bank account increases, since we deposited in it the positive amount M > 0. The
reason why this does not happen (i.e. the value of V is always the constant 0) is that
Θ = ∂tc < 0, so the increase in value of the portfolio due to the change in value of the
underlying and the increase in value of the bank account is cancelled out by the decrease
in value of the call option.
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