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3 Linear Methods for Regression

3.2 Linear Regression Models and Least Squares

Definition 3.2.1. The linear regression model is given by

f(X) = β0 +

p∑
j=1

Xjβj (1)

where XT = (X1, . . . , Xp) is the input vector, βT = (β0, . . . , βp) is the unknown parameter vector, and f(X)
is the output.

Linear model assumes that regression function E(Y | X) is linear, or it is a reasonable approximation.

Definition 3.2.2. Multivariate Linear Model Given p explanatory variables, X = (X1, . . . , Xp), we have
the multivariate linear model

Yi = β0 + β1Xi,1 + . . .+ βpXi,p + ϵi = β0 +

p∑
j=1

Xijβj + ϵi (2)

Given β =
(
β1, . . . , βp

)
and X = (Xi,j) the n × p matrix of Xi,j values of X on ith individual and jth

variable.
Y = Xβ + ϵ

ϵ the n× 1 vector of errors, with mean 0 and variance σ2.

Definition 3.2.3. (Residuals)
e = Y −Xβ

(Residual Sum of Squares)

RSS(β) = eT e = (Y −Xβ)T (Y −Xβ) = Y TY − 2βTXTY + βTXTXβ

(Least Squares Estimator)

β̂ = argmin
β

RSS(β) = (XTX)−1XTY︸ ︷︷ ︸
H - Hat matrix

We have the fitted values of the model as
Ŷ = Xβ̂ = HY

Proposition 3.2.4. (Expectation and Variance of β )

E(β̂) = β

Var(β̂) = σ2(XTX)−1

Varβ̂ a p × p covariance matrix. If X an orthogonal matrix then XTX = Ip so Varβ̂ a diagonal matrix so

for i ̸= j, β̂i, β̂j are uncorrelated

Proposition 3.2.5. (Distribution of β̂ ) If {ei} are normally distributed, then β̂ is also normal

β̂ ∼ Np(β, σ
2(XTX)−1)

And if X orthogonal then β̂i and β̂j are independent for i ̸= j

3



Definition 3.2.6. (Z-score)

zj =
β̂j

σ̂
√
vj

where vj the jth diagonal element of (XTX)−1 and so var β̂j = σ2vj

σ̂2 =
1

n− p

n∑
i=1

(Yi − Ŷi)2 E(σ̂2) = σ2

Used to test the hypothesis that βj = 0, we have that zj distributed as a Student’s t distribution with n − p
degrees of freedom, approximated as N(0, 1) for large n larger than p

Definition 3.2.7. (F-test)

F =
(RSS0 −RSS1)/(p1 − p0)

RSS1/(N − p1 − 1)

where RSS0 the residual sum of squares for the smaller model with p0 + 1 parameters, RSS1 the residual
sum of squares for the larger model with p1 + 1 parameters, and N the number of observations.

F ∼ Fp1−p0,n−p−1−1

The F statistic measures the change in residual sum-of-squares per additional parameter in the bigger model,
and it is normalized by an estimate of σ2

3.2.2 The Gauss-Markov Theorem

Theorem 3.2.8. (Gauss-Markov Theorem) If the errors ϵi have mean 0, variance σ2, and are uncorrelated,

then the least squares estimator β̂ is the best linear unbiased estimator of β (BLUE)

3.3 Subset Selection

Unsatisfied with the least squares estimates due to

� prediction accuracy - the least squares estimates often have low bias but large variance.

� interpretation - With a large number of predictors, we often would like to determine a smaller subset
that exhibit the strongest effects. In order to get the “big picture,” we are willing to sacrifice some of
the small details

3.4 Shrinkage Methods

3.4.1 Ridge Regression

Definition 3.4.1. (Ridge Regression)

β̂R = argmin
β


n∑

i=1

Yi − β0 − p∑
j=1

Xi,jβj

2

+ λ

p∑
j=1

β2
j


= argmin

β

n∑
i=1

Yi − β0 − p∑
j=1

Xi,jβj

2

subject to

p∑
j=1

β2
j ≤ t

λ a tuning parameter that controls the amount of shrinkage
When variables in least squares are highly correlated it can cause instability in the least squares estimators -
ridge regression can help with this.
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Proposition 3.4.2. (Ridge Regression RSS in matrix form)

RSS(β) = (Y −Xβ)T (Y −Xβ) + λβTβ

Differentiating, setting to 0 and solving this for β gives

β̂R = (XTX + λIp)
−1XTY

Definition 3.4.3. (Condition number)

κ(A) =
λmax

λmin

where λmax and λmin are the largest and smallest eigenvalues of A
κ(A) is a measure of how much the solution of a linear system of equations changes when the coefficients of
the equations are slightly changed.

Proposition 3.4.4. (Bayesian interpretation of ridge regression)
If prior βj ∼ N(0, τ2) independently for j = 1, . . . , p, and Yi ∼ N(β0 + xTi β, σ

2) Then β | Y ∼ N with

posterior mean β̂R with λ = σ2/τ2

Singular Value Decomposition

Definition 3.4.5. (Singular Value Decomposition) The SVD of a n× p (centred) matrix X is

X = UDV T

where U, V are n × p, p × p orthogonal matrices - columns of U spanning the column space of X and V
spanning the row space
D is an p× p diagonal matrix with non-negative entries - called the singular values of X
If one or more of dj = 0 then X is singular.

if X = UDV T

XTX = V D2V T

(XTX)−1 = (V T )−1D−2V −1

Can write the least squares fitted vector as

Xβ̂ls = UUTY

And for ridge regression

Xβ̂R = (UDV T )(V D2V T + λIp)
−1(V DTUTY )

= UD(D2 + λIp)
−1DUTY

=

p∑
j=1

uj

d2j
d2j + λ

uT
j Y uj cols of U

Like linear regression, ridge regression computes the coordinates of y with respect to the orthonormal basis

U . It then shrinks these coordinates by the factors
d2
j

d2
j+λ

This means that a greater amount of shrinkage is

applied to the coordinates of basis vectors with smaller d2j

Ridge regression shrinks coordinates in directions with smaller variance.

5



Definition 3.4.6. (Effective) Degrees of freedom

Hλ = X(XTX + λIp)
−1XT

is the ”effective” hat matrix for ridge regression.

df(λ) = tr(Hλ)

=

p∑
j=1

d2j
d2j + λ

df(0) = p

which is the actual degrees of freedom of the least squares fit.

Proposition 3.4.7. (Bias and variance of ridge regression)
We have that

E(β̂R) = (XTX + λIp)
−1XTXβ

3.4.2 The Lasso

Definition 3.4.8. (The Lasso)

β̂L = argmin
β

1

2

n∑
i=1

Yi − β0 − p∑
j=1

Xi,jβj

2

+ λ

p∑
j=1

|βj |


= argmin

β

n∑
i=1

Yi − β0 − p∑
j=1

Xi,jβj

2

subject to

p∑
j=1

|βj | ≤ t

λ a tuning parameter that balances between fidelity of the fit and size of the coefficients
Note

β̂L(0) = β̂ β̂L(λ)→ Y as λ→∞ βj → 0 for j ̸= 0

3.4.3 Discussion: Subset Selection, Ridge Regression and the Lasso

Lasso v. Ridge

Different penalties
∑

β2
j v.

∑
|βj |

If βj small then β2
j tiny, but |βj | can be considerable larger so is penalised more.

Lasso has the ability to select variables and shrink coefficients.

X orthogonal

β̂ls = (XTX)−1XTY = XTY

β̂R = β̂ls/(1 + λ)

β̂L = (β̂ls − λ)

= (β̂ls − λ)+

= sign(β̂ls)(
∣∣∣β̂ls∣∣∣− λ)+

6



3.5 Methods using Derived Input Directions

3.5.1 Principal Components Regression

Definition 3.5.1. (Principal Components Regression)

1. Compute the first M principal components Z1, . . . , ZM of X

zm = Xvm m = 1, . . . , p

Where V from the SVD - the eigenvectors of the sample covariance matrix

2. Regress Y onto Z1, . . . , ZM by least squares

PCR can be written as sum of univariate regressions

ŷpcrM = Y 1n +

M∑
m=1

θ̂mzm

= Y 1n +X

M∑
m=1

θ̂mvm

where θ̂m = ⟨zm,y⟩
⟨zm,zm⟩

Can think of

β̂pcr =

M∑
m=1

θ̂mvm

Usually operate pcr on scaled inputs
If M = p then back to least squares (same col. space, just a rotation)
Works by discarding the p−M smallest components

14 Cluster Analysis

14.1 Scaling

Definition 14.1.1. (Scaling Matrices)
Define the following

e2m,l =

p∑
v=1

(Xm,v −Xl,v)
2

E = (em,l) a n× n matrix

em,l = XT
(m)X(m) +XT

(l)X(l) − 2XT
(m)X(l)

We form the inner product matrix

BX = XXT

em,l = bm,m + bl,l − 2bm,l m, l = 1, . . . , n

Proposition 14.1.2. (Loss of information) - Rotation
For Y = XP , P an orthogonal p× p matrix - a rotation matrix

BY = Y Y T = XP (XP )T = XXT = BX

Going from X → B we lose orientation information.
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Proposition 14.1.3. (Loss of information) - Position
Suppose W(m) = X(m) − µ for µ a arbitrary p-vector

WT
(m)W(l) = XT

(m)X(l) −XT
(m)µ− µ

TX(l) + µTµ

Forming distances using W

e
(W )
m,l =WT

(m)W(m) +WT
(l)W(l) − 2WT

(m)W(l)

= em,l

So going from B to E we lose position information.

Theorem 14.1.4. (Recovering B from E )

B = −1

2
(In − 11T /n)E(In − 11T /n)

We have that 1n an eigenvector of B with eigenvalue 0

Theorem 14.1.5. (Recovering X from B )
B a n× n matrix, B = XXT , so B is positive semi-definite and symmetric - so we can form the following
eigen-decomposition

B =

n∑
i=1

λie
(i)e(i)T

For λ1 ≥ λ2 ≥ . . . ≥ λn′ and λn′+1, . . . , λn = 0 and {e(i)} are the eigenvectors of B.
Define the following n-vectors f

f (i) =
√
λie

(i) i = 1, . . . , n′

Then we have that

Yn×n′ =


...

... . . .
...

f (1) f (2) . . . f (n
′)

...
... . . .

...


Where Y Y T = XXT = B

14.3 Proximity Matrices

14.3.1 Proximity Matrices

Definition 14.3.1. (Distance Matrix)

D = (dij) = d(xi, xj)

A N ×N matrix D where N is the number of observations.
Assume dij ≥ 0 and dii = 0.
Assume D also symmetric, if not consider (D+DT )/2 instead for analysis.

14.3.2 Dissimilarites Based on Attributes

Definition 14.3.2. (Dissimilarity )
For measurements xij for i = 1, 2 . . . , N on variables j = 1, 2, . . . , p (attributes) - define the dissimilarity

D(xi, xi′) =

p∑
j=1

dj(xij , xi′j)

where dj is the dissimilarity on the jth attribute.
Often taken as

dj(xijxi′j) = (xij − xi′j)2
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14.3.3 Object Dissimilarity

Definition 14.3.3. (Object Dissimilarity)

D(xi, xi′) =

p∑
j=1

wj · dj(xij , xi′j);
p∑

j=1

wj = 1

where dj is the dissimilarity on the jth attribute.
wj is the weight assigned to the jth variable.

D =
1

N2

N∑
i=1

N∑
i′=1

D(xi, xi′) =

p∑
j=1

wj · dj dj =
1

N2

N∑
i=1

N∑
i′=1

dj(xij , xi′j)

Setting wj ∼ dj would give all attributes equal influence.
In the Euclidean Case

DI(xi, xi′) =

p∑
j=1

wj · (xij = xi′j)
2

dj =
1

N2

N∑
i=1

N∑
i′=1

(xij − xi′j)2 = 2 · varj = sample estimate of V ar(Xj)

14.3.6 K-means

A popular iterative descent clustering method - used where all variables quantitative and Euclidean distance
used.

Definition 14.3.4. (Within-point scatter)

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

||xi − xi′ ||2

=

K∑
k=1

Nk

∑
C(i)=k

||xi − xk||2

Where xk =
(
x1k, . . . , xnk

)
the mean vector of cluster k, Nk =

∑N
i=1 I(C(i) = k)

Algorithm 14.1. (K-means Clustering)

� For a given cluster assignment C , the total cluster variance (33) is minimized with respect to {m1, . . . ,mK}
yielding the means of the currently assigned clusters (32)

min
C,{mk}K

1

K∑
k=1

Nk

∑
C(i)=k

||xi −mk||2 (33)

xS = arg min
m

∑
i∈S

||xi −m||2 (32)

� Given a current set of means {m1, . . . ,mK},(33) is minimized by assigning each observation to the
closest cluster mean. That is,

C(i) = arg min
1≤k≤K

||xi −mk||2 (34)

� Iterate 1 and 2 until the assignments stop changing.
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14.8 Multidimensional Scaling

Definition 14.8.1. Given configuration and set of dissimilarities {δm,l} we can form the distances {dm,l}
and least squares monotone regression fit {d̂m,l} to the d using the δs
Let the residual sum of squares be

S∗ =
∑
m<l

(
dm,l − d̂m,l

)2
And

T ∗ =
∑
m<l

d2m,l

Then the stress of the configuration is

S =

√
S∗

T ∗

Theorem 14.8.2. (Differentiation of Stress)
The stress function S is differentiable and the partial derivatives are

∂S

∂xi,k
=

1

2S

{
T ∗ ∂S∗

∂xi,k
− S∗ ∂T∗

∂xi,k

(T ∗)2

}

=
S

2

{
1

S∗
∂S∗

∂xi,k
− 1

T ∗
∂T ∗

∂xi,k

}
=
S

2

[
1

S∗

{∑
m<l

2(dm,l − d̂m,l)
∂dm,l

∂xi,k

}
− 2

T ∗

{∑
m<l

(xm,k − xl,k)
(
∂xm,k

∂xi,k
− ∂xl,k
∂xi,k

)}]

Theorem 14.8.3. (Derivative of T ∗ )

∂T ∗

∂xi,k
= 2

∑
m<l

(xm,k − xl,k)
{
∂xm,k

∂xi,k
− ∂xl,k
∂xi,k

}
Theorem 14.8.4. (Derivative of S∗ )

∂S∗

∂xi,k
=
∑
m<l

2(dm,l − d̂m,l)
∂dm,l

∂xi,k
−
∑
m<l

2
(
dm,l − d̂m,l

) ∂d̂m,l

∂xi,k

14.4 Self-Organizing Maps

Definition 14.4.1. (SOM)
Consider a SOM with 2-dimensional rectangular grid of K prototypes mj ∈ Rp - each prototype parametrized
w.r.t an integer coordinate pair ℓj ∈ Q1 ×Q2 where Qi = {1, . . . , qi}

Algorithm 14.2. (SOM Algorithm)

1. Sample Xi ∈ Rp

2. Find the prototype mj that is closest to Xi and the closest neighbours mℓ of mj - determined by distance
r

3. move neighbours mk towards Xi via

mj ← mj + α(Xi −mj)
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Definition 14.4.2. (Closeness of configurations)
Given X,Y measure their closeness using

G(X,Y ) =

K∑
k=1

n∑
i=1

(Xi,k − Yi,k)2

Aim to minimise G under the following group actions: translation group, Euclidean group and similarity
group.
Done in order

1. Match translation - by matching the centroids.

2. Match Rotation

3. Match Scale change

Definition 14.4.3. (Frobenius Norm)

⟨A,B⟩F =
∑
i,j

Ai,jBi,j = tr(A
T
B)

Consider only real-valued matrices we have

||A||2F = ⟨A,A⟩F

Proposition 14.4.4. (Norm Form)
Given X and A = Y P configurations, where P a rotation matrix.

G(X,A) = ||X −A||2F

So we have to minimise G we find P ∗

P ∗ = arg max
P

〈
P, Y TX

〉
F

UΣV T = Y TX (the SVD of Y TX)

P ∗ = V UT

Definition 14.4.5. (Procrustes Distance)
The minimised distance when P = P ∗

||Y P ∗ −X||2F = ∥Y ∥2F + ∥X∥2F − 2 ⟨I,Σ⟩F︸ ︷︷ ︸
=tr(Σ)

Definition 14.4.6. (Generalised Procrustes Analysis Algorithm)

1. Choose arbitrary configuration Xi and set M = Xi

2. Use Procrustes Analysis to match all configurations to M - giving matched configurations {Yi}Li=1 and
matching matrices {Rℓ}Lℓ

3. Compute mean shape of all matched configurations

M ← L−1
L∑

i=1

Yi

4. Compute S{Xℓ}L
ℓ=1

({RL
ℓ=1},M) and check convergence, if not go to 2.

Defined: S{Xℓ}L
ℓ=1

({RL
ℓ=1},M) =

L∑
ℓ=1

∥XℓRℓ −M∥2F

11



5 Basis Expansions and Regularizations

5.1 Introduction

Definition 5.1.1. (Linear basis expansion)
Denote by

hm(X) : Rp 7→ R

the mth transformation of X, m = 1, . . . ,M
Then model

f(X) =

M∑
m=1

βmhm(X)

Examples

� hm(X) = Xm - linear regression

� hm(X) = X2
m - quadratic regression

� hm(X) = log(Xm),
√
Xj

� hm(X) = I(Lm ≤ Xm ≤ Um) - can use to construct piecewise constant functions

5.1.1 Complexity Control

� Restriction Methods Where we limit class of functions before hand - e.g. insist on additive models of
the form

f(X) =

p∑
j=1

fj(Xj)

=

p∑
j=1

Mj∑
m=1

βj,mhj,m(Xj)

Size of model limited by number of basis functions Mj for each component function fj .

� Selection Methods: which continually look at the dictionary and put in members (basis functions) that
improve the fit or remove those which are not contributing. For example, variable selection methods
such as forward stepwise.

� Regularization methods: where the whole dictionary is included,but the coefficients are restricted - e.g.
ridge regression or the lasso

5.2 Piecewise Polynomials and Splines

Definition 5.2.1. (Piecewise Constant)

f(X) =

M∑
m=1

βmI(Lm ≤ X ≤ Um)

For some partition of the input space {Lm, Um}Mm=1

Least squares will yield β̂m = Xm the mean of X in the mth region.

Definition 5.2.2. (Piecewise Linear)
We require additional basis functions - for each slice of our partition we have the polynomial: βm +βm+MX

f(X) =

M∑
m=1

βmI(Lm ≤ X ≤ Um) + βm+M I(Lm ≤ X ≤ Um)X

12



Definition 5.2.3. (Continuous Piecewise linear)
We start with 2M free parameters, but the continuous constraint means we now have instead M − 1 degrees
of freedom
Can alternatively build the constraints into the basis functions

h1(X) = 1, h2(X) = X, h3(X) = (X − ξ1)+, h4(X) = (X − ξ2)+, . . .

Definition 5.2.4. (Piecewise cubic polynomials)
As above but with a cubic on each piece - giving us continuity and continuity of first and second derivatives
- total function called a cubic spline An order-M spline with knots ξj , j = 1, . . . ,K a piecewise polynomial
of order M
A truncated-power basis set would be

hj(X) = Xj−1 j = 1, . . . ,M

hM+j(X) = (X − ξj)M−1
+ j = 1, . . . ,K

Definition 5.2.5. A natural cubic spline with K knots represented by K basis functions

N1(X) = 1, N2(X) = X, Nk+2(X) = dk(X)− dK−1(X)

where

dk(X) =
(X − ξk)3+ − (X − ξK)3+

ξK − ξk
, k = 1, . . . ,K − 2

5.4 Smoothing Splines

Definition 5.4.1. (Smoothing Splines)
A smoothing spline is a function f that minimizes

RSS(f, λ) =

N∑
i=1

(yi − f(xi))2 + λ

∫
f ′′(t)2dt

where λ ≥ 0 is a smoothing parameter.
First term measures fidelity of fit to the data, second term measures roughness of f - penalising curvature.

� λ = 0 - interpolating spline, f ∈ F can be any function

� λ→∞ - the simple least squares line fit, since no second derivative can be tolerated

The solution is a natural spline, can write it as

f(x) =

n∑
j=1

Nj(x)θj

where Nj(x) a n-dimensional set of basis functions.
Criterion simplifies to

RSS(θ, λ) = (y −Nθ)T (y −Nθ) + λ θTΩnθ︸ ︷︷ ︸
=
∫
f ′′(t)2dt

Where matrix {N}i,j = Nj(xi) and (Ωn)i,j =
∫
N

′′

i (t)N
′′

j (t)dt

Fitted smoothing spline is then

f̂(x) =

n∑
j=1

Nj(x)θ̂j , θ̂ = (NTN + λΩn)
−1NT y

13



5.4.1 Degrees of freedeom and Smoother Matrices

If λ prechosen - gives linear smoother spline. This is because the estimated parameters θ̂ are a linear
combination of the yi.
Then

f̂ = N(NTN + λΩn)
−1NT y = Sλy

Where Sλ the smoother matrix - only dependent on x and λ

Definition 5.4.2. (Effective degrees of freedom for splines)

dfλ = tr(Sλ)

Proposition 5.4.3. (Smoother matrix)
Sλ is symmetric and positive semidefinite
Can write it as

Sλ − (I + λK)−1

Where K independent of λ
Sine f̂ = Sλy solves

min
f

(y − f)T (y − f) + λfTKf

call K the penalty matrix
Eigen-decomposition of Sλ is

Sλ =

n∑
k=1

ρk(λ)uku
T
k

Where uk the eigenvectors and ρk(λ) its eigenvalues.
Can show that

ρk(λ) =
1

1 + λdk
dk the corresponding eigenvalue of K

Proposition 5.4.4. (Facts about smoothing spline)

� The eigenvectors are not affected by λ , the whole family of smoothing splines (for a particular x )
indexed by λ have the same eigenvectors.

� Sλy =
∑n

k=1 ukρk(λ) ⟨uk, y⟩
So, the smoothing spline operation decomposes y into the basis u and then shrinks the components by
ρk(λ) (whereas selection does 0-1).

5.5 Automatic Selection of the Smoothing Parameters

Definition 5.5.1. (LOOCV) - leave one out cross-validation to select λ.
Aim to minimise

E
[∫ {

f̂λ(x)− f(x)
}2

dx

]
= MISE

Estimate MISE by

CV(f̂λ) =

N∑
i=1

(
yi − f̂ (i)λ (xi)

)2
where f̂

(i)
λ (xi) is the fitted value at xi with the ith observation deleted from the data set used to fit the

smoother.
Can show that

CV(f̂λ) =
1

N

N∑
i=1

(
yi − f̂(xi)
1− Sλ(ii)

)2

where Sλ(ii) is the ith diagonal element of Sλ

This is a generalized cross-validation (GCV) score.
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6 Kernel Smoothing Methods

Definition 6.0.1. Kernel function
K : R→ R satisfying

� K(x) ≥ 0,∀x

�

∫
RK(x) = 1

� Usually: K(−x) = K(x) and K smooth

Definition 6.0.2. (Kernel density estimator)
KDE for X1, . . . , Xn with kernel function K and bandwidth h given by

f̂n,h,K(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
Choice of bandwidth is important.

� h smaller → higher variance, lower bias

� h larger → higher bias, lower variance

Proposition 6.0.3. (Bias and variance - rectangular kernel)
Given observation X what is probability of landing in interval (x− h

2 , x+ h
2 )

n∑
i=1

K(
Xi − x
h

) - number of Xi in interval

f̂n,h,K(x) =
1

nh

n∑
i=1

K(
Xi − x
h

) avg num of points/h

nhf̂n,h(x)︸ ︷︷ ︸
N∗

∼ Bin(n, p)

E [N∗] = np, var(N∗) = np(1− p)

E
[
f̂n,h(x)

]
=
F (x+ h

2 )− F (x−
h
2 )

h
−−−→
h→0

f(x)

var[nhf̂(x)] =
1

nh

F (x− h
2 , x+ h

2 )

h

{
1− F

(
x− h

2
, x+

h

2

)}
var(f̂x) ≈

1

nh
f(x)

Proposition 6.0.4. (Finding optimum h)
Use taylor approximations with assumption that f is twice differentiable

F (x+
h

2
) = F (x) +

h

2
f(x) +

1

2
f ′(x)

(
h

2

)2

+
1

6
f ′′(x)

(
h

2

)3

+O(h4)

F (x− h

2
) = F (x)− h

2
f(x) +

1

2
f ′(x)

(
h

2

)2

− 1

6
f ′′(x)

(
h

2

)3

+O(h4)

bias(f̂(x)) =
F (x− h/2, x+ h.2)

h
− f(x) ≈ 1

24
h2f ′′(x)

MSE(f̂n,h,k(x)) ≈ C1
1

nh
f(x) + C2(f

′′(x))2h4, C1 = 1, C2 =
1

24

2

h∗ = C∗n−
1
5 where C∗ =

[
C1

4C2

f(x)

f ′′(x)2

]1/5
the MSE optimal h
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Proposition 6.0.5. (Properties of optimal bandwidth)

� hn −−−−→
n→∞

0

� nhn ∝ n
4
5 −−−−→

n→∞
∞

Proposition 6.0.6. (Expectation with general kernel)

E[f̂(x)] =
1

nh

n∑
i=1

E[K(
Xi − x
h

)]

= hf(x) +
1

2
C3h

3f
′′(x) +O(h4)

bias{f̂n,h,K(x)} ≈ 1

2
C3h

2f ′′(x)

Proposition 6.0.7. (Bounding variance w/ general kernel)

var{f̂(x)} = 1

nh2
var

[
K

(
Xi − x
h

)]
≤ 1

nh
f(x)C1 +

1

n
C4 +O(

h

n
) −−−−→

n→∞
0

C4 = f ′(x)

∫
vK2(v)dv

6.6 Kernel density estimation and Classification

Definition 6.6.1. (Kernel Regression)
Given variables X,Y wish to find E[Y | X]

E[Y | X] =

∫
yf(x, y)dy

f(x)

f̂(x) =
1

n

n∑
i=1

Kh(x−Xi)

Ê(Y | X = x) =

∑n
i=1Kh(x−Xi)

∫
yKh(y − Yi)dy∑n

i=1Kh(x−Xi)

=

∑n
i=1 YiKh(x−Xi)∑n
i=1Kh(x−Xi)

Called the Nadaraya-Watson estimator

6.6.1 (Local polynomial regression)

Definition 6.6.2. (Local polynomial estimator)

mx0
(x) =

p∑
j=0

βj(x0)(x− x0)j

Centred on x0 or local to x0
We have weighted RSS

RSS(x0) =

n∑
i=1

{Yi −mx0(Xi)}2Kh(Xi −X0)
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And the design matrix and weight matrix,

X =

1 X1 − x0 . . . (X1 − x0)p
...

...
. . .

...
1 Xn − x0 . . . (Xn − x0)p

 Wx0
= diag{Kh(X1 − x0), . . . ,Kh(Xn − x0)}

Rewriting the RSS and minimising we get

RSS(x0) = (Y −Xβ(x0))TWx0
(Y −Xβ(x0)), β̂(x0) = (XTWx0

X)−1XTWx0
Y

Proposition 6.6.3. (Bias of NW)
Take f(x) density of {Xi} and g(x) = E[Y | X = x] the unknown regression function

biasNW : h2
{
1

2
g′′(x) +

g′(x)f ′(x)

f(x)

}∫
K2(u)du+O(h2)

Bias of local linear is

h2
1

2
g′′(x)

∫
u2K(u)du+O(h2)

Generally choose odd polynomial order

6.6.2 Orthogonal Series Regression

Given {ρv(x)} an orthogonal series basis for some function space
So for all f in this space

f(x) =
∑
v

fvρv(x), fv = ⟨f, ρv⟩ =
∫
f(x)ρv(x)dx

Orthogonality gives ∫
ρv(x)ρw(x)dx = δvw( The Kronecker delta)

2D case

f(x, y) =
∑
v

∑
u

fv,uρv(x)ρu(y), fv,u =

∫ ∫
f(x, y)ρv(x)ρu(y)dxdy

Set of basis functions is complete for the function space

lim
m→∞

∫ {
f(x)−

m∑
r=−m

frρr(x)

}2

dx = 0, ∀f

Definition 6.6.4. (Orthogonal series estimator)

fv =

∫
f(x)ρv(x)dx = E[ρv(X)]

≈
1

n

n∑
i=1

ρv(Xi)

fv,u = E[ρv(X)ρu(Y )] = f̂v

≈
1

n

n∑
i=1

ρv(Xi)ρu(Yi) = f̂v,u

17



Proposition 6.6.5. (Properties of OS estimator)

E[f̂(x)] =
1

n

n∑
i=1

f(x) = f(x)

Unbiased - but cant use this to estimate f(x) as v often infinite.

Estimating only for v = −m, . . . ,m and f̂(x) =
∑m

v=−m f̂vρv(x)

bias(f̂(x)) = E[f̂(x)− f(x)]

= −
∑

|v|>m

fvρv(x)

Not necessarily 0.

5 Basis Expansion

5.9 Wavelet Smoothing

5.9.1 Multiresolution Analysis (MRA)

Definition 5.9.1. (MRA)
MRA used to examine functions at different scales - indexed by j
Spaces {Vj}j∈Z form a ladder

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ,
⋃
j∈Z

Vj = L2(R)

Where L2 functions are those which, over a finite range, have a finite number of discontinuities.
Functions get progressively less detailed as j → −∞ so⋂

j∈Z
Vj = {0}

the zero function
f(x) ∈ Vj ⇒ f(2x) ∈ Vj+1,∀j ∈ Z

and
f(x) ∈ V0 ⇒ f(x− k) ∈ V0,∀k ∈ Z

Integer translates of a function in V0 are also in V0

∃ϕ(x) ∈ V0 s.t {ϕ(x− k)}k∈Z is an orthonormal basis for V0

If {Vj}j∈Z and ϕ satisfy the above then they form a MRA

Definition 5.9.2. (Haar father wavelet)

ϕH(x) =

{
1, if x ∈ (0, 1);

0, otherwise .

Given inner product ⟨f, g⟩ =
∫
f(x)g(x)dx

∥ϕH∥2 = ⟨ϕH , ϕH⟩ =
∫
ϕ2H(x)dx =

∫ 1

0

1dx = 1

And
⟨ϕH(x− ℓ), ϕH(x−m)⟩ = δl,m

Different integer translates do not overlap.
{ϕH(x− ℓ)}ℓ∈Z form an orthonormal set and we can set V0 = span{ϕH(x− ℓ)}ℓ∈Z
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Proposition 5.9.3. Dyadically scale and translate the wavelet by

ϕj,k(x) = 2
j
2ϕ(2jx− k), ∀j, k ∈ Z

{ϕj,k(x)}k∈Z is an orthonormal basis for Vj
Show that for function f(x)

Pjf =
∑
k∈Z

cj,kϕj,k(x)

For j = 5, 3, 1 ; the projection of f(x) onto Vj, where

cj,k =

∫
f(x)ϕj,k(x)dx

Definition 5.9.4. (Haar mother wavelet)

ψH(x) =


1, if x ∈ (0, 12 );

−1, if x ∈ ( 12 , 1);

0, otherwise

Call space spanned by ψ(x− k) W0 and note that ψ(x) orthonormal to ϕ(x) with their respective spaces
being orthonormal too.
Extend the idea across all scales and locations

f(x) =
∑
k∈Z

cj0,kϕj0,k(x) +

∞∑
j=0

∑
k∈Z

dj,kψj,k(x)

For function f(x) at scale j0. . .
Infinite scales yield

L2 = Vj0

∞⊕
j=j0

Wj

Call the set {dj,k} the wavelet coefficients

Proposition 5.9.5. (Wavelet coefficients)
Given that we have c1,0, c1,1 can obtain

c0,0 =
1√
2
(c1,1 + c1,0)

d0,0 =
1√
2
(c1,1 − c1,0)

Generalising to

cj−1,k =
1√
2
(cj,2k+1 + cj,2k)

dj−1,k =
1√
2
(cj,2k+1 − cj,2k)

Definition 5.9.6. (Wavelet transform)
A wavelet has m vanishing moments if∫

xjψ(x)dx = 0, ∀j = 0, 1, . . . ,m− 1
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5.9.2 Wavelet Shrinkage

Suppose we have model
yi = fi + ϵi, i = 1, . . . , n

Where we observe {yi}ni=1. Assume ϵi are IID random variables with mean 0 and var σ2 - ϵ vector then has
covariance matrix σ2In
{fi}ni=1 are unknown functions and we want to estimate them.
Wavelet transform e =Wϵ

E[e] =WE[ϵ] = 0 var(e) = E[eeT ] = σ2In

Applying W to our model we get
w = d+ e

The noise e uncorrelated - gets spread evenly across all coefficients.
The signal d is sparse - we have that ∥d∥ = ∥f∥. So f is sparse in the wavelet domain - improving the signal
to noise ratio greatly.

5.9.3 Thresholding Types

Definition 5.9.7. (Hard Thresholding)

Thard(w, λ) = wI(∥w∥ > λ)

Definition 5.9.8. (Soft Thresholding)

Tsoft(w, λ) = sign(w)(∥w∥ − λ)I(∥w∥ > λ)

Definition 5.9.9. (Bayesian Wavelet Shrinkage)
Natural to think about wavelet coefficients having the prior distribution

dj,· = γjN(0, τ2j ) + (1− γj)δ0(x)

δ0(x) is the Dirac delta function at 0, γj a Bernoulli random variable with parameter pj
Likelihood comes from w = d+ e, if e ∼ N(0, σ2In) then w | d ∼ N(d, σ2)
Can show

F (d | w) = rΦ

{
d− wν2

σν

}
+ (1− r)I(d > 0)

where Φ the CDF of the standard normal, ν2 = τ2(σ2 + τ2)−1 and r ∈ (0, 1)

14 Cluster Analysis

14.7 Independent Component Analysis and Exploratory Projection Pursuit

14.7.1 Latent Variables and Factor Analysis

Saw the SVD of a n× p matrix X as
X = U︸︷︷︸

n×p

D︸︷︷︸
p×p,dii≥0

V T︸︷︷︸
p×p

With the p× p sample covariance matrix S = n−1XTX as

S = n−1XTX = n−1V D2V T

an eigen-decomposition, with eigenvectors vj (principal components) with eigenvalues d2j
Can project the X onto principal components forming

zn×1 = Xn×pvp×1

With V ar(zi) =
d2
i

n once projected onto vi
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Proposition 14.7.1. (Projection onto arbitrary vector)
Suppose we project onto arbitrary p vector a

yn×1 = Xn×pa

Then
n−1yT1 = n−1aTXT1 = 0, V ar(yi) = Sy(a) = n−1yT y = aTSa

Proposition 14.7.2. (Optimisation formulation of PCA)

First PC: max
a

Sy(a) given a
Ta = 1

ith PC : max
a

Sy(a) given a
Ta = 1, aT vj = 0,∀j = 1, . . . , i− 1

Definition 14.7.3. (Kullback-Liebler Divergence of g from f )

DKL(f | g) =
∫
g(x) log

{
g(x)

f(x)

}
dx

Easy to see that DKL(g | f) ≥ 0 with equality if and only if f = g

Definition 14.7.4. Entropy of density g

H(g) = −
∫
R
g(x) log g(x)dx

Proposition 14.7.5. (Gaussian maximises entropy)
f(x) density of N(0, σ2) and g arbitrary any other density with mean 0 and variance σ2

H(g) ≤ H(f)

Definition 14.7.6. (Sphering)
Transform matrix so its variance is the identity matrix.

S = n−1XTX R = S−1/2 W︸︷︷︸
sphered

= XR

This makes PC redundant as
var(Wa) = aTSWa = aTa = 1

Algorithm 14.1. Process and Optimisation

1. Start with centred and sphered matrix W

2. Choose initial unit projection vector a

3. Form projected data ua =Wa

4. Form density estimate, f̂U,a(u) from u1, . . . , un

5. Compute entropy H{f̂U,a(u)}

6. Solve arg min
a:aT a=1

H{f̂U,a(u)}

7. Build up multidimensional solutions by optimising over unit b orthogonal to a

21



Definition 14.7.7. (Factor Analysis Model)
X = UDV T has latent variable representation
Writing S =

√
nU and AT = DV T /

√
N we have X = SAT

Xi,1 = a1,1Si,1 + · · ·+ a1,pSi,p

Xi,2 = a2,1Si,1 + · · ·+ a2,pSi,p

...

Xi,p = ap,1Si,1 + · · ·+ ap,pSi,p

X = AS

X will be correlated, but want S to be uncorrelated.
Assume X centered (so is S )

Proposition 14.7.8. (Covariance of S)

n−1STS = n−1UTU = I

So Suncorrelated
But for R orthogonal, write

X = SAT = SRRTAT = S∗(A∗)T

with Cov [S∗] = Ip
So there is no unique decomposition into uncorrelated factors S1, . . . , Sp

Definition 14.7.9. (Classical Factor Analysis)

Xi,1 = a1,1Si,1 + · · ·+ a1,qSi,q + ϵi,1

Xi,2 = a2,1Si,1 + · · ·+ a2,qSi,q + ϵi,2

...

Xi,p = ap,1Si,1 + · · ·+ ap,qSi,q + ϵi,p

Here there are q < p factors, ϵ are zero mean and uncorrelated and S assumed to be Gaussian

14.7.2 Independent Component Analysis

Definition 14.7.10. (Independent Component Analysis)
X = AS with A unknown and S independent
X is observed, A is unknown, S is unknown
Aim to find orthogonal A and S independent
If Y has pdf g we say that the entropy of Y is

H(Y ) = H(g) = −
∫
g(y) log g(y)dy

Definition 14.7.11. (Mutual Information)

I(Y ) =

p∑
j=1

H(Yj)−H(Y )

Call I(Y ) the Kullback-Lieber distance between the density g(y) of Y

Proposition 14.7.12. (Mutual Information)
If X has covariance matrix I and Y = ATX then

I(Y ) =

p∑
j=1

H(Yj)−H(Y )− log |det A| =
p∑

j=1

H(Yj)−H(X)

Minimising this over A.
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11 Neural Networks

11.2 Projection Pursuit Regression

Definition 11.2.1. (Projection Pursuit Regression)
Here the model is

f(X) =

M∑
m=1

gm(ωT
mX)

this is an additive model on the derived directions Vm = ωT
mX and not the X directly, ωm are unit vectors

Call gm(ωT
mX) the ridge function in Rp and only varies in direction ωm

Vm is the projection of X onto ωm and want to find ωm so the model fits will; like projection pursuit.
If M is taken arbitrarily large, for appropriate choice of gm the PPR model can approximate any continuous
function in Rp - called universal approximation property

Proposition 11.2.2. (Fitting PPR models)
Suppose we have training data (xi, yi), i = 1, . . . , ;xi ∈ Rp

Want to find approximate minimisers of error

E =

n∑
i=1

{
yi −

M∑
m=1

gm(ωT
mxi)

}2

over {gm} and direction vectors {ωm}

� Considering the one term caseM = 1- given direction vector ω can form the derived variable vi = wTxi.
We have a 1D smoothing problem, can apply smoothing spline to obtain an estimate of g

� Or given g can minimise the error ω using a Gauss-Newton Search.

Proposition 11.2.3. (Gauss-Newton Search)
Let ωold be the current estimate for ω, then

g(ωTxi) ≈ g(ωT
oldxi) + g′(ωT

oldxi)(ω − ωold)
Txi

So that

E ≈
n∑

i=1

g′(wT
oldxi)

2

[{
wT

oldxi +
yi − g(ωT

oldxi)

g′(wT
oldxi)

}
− wTxi

]2
Minimising the RHS requires we carry out a least squares regression with target wT

oldxi +
yi−g(ωT

oldxi)

g′(wT
oldxi)

and

predictor xi with weights g′(wT
oldxi)

2 and no intercept - gives ωnew

Algorithm 11.1. PPR algorithm iterates as follows

� finding good g using current ω

� using g to update current ω to ω

� Iterate until convergence - only need to examine changes in ω

Can decide optimal M by cross validation
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11.3 Neural Networks

Definition 11.3.1. (Neural Network Model)
The model has X1, . . . , Xp explanatory variables at the bottom, with K units at the top - for regression K = 1,
for classification we use K units for each class.
The model is

Zm = σ(α0,m + αT
mX),m = 1, . . . ,M

Tk = β0,k + βT
k Z, k = 1, . . . ,K

fk(X) = gk(Tk), k = 1, . . . ,K

where Z = (Z1, . . . , ZM ) and T = (T1, . . . , TK)
Call σ(v) the activation function,

σ(v) =
1

1 + e−v

Output function gk(T ) permits final transformation of vector of outputs - for regression gk(T ) = Tk and for

classification gk(T ) =
eTk∑K
l=1 eTl

the softmax function.

Zm are the hidden units not directly observed - often many hidden layers.
If σ the identity then back to linear model.

Proposition 11.3.2. (ANN vs. PPR)
PPR model uses non-parametric functions gm(v) whereas ANN uses simpler function based on σ(v)
Can write

gm(ωT
mX) = βmσ(α0,m + ∥αm∥ (ωTX))

where ωm = αm/ ∥αm∥ the mth unit vector.
Since σ less complex than gm need more layers to get same approximative power.

11.4 Fitting Neural Networks

Proposition 11.4.1. (Fitting Neural Networks)
Given training data (xi, yi), i = 1, . . . , n want to find

{α0,m, αm : m = 1, . . . ,M}, M(p+ 1) weights

{β0,k, βk : k = 1, . . . ,K}, K(M + 1) weights

to minimise the error, the usual sum of squares

R(θ) =

K∑
k=1

n∑
i=1

(yik − fk(xi))2

Typically need constraints to avoid overfitting.

� Backpropagation - use gradient descent to minimise R(θ)

Proposition 11.4.2. (Backpropagation)
Need to compute the gradient of R(θ) with respect to each weight.

∂Ri(θ)

∂βk,m
= −2(yik − fk(xi))g′k(βT

k zj + β0,k)︸ ︷︷ ︸
δk,i

zm,i = δk,izm,i

∂Ri(θ)

∂αm,l
= −2

K∑
k=1

(yik − fk(xi))g′k(βT
k zi + β0,k)βk,mσ

′(α0,m + αT
mxi)︸ ︷︷ ︸

sm,i

xil = sm,ixil
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Use these to form the gradient descent algorithm by

β
(r+1)
k,m = β

(r)
k,m − γr

∂Ri(θ)

∂β
(r)
k,m

α
(r+1)
m,l = α

(r)
m,l − γr

∂Ri(θ)

∂α
(r)
m,l

Where γr the learning rate.
In total we get

sm,i = σ′(α0,m + αT
mxi)

K∑
k=1

δk,iβk,m

We have the algorithm in 2 stages

1. Forward pass - fixed current weights - and predicted values f̂k(xi) computed

2. Backward pass - errors δk,i and sm,i computed to form gradients for the updates.

Proposition 11.4.3. (Issues with fitting ANNs)

� Starting values - usually chosen to be random, but small, near 0.

� Overfitting - need to use cross-validation to choose number of hidden units and layers.

� Scaling of inputs - sensitive to input scales, usually centre and standardise inputs

9 Additive Models, Trees and Related Methods

9.2 Tree-Based Methods

9.2.2 Regression Trees

Proposition 9.2.1. (Growing a tree)
Given data of p inputs and a response for each N observations; (xi, yi), i = 1, . . . , N with xi =

(
xi1, . . . , xip

)
Need to decide splitting variables, and split points, and topology of tree.
Suppose we have M regions in our partition, R1, . . . , RM model the response as a constant cm in each region

f(x) =

M∑
m=1

cmI(x ∈ Rm)

Easy to see that the best ĉm minimising the sum of squares is the mean of the response in each region

ĉm = ave(yi | xi ∈ Rm) =
1

nm

∑
i:xi∈Rm

yi

Apply a greedy algorithm to find the best partitioning of the data.

1. Start with all data in one region

2. Find best split of data into 2 regions

3. Repeat for each region until stopping criterion met
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Consider splitting variable j = 1, . . . , p and split point s, define the pair of half-planes

R1(j, s) = {x | Xj < S} and R2(j, s) = {x | Xj ≥ S}

Seek splitting variable j and split point s that solves

min
j,s


min
c1

∑
Xi∈R1(j,s)

(yi − c1)2︸ ︷︷ ︸
=ĉ1

+min
c2

∑
Xi∈R2(j,s)

(yi − c2)2︸ ︷︷ ︸
=ĉ2


= min

j,s

 ∑
Xi∈R1(j,s)

(yi − ĉ1)2 +
∑

Xi∈R2(j,s)

(yi − ĉ2)2


Can now simply compute all the different values choosing the minimum s, repeating over all j. We then
repeat after partitioning the data into the 2 regions.
Stopping criterion

� Maximum tree depth

� Minimum number of observations in a region

� Minimum reduction in RSS from splitting

Definition 9.2.2. Cost-complexity pruning
Define a subtree T0 of T by collapsing any number of its internal nodes.
Let |T | the number of terminal nodes of tree T
Let nm number of observations in Rm

ĉm = n−1
m

∑
xi∈Rm

yi and Qm(T ) = n−1
m

∑
xi∈Rm

(yi − ĉm)2

The cost-complexity criterion is

Cα(T ) =

|T |∑
m=1

nmQm(T ) + α |T |

Idea is to find for each α the subtree Tα ⊆ T0 that minimises Cα(T ) and then choose the subtree with the
smallest α that is within one standard error of the minimum.

Definition 9.2.3. (Weakest link pruning)
Start with the full tree T0 and find the weakest link, the pair of nodes that when removed gives the smallest

increase in
∑|T |

m=1 nmQm(T ). Until we end up with a single node tree.
Can show that this sequence has tree Tα that minimises Cα(T )
Estimate of α is given by 5 or 10 fold cross-validation.

Definition 9.2.4. (Classification trees)
Similar to regression trees, but instead of minimising SSQ, we use

p̂m,k = n−1
m

∑
xi∈Rm

I(Yi = k)

the proportion of class k observations in node m.
Classify the observations in node m to class k(m) = arg max

k
p̂ the majority class in node m

Can use the following alternatives for Qm(T )

� Misclassification error; 1
nm

∑
xi∈Rm

I(yi ̸= k(m)) = 1− p̂m,k(m)

� Gini index;
∑K

k=1 p̂m,k(1− p̂m,k) =
∑K

k=1 p̂m,k(1− p̂m,k)

� Cross-entropy; −
∑K

k=1 p̂m,k log p̂m,k
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8 Model Inference and Averaging

8.2 The Bootstrap and Maximum Likelihood Methods

8.2.1 Bootstrap

Definition 8.2.1. Bootstrap
Let X1, . . . , Xn be a random sample from a distribution with unknown distribution function F .
Let θ̂ = θ̂(X1, . . . , Xn) be an estimator of statistic θ = θ(F ) a functional of F
Can estimate θ(F ) replacing F by empirical distribution function:

F̂n(x) = n−1
n∑

i=1

I(Xi ≤ x)

Can simulate from F̂n(x) as it puts mass 1/n at each Xi

Let X
(1),...,X(1)

n
1 be a random sample from X1, . . . , Xn with replacement

Call {X(b)
i }ni=1 the bth bootstrap sample, and let their empirical distribution function be F̂ (b), b = 1, . . . , B

8.7 Bagging

Definition 8.7.1. (Bagging)

Suppose we fit model to training data Z = {(x1, y1), . . . , (xn)}, and obtain f̂(x)

Can produce B bootstrap samples Z(b), b = 1, . . . , B and give each an estimate f̂ (b)(x)
Bootstrap aggregation, or Bagging, estimate averages these predictions over many bootstrap samples by

f̂bag(x) = B−1
B∑

b=1

f̂ (b)(x)

Definition 8.7.2. (Actual Bagging)
Let P̂ be distribution that puts mass of n−1 onto each of the (xi, yi)

The ’true’ bagging estimate defined by EP̂ {f̂∗(x)} where f̂∗ is obtained from a set Z∗ = {(x∗i , y∗i )}ni=1 where

each (x∗i , y
∗
i ) ∼ P̂

Then f̂bag(x) an estimate of the true bagging estimate approaching as B →∞
Bagged estimate will only differ when estimator is a non-linear or adaptive estimator
If linear then f̂bag(x)→ f̂(x) as B →∞

Proposition 8.7.3. (Why bagging works)
Assume training observations are drawn independently from distribution P
Ideal bagging estimator fag(x) = EP f̂

∗(x)
Consider

EP

[(
Y − f̂∗(x)

)2]
≥ EP

[
(Y − fag(x))2

]
Hence true population aggregate never increases MSE, suggests bagging will often decrease MSE.

Definition 8.7.4. (Bagging Trees)
Bagging trees is a special case of bagging, where we use regression trees as the base learner.
Suppose W1, . . . ,WB a set of independent random variables with variance σ2

W = B−1
B∑

b=1

Wb, var(W ) = σ2/B −−−−→
B→∞

0

Suppose that Cov [Wb,Wd] = σ2ρ > 0 for b ̸= d then

var(W ) = ρσ2 +
1− ρ
B

σ2 ̸−−−−→
B→∞

0

Correlated trees limit the effectiveness of bagging.
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Algorithm 8.1. (Random Forests)
Random forests are a modification of bagging that builds a large collection of de-correlated trees, and then
averages them.

1. For b = 1, . . . , B

(a) Draw a bootstrap sample Z(b) of size n from the training data

(b) Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating the following steps
for each terminal node of the tree, until the minimum node size nmin is reached.

(c) Select m ≤ p variables at random from the p variables

(d) Pick the best variable/split-point among the m

(e) Split the node into two daughter nodes

2. Output the ensemble of trees {Tb}Bb=1

For a prediction at new point x

� Regression: f̂rf (x) =
1
B

∑B
b=1 Tb(x)

� Classification: Let Ĉb(x) be the class prediction of the bth random-forest tree.
Then Ĉrf (x) = majority vote{Ĉb(x)}Bb=1

10 Boosting and Additive Trees

10.1 Boosting Methods

Definition 10.1.1. Boosting
We build sequence of classifiers Gm(x),m = 1, . . . ,M where G1(x) = G(x) and Gm(x) depends on previous
classifiers.
Combining them to give

G∗(x) = sgn

{
M∑

m=1

αmGm(x)

}
Where the {αm}Mm=1 are computed by the boosting algorithm.

Proposition 10.1.2. (Boosting weights)
Apply weights w1, . . . , wn to each of the training observations (xi, yi), i = 1, . . . , n
Initialise all weights to equal wi = 1/n
Each successive iteration, weights modified and classifier applied to weighted observations
Incorrectly classified observations get their weight increased

Algorithm 10.1. 1. Initialise weights wi = 1/n for i = 1, . . . , n

2. For m = 1, . . . ,M

(a) Fit classifier Gm(x) to training data using weights {wi}
(b) Compute

errm =

∑n
i=1 wiI(yi ̸= Gm(xi))∑n

i=1 wi

(c) Compute αm = log{(1− erm)/erm}
(d) Set wi ← wi · exp{αmI(yi ̸= Gm(xi))} for i = 1, . . . , n

3. Output

G∗(x) = sgn

{
M∑

m=1

αmGm(x)

}
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11 Ethics

lol
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