
Elements of Statistical Learning: Lecture 1.
Refresh of Linear Regression Models

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2023 (revision 3). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 33



Reminder: Properties of Estimators

An estimator ✓̂ of ✓ is unbiased if and only if E(✓̂) = ✓ and
bias(✓̂) = E(✓̂)� ✓. The variance of an estimator is E[{✓̂�E(✓̂)}2].

The mean-squared error (MSE) of an estimator is E{(✓̂ � ✓)2}.

MSE(✓̂) = E[{✓̂ � E(✓̂) + E(✓̂)� ✓}2]
= E[{(✓̂ � E(✓̂)}2] + 2E[{✓̂ � E(✓̂)}{E(✓̂)� ✓}]

+E[{E(✓̂)� ✓}2]

= var(✓̂) + 2{E (✓̂)� ✓}⇠⇠⇠⇠⇠⇠⇠⇠:0
[E{✓̂ � E(✓̂)}] + bias(✓̂)2

= var(✓̂) + bias(✓̂)2,

and MSE(✓̂) = var(✓̂) for an unbiased estimator.

2 / 33



Univariate (Simple) Linear Regression

Example.

Suppose you are interested in the relationship between heights (in
cm) and weights (in kg) of a set of children in a particular school
class.

You might be interested in generic questions such as ‘what is the
typical weight of a child given its height is X cm?

Or, what is the ‘typical range’?

How are we to answer this question?

The first thing to do is carry out some EDA: exploratory data
analysis or IDA (initial data analysis), in other words, a plot.

This is to discover whether a linear relationship is tenable.

3 / 33



Lewis and Taylor (1967) Child Height-Weight Data
On 237 children/teenagers ranging in age from 11.5 to 21 years.

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

130 140 150 160 170 180

30
40

50
60

70

Height (cm)

W
ei

gh
t (

kg
)

4 / 33



Assumptions behind linear model
A very simple model is

Wi = a+ bHi + ✏i , (1)

where Hi ,Wi are the height and weight of the ith child with
i = 1, . . . , n, n = 237 is the number of children.

The assumptions are vital. They are:

I the model is linear in the parameters, (a, b)

I the errors {✏i}ni=1 are independent random variables

I the errors are identically distributed.

Usually E(✏i ) is assumed = 0.

The last assumption means that var(✏i ) is constant over i , finite,
and can write var(✏i ) = �2.

IID = independent and identically distributed.
5 / 33



Model Fitting

We NEVER observe the values of ✏i , but we believe they exist.

We do see actual data (hi ,wi )ni=1. One can form a set of residuals

ei (a, b) = wi � a� bhi , i = 1, . . . , n.

Each residual is a function of (a, b).

A good fit is when all the residuals are small.

A measure of ’overall smallness’ can be

R(a, b) = n
�1

nX

i=1

e
2
i (a, b), (2)

the residual sum of squares.

6 / 33



Least Squares Fitting

The least-squares estimators (ã, b̃) of (a, b) are obtained by
minimising R(a, b) over (a, b) 2 R2.

The estimates can be obtained using simple calculus (di↵erentiate
R(a, b) wrt (a, b) and set derivative equal to zero, etc.) and are
given by

b̃ =
n
P

hiwi � (
P

hi )(
P

wi )

n
P

h2i � (
P

hi )2
(3)

and

ã = n
�1

 
nX

i=1

wi � b̃

X
hi

!
. (4)

Exercise: Homework Sheet 1 for derivation.

7 / 33



Implementation in R

Suppose the vectors height and weight contain the 237 heights
and weight observations.

We can then put them in a data frame and fit a linear regression by

hwData <- data.frame(height=height, weight=weight)

hwModel <- lm(weight ~ height, data=hwData)

hwModel

Call:

lm(formula = weight ~ height, data = hwData)

Coefficients:

(Intercept) height

-60.3237 0.6818

8 / 33



Interpretation of Output: Anova

Analysis of variance table

> anova(hwModel)

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

height 1 11018.7 11018.7 353.14 < 2.2e-16 ***

Residuals 235 7332.6 31.2

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

The F -statistic p-value is extremely small (smaller than 5%, 1% or
even 0.1%). Hence, have strong evidence that supports the
hypothesis that height has linear exploratory power for weight (but,
of course, that is evident from the plot).

9 / 33



Interpretation of Output: summary
Coe�cients and their standard errors: very small p-vals

> summary(hwModel)
Call:
lm(formula = weight ~ height, data = hwData)

Residuals:
Min 1Q Median 3Q Max

-10.6832 -4.0278 -0.6629 3.0895 21.2127

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -60.32371 5.66705 -10.64 <2e-16 ***
height 0.68184 0.03628 18.79 <2e-16 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 5.586 on 235 degrees of freedom
Multiple R-squared: 0.6004,Adjusted R-squared: 0.5987
F-statistic: 353.1 on 1 and 235 DF, p-value: < 2.2e-16

10 / 33



Model Checking

Fitting the model on its own is NOT enough.

We need to check, as far as we can that the model assumptions
are satisfied.

We can do this via residuals.

Define the ith fitted value

ŵi = ã+ b̃hi ,

for i = 1, . . . , n. Then the ith residual is given by

êi = ŵi � wi .

Model checking using plot.lm(), i.e. plot(hwModel)

11 / 33



Plot of Residuals

30 40 50 60

−1
0

0
10

20

Fitted values

R
es

id
ua

ls

●

● ●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

lm(weight ~ height)

Residuals vs Fitted

131

38 214

12 / 33



QQ Plot of Residuals

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−2
−1

0
1

2
3

4

Theoretical Quantiles

St
an

da
rd

ize
d 

re
si

du
al

s

lm(weight ~ height)

Normal Q−Q

131

38214

13 / 33



Standardised Residuals against fitted values
êi/s.d.(ê)

30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

Fitted values

St
an

da
rd

iz
ed

 re
si

du
al

s

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

lm(weight ~ height)

Scale−Location

131

38 214

14 / 33



Standardised Residuals against Cook’s distance
Cook’s distance = how much fit changes by omitting point

0.00 0.01 0.02 0.03

−2
−1

0
1

2
3

4

Leverage

St
an

da
rd

ize
d 

re
si

du
al

s

●

● ●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

lm(weight ~ height)

Cook's distance

Residuals vs Leverage

214

131

120

See also http://strata.uga.edu/8370/rtips/regressionPlots.html

15 / 33



Modelling Cycle

1. fit model;

2. check residuals;

3. If lack of fit: address (transformations, remove outliers,
di↵erent model) then return to 1., otherwise exit.

For our data it looks like variance is higher on the right hand side.

So, experiment with log transform, i.e. weight -> log(weight)

16 / 33



Log weight against height (variance stabilisation)

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

130 140 150 160 170 180

30
40

50
60

70

height

we
ig
ht

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●

● ●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● 20
*lo
g(
we

ig
ht
)−
30

17 / 33



Standardised Residuals against fitted values (for log)

3.4 3.6 3.8 4.0 4.2

0.
0

0.
5

1.
0

1.
5

Fitted values

St
an

da
rd

iz
ed

 re
si

du
al

s

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

lm(log(weight) ~ height)

Scale−Location

38235
51

18 / 33



Nice plot using ggplot2 library

> library("ggplot2")

> ggplot(hwData, aes(x=height, y=weight)) +

geom_point() +

stat_smooth(method="lm", col="red")

The grey belt around the red line is the 95% confidence band for
the regression line.

19 / 33



ggplot version of the regression

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

30

40

50

60

70

80

140 160 180
height

we
ig
ht

20 / 33



Variants: Maximum Likelihood (ML)

We can additionally attach a probability distribution F (x), or
density, f (x) to the errors.

So ✏i is an independent draw from F .

This means that Wi has the distribution F (w � a� bhi ).

The likelihood of (a, b) given data D = (hi ,wi )ni=1 is

L{(a, b)|D} = f (D|(a, b)) (5)

=
nY

i=1

f {(hi ,wi )|(a, b)} (6)

Then the maximum likelihood estimators are given by
(â, b̂) = argmax(a,b) L{(a, b)|D}.

21 / 33



Variant: ML Gaussian

Let’s assume data suggest that the errors in (1) are Gaussian.

[Not a bad starting assumption if there are no obvious outliers, or
skew, or data is not low-valued count data.]

Then ✏i ⇠ N(0,�2), i = 1, . . . , n, IID and
f (x) = (2⇡�2)�1/2

e
�x2/2�2

.

Hence,

L{(a, b)|D} = (2⇡�2)�n/2 exp

(
(2�2)�1

nX

i=1

(wi � a� bhi )
2

)

ML estimators can be obtained by maximising the log-likelihood,
equivalent to (2), and then they are equivalent to least squares.

22 / 33



Variant: Heavy tails, skew

If the plot reveals outliers, this is an indicator that the Gaussian
distribution is possibly not appropriate. Similarly if skew.

In which case, swap the error distribution from Gaussian to
something like Student’s t on a low number of degrees of freedom
(e.g. 3, which still means ✏ has a mean and finite variance.)

Often skew and outliers become more obvious on examination of
the residuals from a Gaussian fit.

The Q-Q plot is e↵ective at picking up departures from a Gaussian
model.

23 / 33



Correlated Errors
The simple model (1) is also invalidated when the errors are
correlated, e.g. cor(✏i , ✏j) 6= 0. Often this can be detected by
lagged scatter plots or autocorrelation plots (using acf in R).

Lagged scatterplot plot of vector vt at lag ⌧ plots (vt , vt+⌧ ) and
indicates how much association is between vt and vt+⌧ .

When (horizontal) explanatory variable is time, or has meaningful
ordering, then can also use the autocorrelation function to assess
correlation between residuals.

Here, r⌧ = cor(vt , vt+⌧ ). The Durbin-Watson statistic can be used
to statistically test for the presence of autocorrelation at lag 1.

Correlation can be important, +ve correlation can lead to
parameter estimate standard error variance underestimation,
causing parm estimates to appear more significant than they really
are, and suggest an e↵ect when there is none. 24 / 33



Lagged Scatterplot

●

●● ●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

lag 1

re
si

du
al

s(
hw

M
od

el
)

−1
0

−5
0

5
10

15
20

−10 −5 0 5 10 15 20

●

● ●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

lag 2

re
si

du
al

s(
hw

M
od

el
)

●

●● ●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

lag 3

re
si

du
al

s(
hw

M
od

el
)

●

● ●●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

lag 4

re
si

du
al

s(
hw

M
od

el
)

−1
0

−5
0

5
10

15
20

−10 −5 0 5 10 15 20

25 / 33



Autocorrelation function estimate on residuals

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Series  residuals(hwModel)

26 / 33



Linearity Assumption

The linear model might not be appropriate, and this should show
up in the residual plot. For example, might be quadratic structure,
or more complex, which we’ll talk about in later blocks.

27 / 33



Measurement Error

Often, we don’t observe the exact variables Hi , Wi , but we observe
the variable we want contaminated by measurement error.

E.g. in air pollution monitoring the exact tra�c flow might be ⌧i
but you actually measure Ti and we assume Ti = ⌧i + ⌫i . Similarly,
we measure pollutant level, Pi is a contaminated version of the
true level, ⇢i with Pi = ⇢i + ⌘i , where ⌫i , ⌘i are mutually iid
random variances with zero mean and some variances.

We’d like to investigate the relationship between ⌧i and ⇢i , but we
can’t observe them directly.

The regression of Pi on Ti is di↵erent to that of ⇢i on ⌧i , but there
are methods to estimate the one between the true values from the
observed values.

28 / 33



Bayesian view

Assume that the parameters have a distribution themselves.

Before we see any data: elicit prior distributions for (a, b).

After data observation, form likelihood (above) and update our
prior distributions for (a, b) into posteriors using Bayes’ theorem.

Elicit is an interesting word. Do you really have strong knowledge
about the parameters (a, b)?

Sometimes you do. E.g. strong domain knowledge. A doctor might
have very strong opinions on the weight distribution of children,
and know this very well. Personal/subjective probability.

Sometimes, maths supplies incredibly strong knowledge to enable
the Bayesian approach (e.g. Bayesian wavelet shrinkage, later).

29 / 33



Di↵erent types of variables

Wish to do regression/modelling with di↵erent kinds of variables:

nominal separate categories, not ordered (e.g. color, taste,
political preference)

ordered categories categories, that can be ordered (e.g. level of
education [post-school, GCSE, A Level, BSc, MSc,
PhD], tax status: no tax, basic rate, higher rate)

interval numerical scale, di↵erence is meaningful, zero
arbitrary (e.g. temperature, di↵erence in temperates
mean something, zero arbitrary — e.g. Fahrenheit
zero is di↵erent to Celsius) Can’t say 30� is twice the
temperature of 15�.

ratio as interval, but absolute zero makes sense. E.g.
weight, height, amount of money in your bank
account, you’d prefer to have £200 rather than £100.

Methods to deal with all of these exist

30 / 33



Reasons for Modelling

In general, you might wish to gain some scientific understanding of
the relationship between two variables.

Given a new child & new height: want to predict their weight.

Then, you can compare their actual weight with the predicted
weight and “take a view”.

Comparisons almost certainly would want to take account of the
variability around the prediction. MOSTLY VARIATION IS
UNDERAPPRECIATED.

You might wish to extrapolate, that is predict a weight from a
height which is outside of the current range of the height data.But,
extrapolation can often be dangerous, as you don’t have the data
to support the prediction.

31 / 33



More than one explanatory variable

In the example above, height was the only explanatory variable.

Often (usually), you have more than one candidate variable.

E.g. age of child, gender of child, socio-economic status,
height/weight of parents, etc.

In some situations there may be large numbers of potential
explanatory variables and it is not clear, a priori, which of them
have good explaining power for the response (weight).

Variable selection is the process that attempts to find the variables
that have good explaining power, and contribute to e↵ective
regression. More later . . .

32 / 33



Summary: Important things

Plots — exploratory analyses

Model assumptions: know what they are and bear them in mind.

Least squares, Maximum Likelihood, Bayesian, others?

Model checking

Variants

All models are wrong, but some are useful, (George Box (1976),
but existed earlier.)

“You can’t use that model for financial data, because everyone
knows that such data are generated using GARCH processes”!

33 / 33



Elements of Statistical Learning: Lecture 2.
Multiple Regression and Variable Selection

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2019 (revision 4). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 28



Multivariate Linear Model

Now suppose we have p explanatory variables.

Call them X = (X1, . . . ,Xp).

We have the values of X on n subjects.

The outcome (response) for the ith subject is Yi (univariate).

And exploratory data analysis (such as plots of Xj against Y )
indicate that a linear model is appropriate.

So, could write

Yi = Xi ,1�1 + Xi ,2�2 + · · ·Xi ,p�p + ✏i ,

for i = 1, . . . , n. I.e. n equations, so clearer to write in matrix form.

2 / 28



Matrix formulation of multivariate linear model

Let Y = (Y1, . . . ,Yn)T and ✏ = (✏1, . . . , ✏n).

Let � = (�1, . . . ,�p) and X = (Xi ,j) the n ⇥ p matrix containing
elements Xi ,j values of X on the ith individual and jth variable.

Then, we can write the multivariate linear model as

Y = X� + ✏. (1)

Here ✏ is a n-vector of IID random variables with mean zero and
variance �2 as before. We assume Gaussianity.

3 / 28



Residuals, sum of squares, least squares

The residual, as a function of �, can be defined as a vector e

e = Y � X�.

The residual sum of squares as

RSS(�) = e
T
e.

The least squares estimator is

�̂ = argmin� RSS(�).

And the (empirical) residual is usually written as

e = Y � X �̂. (2)

4 / 28



Example: simple linear regression

Here, Y = (Y1, . . . ,Yn), ✏ = (✏1, . . . , ✏n) and

� = (a, b)T and

X =

0

BBB@

1 x1

1 x2
...

...
1 xn

1

CCCA
.

For model Yi = a+ bxi + cx
2
i + ✏i then Y , ✏ are the same, but

� = (a, b, c)T and

X =

0

BBB@

1 x1 x
2
1

1 x2 x
2
2

...
...

...
1 xn x

2
n

1

CCCA

.

5 / 28



Lemma: vector and matrix di↵erentiation

Lemma 1. Let u = �T
v =

Pp
i=1 �ivi , where v is a p-vector.

Then
@u

@�j
=

pX

i=1

vi
@�i
@�j

= vj ,

so @u
@� = v .

Lemma 2. Let the quadratic form w = �T
A� for some symmetric

matrix A. We can write

w =
pX

i=1

�i

pX

j=1

Ai ,j�j ,

then @w
@� = 2A� (see exercises).

6 / 28



Least squares estimation

Write RSS as

RSS(�) = (Y � X�)T (Y � X�)

= Y
T
Y � (X�)TY � Y

T
X� + (X�)TX�

= Y
T
Y � 2�T

X
T
Y + �T

X
T
X�.

Di↵erentiating with respect to �

@ RSS(�)

@�
= �2XT

Y + 2XT
X� (3)

Setting equal to zero and solving for � gives

X
T
Y = X

T
X �̂ =) �̂ = (XT

X )�1
X

T
Y

X
T
X is invertible if X is of full rank.

7 / 28



Orthogonality of residual vector to columns of X

First, note that
@2 RSS(�)

@� @�T
= 2XT

X ,

which is positive definite (since X
T
X is invertible) and hence, we

have a minimum at this point.

Second, note that, in solving the equations @ RSS(�)
@� = 0 on the

previous slide we can write

X
T (Y � X �̂) = 0,

i.e. we’ve substituted the solving value of � = �̂. The (Y � X �̂) is
the residual of the least squares fit. So, the residual vector of the
fit is orthogonal to the columns of X .

8 / 28



Hat matrix

Define H = X (XT
X )�1

X
T to be the hat matrix.

Then the fitted values of the model are

Ŷ = X �̂ = HY ,

so that hat matrix puts the hat on Y .

Note that:

1. Parameter estimates �̂ are linear combinations of the Y , and

2. fitted values, Ŷ , are also linear combinations of the Y .

9 / 28



Inference about �: Expectation, variance of Y
First, remember E(Y ) = X�, from (1).

The p ⇥ p variance matrix of random p-vector U is defined as

⌃ = var(U) = E
h
{U � E(U)}{U � E(U)}T

i
(4)

so cov(Ui ,Uj) = ⌃i ,j

Hence,

var(Y ) = E
h
{Y � E(Y )}{Y � E(Y )}T

i

= E(✏✏T ) = ⌃✏ = �2
In,

where In is the n-dimensional identity matrix.Also:

�2
In = E(YY T )�E(Y )E(Y T ) =) E(YY T ) = �2

In+X��T
X

T .

10 / 28



Inference about �: Expectation, variance of �

Expectation

E(�̂) = E
n
(XT

X )�1
X

T
Y

o

= (XT
X )�1

X
TE(Y ) = (XT

X )�1
X

T
X� = �.

So, least-squares estimator is unbiased.What about variance?

var(�̂) = E
h
{�̂ � E(�̂)}{�̂ � E(�̂)}T

i

= E(�̂�̂T )� E(�̂)E(�̂T )

= E
h
(XT

X )�1
X

T
YY

T
X (XT

X )�1
i
� ��T

= (XT
X )�1

X
TE(YY T )X (XT

X )�1 � ��T

= (XT
X )�1

X
T (�2

In + X��T
X

T )X (XT
X )�1 � ��T

= �2(XT
X )�1

11 / 28



Explanation about var(�̂)

Here var(�̂) is a p ⇥ p covariance matrix.

The covariance between �̂i and �̂j is
�
�2(XT

X )�1
 
i ,j
.

The parameter variance depends on X , i.e. the design, which can
sometimes be controlled with proper planning.

For example, if X is an orthogonal matrix then X
T
X = Ip and

var �̂ is a diagonal matrix, so �̂i and �̂j are uncorrelated for i 6= j .

This is practically useful because it means that di↵erent variables
can be considered individually, without reference to the others.

12 / 28



Inference about �: Distribution of �

If the {✏i} are normally distributed N(0,�2) then, since �̂ is a
linear combination of normals, then it must be normal itself and we
must have

�̂ ⇠ Np{�,�2(XT
X )�1}.

(And if X is orthogonal, then �̂i and �̂j are independent, for i 6= j .)

[Because uncorrelated and Gaussian =) independent]

13 / 28



Estimating �2

Let vj be the jth diagonal element of (XT
X )�1. Then

var(�̂j) = �2
vj . Then the standardised coe�cient or Z -score is

zj =
�̂j

�̂
p
vj
, (5)

where we typically estimate �2 by

�̂2 = (n � p)�1
nX

i=1

(yi � ŷi )
2,

and E�̂2 = �2.

Under the model assumptions and the null hypothesis H0 : �j = 0,
the quantity zj is distributed as a Student’s t-distribution on n � p

degrees of freedom (and usually approximated by N(0, 1) for n
large, and larger than p).

14 / 28



p or p + 1?

When we add a mean or intercept parameter into the model, e.g.
�0, as we will do later, this can be included in the design matrix X

as a column of 1s as on Slide 5.

This increases the number of parameters from p to p+ 1, and then
the n � p quantities on the previous slide become n � p � 1.

Of course, for even moderately large n the di↵erence between
1/(n � p) and 1/(n � p � 1) is not large, unless, of course, p is
large too.

15 / 28



Inference about �: terminology
We are interested in whether �j is zero or not.We calculate zj and
compare this to N(0, 1) (or appropriate t).

The p-value is the probability of getting a more extreme value than
zj , if assuming it comes from a N(0, 1) distribution.

We are indi↵erent to positive or negative values so, we compute

pzj = P(|Z | > zj) = P(Z < �zj)+P(Z > zj) = 2P(Z < �zj) = 2�(�zj),

where Z ⇠ N(0, 1) and its distribution function is �.

Usually say if pzj < 0.01 then strong evidence to reject H0, else
pzj < 0.05 some evidence to reject H0, otherwise have little or no
evidence to reject H0 (but this does NOT mean accept H0).

Bayesian methods give distribution for zj , might be more useful.

16 / 28



Dropping/Including Groups of Variables

Consider two models: model M0 and model M1.

Model M1 is the larger model with p1 + 1 variables.

Model M0 is smaller, with p0 + 1, all contained in M1 (nested).

If we go from the larger to the smaller, we’re constraining p1 � p0

parameters to be zero.

Calculate

F =
(RSS0�RSS1)/(p1 � p0)

RSS1 /(n � p1 � 1)
,

Note, RSS1  RSS0 as M1 has more parameters (better fit).

17 / 28



Inference about models

Under the model assumptions and that M0 (smaller) is true, it can
be shown that F ⇠ Fp1�p0,n�p1�1 distribution, which gives us a
way of assessing which model to prefer as our working assumption
going forward.

18 / 28



Child Data Example

The child data has two other variables: age and sex.

All the variables are contained in the childhwDF data frame.

Let’s look at some exploratory plots.

The R function split, splits a variable into (two) groups
depending on a (dichotomous) factor.

19 / 28



Weight split by sex
attach(childhwDF)

boxplot(split(x=weight, f=sex))

●●

f m

30
40

50
60

70

Sex

W
ei

gh
t (

kg
)

20 / 28



Weight against age
plot(age, weight, xlab="Age (months)", ylab="Weight (kg)")

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

140 160 180 200 220 240

30
40

50
60

70

Age (months)

W
ei

gh
t (

kg
)

21 / 28



Height against age
plot(age, height, xlab="Age (months)", ylab="Height (cm)")

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

140 160 180 200 220 240

13
0

14
0

15
0

16
0

17
0

18
0

Age (months)

H
ei

gh
t (

cm
)

22 / 28



F -test on the three variables

#

# Fit full model with all three variables and intercept

#

fit1 <- lm( weight~ height+sex+age, data=childhwDF)

#

# Now just fit intercept

#

fit0 <- lm( weight~ 1, data=childhwDF)

#

# Calculate RSS for both models

#

rss1 <- sum(resid(fit1)^2)

rss0 <- sum(resid(fit0)^2)

23 / 28



F -test on the three variables (continued)

#

# Calculate F statistic

#

((rss0 - rss1)/(4-1))/(rss1/(237-4-1))

[1] 131.9756

#

# 99% quantile of appropriate F

#

qf(0.99, df1=3, df2=237-4-1)

[1] 3.867119

The null hypothesis would be �sex = �age = �height = 0

Now 132.0 � 3.87, so have strong evidence to reject the null
hypothesis.

24 / 28



Stepwise regression: backward deletion

summary(fit1)

Start with full model and look at coe�cients and s.e.’s

Estimate Std. Error t value P(> |t|)
(Intercept) -58.15 5.56 -10.45 < 2⇥ 10�16

height 0.55 0.048 11.62 < 2⇥ 10�16

sex-m -0.15 0.73 -0.21 0.834
age 0.11 0.025 4.25 3.1⇥ 10�5

The sex variable is not significant, so we drop it from the
regression:

25 / 28



Stepwise regression: backward deletion

fit2 <- update(fit1, . ~ . -sex)

summary(fit2)

Estimate Std. Error t value P(> |t|)
(Intercept) -57.98 5.49 -10.56 < 2⇥ 10�16

height 0.55 0.046 12.01 < 2⇥ 10�16

age 0.11 0.025 4.36 1.95⇥ 10�5

Backward-stepwise selection: starts with the full model and
sequentially delete the predictor that has least input on the fit.

I stop when all variables are statistically significant at the 5% level.

26 / 28



Forward-stepwise selection

Start with intercept in model
fitInt <- lm(weight ~ 1, data=childhwDF)

Sequentially add the term that most improves the fit.

If you have p variables to add, add them one by one and see which
one improves the fit the most.

Stop when the fit stops improving, or when the introduced variable
is is not statistically significant (i.e. the coe�cient in the model is
not statistically significant).

27 / 28



Summary

This lecture introduced the following concepts:

The Multivariate Linear Model

Vector and matrix di↵erentiation

Computing Least Square Estimates for the multivariate linear
model

Orthogonality between the residual vector and the columns of X

Hat matrix

Expectation and Variance matrix of �̂

Distribution of �̂ and estimation of �2.

p-values

Variable Selection groups, backward deletion and forward stepwise

Child Data example

28 / 28



Elements of Statistical Learning: Lecture 3.

Which variables are important?

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2021 (revision 5). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only. (Revision 2)

1 / 31



Gauss Markov theorem

Let �̂ be the least-squares estimator.

Let �̌ = CY be another unbiased linear estimator of � with
C = (XT

X )�1
X

T + D, where D is a p ⇥ n non-zero matrix.Then

E(�̌) = E(CY )

= E
h
{(XT

X )�1
X

T + D}(X� + ✏)
i

= {(XT
X )�1

X
T + D}X� + {(XT

X )�1
X

T + D}E(✏)
= (XT

X )�1
X

T
X� + DX�

= (Ip + DX )�,

and �̌ is unbiased if and only if DX = 0.

2 / 31



Gauss Markov theorem continued 2

Also:

var(�̌) = var(CY )

= C var(Y )CT

= �2
CC

T

= �2{(XT
X )�1

X
T + D}{(XT

X )�1
X

T + D}T

= �2{(XT
X )�1

X
T + D}{X (XT

X )�1 + D
T}

= �2{(XT
X )�1

X
T
X (XT

X )�1 + DX (XT
X )�1

+(XT
X )�1

X
T
D

T + DD
T}

= �2{(XT
X )�1 + DD

T}
= var(�̂) + �2

DD
T .

since �̌ is unbiased and DX = 0.

3 / 31



Gauss Markov theorem continued 3

Now examine an arbitrary linear combination of parameters:
✓ = ↵T� for some p-vector ↵.

Let ✓̂ = ↵T �̂ and ✓̌ = ↵T �̌.Clearly, both ✓̂, ✓̌ are unbiased for ✓.

Now

var(↵T �̌) = ↵T var(�̌)↵

= ↵T{var(�̂) + �2
DD

T}↵
= var(↵T �̂) + �2↵T

DD
T↵.

Now ↵T
DD

T↵ = v
T
v =

Pn
i=1 v

2
i � 0, or recognise DD

T is
positive semi-definite, where v is some vector v = D

T↵

4 / 31



Implication of Gauss Markov: BLUE

Gauss Markov means var(↵T �̂)  var(↵T �̌).

And recall �̌ was arbitrary linear unbiased estimator.

So, least squares �̂ is best linear unbiased estimator or BLUE.

However, it’s not necessarily the best estimator in terms of mean
squared error (MSE).

There might be estimators that are a little biased, but have better
variance and a smaller MSE overall.

With subset selection we either include or omit variables, there is
nothing in between — which can lead to high variability.

So, we try modifying coe�cients instead — shrinkage.

5 / 31



Centring and standardising

Often, the methods below are not invariant to changes in origin
and variance of the X s.

Fix a particular variable: j 2 {1, . . . , p} then x1,j , x2,j , . . . , xn,j will
have a mean x̄j and sample variance s

2
j .

Centering and standardising means we operate on the new variable
x
? defined by

x
?
i ,j = (xi ,j � x̄j)/sj ,

for i = 1, . . . , n.

This often makes the variables more comparable, and sometimes
makes (XT

X ) less singular.

6 / 31



Ridge regression: What is it?

Ridge regression solves the optimisation problem

�̂ridge(�) = argmin�

8
<

:

nX

i=1

0

@Yi � �0 �
pX

j=1

Xi ,j�j

1

A
2

+ �
pX

j=1

�2
j

9
=

; .

This is a penalized least squares optimisation: � > 0, to be chosen.

We want to get a good fit and keep control on the overall size of
the elements of �.

The � controls the balance between fidelity of the fit and size of
the coe�cients.

Note �̂ridge(0) = �̂ and �̂ridge
0 (�) ! Ȳ for � getting large (and

�j ! 0 for j 6= 0).

7 / 31



Alternative formulation

Ridge regression solution can be written as

�̂ridge = argmin�

nX

i=1

0

@Yi � �0 �
pX

j=1

Xi ,j�j

1

A
2

,

subject to
pX

j=1

�2
j  t

8 / 31



Instability in ordinary least squares: ridge helps

When variables in least squares are highly correlated it can cause
instability in the least squares estimators.

E.g. suppose X
T
X =

✓
1 ⇢
⇢ 1

◆
. Then det(XT

X ) = 1� ⇢2 and

(XT
X )�1 =

1

1� ⇢2

✓
1 �⇢
�⇢ 1

◆

So, if ⇢ gets close to 1, then the entries if (XT
X )�1 become very

large, i.e. the variance of the least squares parameter estimates gets
large, and so some entries of �̂ can become unreasonably large.

The constraint
Pp

j=1 �
2
j ameliorates this problem.

9 / 31



Ridge Regression RSS in matrix form

Ridge objective using centred variables (and Y also centred by Ȳ ,
see course book top of page 64)

RSS(�) = (Y � X�)T (Y � X�) + ��T�.

Di↵erentiating with respect to � (using Lemma 2)

@ RSS(�)

@�
= �2XT

Y + 2XT
X� + 2��.

Setting equal to zero and solving for � gives

(XT
X + �Ip)�̂

ridge = X
T
Y

Hence,
�̂ridge = (XT

X + �Ip)
�1

X
T
Y .

10 / 31



Condition number

The condition number of a matrix measures how “hard” it is to
invert a matrix.

A matrix with a high condition number is “closer” to being
singular.

The condition number of a normal matrix, A, is given by

(A) = ⇠max(A)/⇠min(A),

where ⇠max(A) is the largest eigenvalue of A and similarly for the
minimum.

11 / 31



Condition number

Think of A = X
T
X .

The eigenvalues of A =

✓
1 ⇢
⇢ 1

◆
are (1� ⇢, 1+ ⇢), so if ⇢ > 0 then

(A) = (1 + ⇢)/(1� ⇢).

Note, (A) ! 1 as ⇢ ! 1.

Whereas, the eigenvalues of A+ �I =

✓
1 + � ⇢
⇢ 1 + �

◆
are

(1 + �� ⇢, 1 + �+ ⇢), so

(A) = (1 + �+ ⇢)/(1 + �� ⇢).

Since � > 0 then denominator does not tend to zero.

12 / 31



Ridge Regression Interpretation

Adding the � to the diagonal makes the X
T
X matrix “more”

invertible.

Reduces the variability in estimated coe�cients.

Called ridge, as it adds to the ‘ridge’ of the matrix. (original
motivation)

A way of dealing with multi-collinearity between the X design
columns.

Sometimes known as Tikhonov regularisation.

13 / 31



Bayesian interpretation

If prior �j ⇠ N(0, ⌧2) independently, for j = 1, . . . , p.

And, Yi ⇠ N(�0 + x
T
i �,�2), independently.

Then �|Y ⇠ N with posterior mean �̂ridge, with � = �2/⌧2.

�̂ridge is also the posterior mode.

Choosing the prior is equivalent to choosing the regularisation
parameter � (don’t have to choose � separately, but do have to
choose ⌧2, so moves problem to another position ‘under the
carpet’)

14 / 31



Singular value decomposition (Shrinkage)

The singular value decomposition (SVD) of a n ⇥ p (centred)
matrix X is

X = UDV
T ,

where U and V are n ⇥ p and p ⇥ p orthogonal matrices,
respectively, with the columns of U spanning the column space of
X and V spanning the row space.

D is a p ⇥ p diagonal matrix with values d1 � d2 � · · · � dp � 0
called the singular values.

If one or more values of dj = 0, then the X is singular.

We have described the economy sized SVD where U is not square
and D is.

15 / 31



SVD applied to XTX .

If X = UDV
T then

X
T
X = VD

T
U

T
UDV

T = VD
T
DV

T = VD
2
V

T ,

as D is diagonal. So

(XT
X )�1 = (VD2

V
T )�1 = (V T )�1

D
�2

V
�1,

here D
�2 is the diagonal matrix with entries d�2

j .

16 / 31



Shrinkage: LS (SVD)

Using the SVD, we can write the least squares fitted vector as

X �̂ = X (XT
X )�1

X
T
Y

= UDV
T (V T )�1

D
�2

V
�1

VD
T
U

T
Y

= UDIpD
�2

IpD
T
U

T
Y

= UU
T
Y .

Note that UT
Y are the coordinates of Y with respect to the

orthonormal basis implied by U.

17 / 31



Shrinkage: Ridge (SVD)

Same again, but for ridge

X �̂ridge = (UDV
T )(VD2

V
T + �Ip)

�1(VD
T
U

T )Y (1)

What is this?

Well, let M, L be two invertible p ⇥ p matrices. Then properties of
the matrix inverse mean

ML
�1 = (LM�1)�1.

Let’s apply this to (1) with M = V
T and L = VD

2
V

T +�Ip to get

V
T (VD2

V
T + �Ip)

�1 = {(VD2
V

T + �Ip)(V
T )�1}�1

= {VD2 + �(V T )�1}�1

18 / 31



Shrinkage: Ridge (SVD) — 2

Now apply again, but here M = {VD2 + �(V T )�1}�1 and
L
�1 = V , gives

{VD2 + �(V T )�1}�1
V = [V�1{VD2 + �(V T )�1}]�1

= {D2 + �V�1(V T )�1}�1

= {D2 + �(V T
V )�1}�1 (2)

= (D2 + �Ip)
�1, (3)

where we use the (AB)�1 = B
�1

A
�1 property of matrix inverses

in (2) and then the orthogonality of V on the last line.

19 / 31



Shrinkage: Ridge (SVD) — 3

Putting together (1) with (3) yields

X �̂ridge = UD(D2 + �Ip)
�1

DU
T
Y

=
pX

j=1

uj
d
2
j

d2
j + �

uTj Y ,

where uj are the columns of U.

So, ridge regression, like least squares, transforms the basis to U,
then shrinks the coordinates according to d

2
j /(d

2
j + �).

If d2
j is large, then d

2
j /(d

2
j + �) ⇡ 1.

If d2
j is small, then the ratio is less than one.

So, ridge regression shrinks coordinates that correspond to small
d
2
j , i.e. directions where the singular value is small.

20 / 31



Link between SVD and Principal Components

The sample covariance matrix of the centred data matrix X

(n⇥ p)is S = n
�1

X
T
X (c.f. the variance of a random vector, from

Lecture 2, equation (4)).

Then X
T
X = (UDV T )TUDV T = VD(UT

U)DV T = VD
2
V

T ,
which is eigendecomposition of XT

X (and S , up to factor of n).

The eigenvectors vj (columns of V ) are called the principal

components or Karhunen-Loeve directions of X .

Let z1,(n⇥1) = X(n⇥p)v1,(p⇥1) be the projection of the data matrix
X onto the first principal component. Then (assume X has mean
zero, hence z = centred)

S(z1) = n
�1(zT1 z1) = v

T
1 X

T
Xv1/n = v

T
1 VD

2
V

T
v1/n = d

2
1/n,

21 / 31



Link between SVD and Principal Components — 2

So, the variance of X in direction v1 is d2
1/n.

And, the variance of X in direction vj is d2
j /n and we know dj > di

if i > j .

So, we can partition the variance of X into orthogonal directions
each with variance d

2
j /n.

22 / 31



Plot of principal components of age/height matrix

# Centre age and height, plot them

age2 <- age-mean(age)

height2 <- height-mean(height)

oldpar <- par(pty="s") # Make square plot

plot(age2, height2, xlim=c(-30, 90), ylim=c(-30, 90),

xlab="Centred Age", ylab="Centred Height", col="grey")

abline(h=0, lty=2) # cross hair horizontal

abline(v=0, lty=2) # cross hair vertical

# Put centred variables in new 2D data matrix

xdf <- cbind(age2, height2)

ed <- eigen( t(xdf)%*% xdf/length(age2)) # Eigendecomposition

# Extract eigenvectors

evec <- ed$vectors

23 / 31



PC plot (continued)

# Calculate standard deviations of principal components

pc1sd <- sqrt(ed$values[1])

lines(c(-1, 1)*pc1sd*evec[1,1], c(-1,1)* pc1sd*evec[2,1],

col=2) # Plot first PC

pc2sd <- sqrt(ed$values[2])

lines(c(-1, 1)*pc2sd*evec[1,2], c(-1,1)* pc2sd*evec[2,2],

col=2) # Plot second PC

par(oldpar) # Restore graphics parameters

Note, we plot the standard deviation - and, as the data looks fairly
normal, most of the data lies within ±2 standard deviations.

24 / 31



Plot of Principal Components of Height and Age (centred)

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●
●

●

●

●

●

●
●

●

−20 0 20 40 60 80

−2
0

0
20

40
60

80

Centred Age

C
en

tre
d 

H
ei

gh
t

25 / 31



Projection of Data Matrix onto Projection Vectors

We can project the p-dimensional data matrix onto the
eigenvectors with

Z = XV

and then do a density estimate of the first, second, etc. column.

xdfproj <- xdf %*% ed$vectors

plot(density(xdfproj[,1]), ylim=c(0,0.065),

xlab="Projected Values", sub="") # Density est. of z_1

points(xdfproj[,1], rep(0.01,237), pch=18, cex=0.5)

lines(density(xdfproj[,2]), col=2) # Density est. of 2

points(xdfproj[,2], rep(0.015,237), pch=18, col=2, cex=0.5)

legend(x="topleft", col=1:2, lwd=1,

legend=c("Projection onto 1st PC",

"Projection onto 2nd PC"))

26 / 31



Density ests. of data projected onto principal components.

−100 −50 0 50

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

density.default(x = xdfproj[, 1])

Projected Values

D
en

si
ty

Projection onto 1st PC
Projection onto 2nd PC

27 / 31



Ridge regression interpretation

Ridge regression shrinks coordinates in directions with smaller
variance.

Geometrically, imagine a plane being fitted on top of the data —
you get more stability from the longer directions, i.e. those with
greater variance.

This stability improvement was the original reason for developing
ridge regression.

28 / 31



(E↵ective) Degrees of Freedom

Define the “e↵ective” hat matrix as H� = X (XT
X + �Ip)�1

X
T .

Then, the e↵ective degrees of freedom is defined to be

df(�) = tr{H�}

=
pX

j=1

d
2
j

d2
j + �

,

as the trace of a matrix is the sum of its eigenvalues.

Note: df(0) = p, which is the actual degrees of freedom from the
least squares estimate.

29 / 31



Bias and variance

We’ve mentioned that the variance of �̂ridge is less than �̂ due to
the constraint — this translates to the fitted values as
Ŷ = X �̂ridge.
What about the bias of ridge regression estimates for �?

E(�̂ridge) = (XT
X + �I )�1

X
TE(Y )

= (XT
X + �I )�1

X
T
X�

This can be worked out for simple cases, or approximated.

30 / 31



Summary

This lecture has covered the following concepts.

Gauss-Markov theorem and best linear unbiased estimators
(BLUE)

Centring and standardising variables

Ridge regression for co-linear variables, L2 penalty, interpretations
(Bayesian)

Ridge regression in matrix form

Condition number

Ridge as shrinkage

Principal components

E↵ective Degrees of Freedom

31 / 31



Elements of Statistical Learning: Lecture 4.
The Lasso

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2021 (revision 4). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 24



Lasso regression

In contrast to ridge regression the lasso solves:

�̂lasso(�) = argmin�

8
<

:
1

2

nX

i=1

0

@Yi � �0 �
pX

j=1

Xi ,j�j

1

A
2

+ �
pX

j=1

|�j |

9
=

; .

Again, a penalized least squares optimisation: � > 0, to be chosen.

We want to get a good fit and keep control on the overall size of
the elements of �.

The � controls the balance between fidelity of the fit and size of
the coe�cients.

Note �̂lasso(0) = �̂ and �̂lasso
0 (�) ! Ȳ for � getting large (and

�j ! 0 for j 6= 0).

2 / 24



Alternative formulation

The lasso solution can be written as

�̂lasso = argmin�

nX

i=1

0

@Yi � �0 �
pX

j=1

Xi ,j�j

1

A
2

,

subject to
pX

j=1

|�j |  t (1)

Lasso is also known as basis pursuit.

Unfortunately, there is no closed form solution, but e�cient
computational methods exist (quadratic programming), same
computational e↵ort order as for ridge regression.

3 / 24



What’s the di↵erence between lasso and ridge?

The penalties:
P

�2
j and

P
|�j |.

E.g. if �j is small, then �2
j is tiny, and �2

j does not contribute
much to the penalty, and this means �j is not forced to become
smaller to relieve the penalty.

However, in lasso, |�j | could be considerably bigger than �2
j , and it

contributes more to the penalty. Hence, it is worth shrinking it
more severely to relieve the penalty.

Indeed, some �j get shrunk so much, they get shrunk to exactly
zero, and contribute nothing to the penalty.

So, lasso has the ability to select (remove) variables (set
coe�cients equal to zero) as well as shrink the coe�cients.

4 / 24



Values of t: the penalty bound

Let t0 =
Pp

j=1 |�̂|, where �̂ are the least squares estimators.

If t is larger than t0 in the lasso constraint (1), then the
�̂lasso = �̂ls. This is because the fidelity condition can be perfectly
satisfied within the realm of the constraint.

Roughly speaking, if t = t0/2, then the lasso estimates shrink the
least squares ones by 50%.

However, the precise shrinkage is not always obvious.

The goal (in variable selection for least squares, � in ridge
regression or � in lasso) is to choose the selection/� to minimise
the overall prediction error.

5 / 24



Comparison when X is orthogonal
It’s possible to find closed form solutions, when X is orthogonal,
i.e. XTX = Ip.

For least squares

�̂ls = (XTX )�1XTY = XTY .

For ridge

�̂ridge = (I + �I )�1XTY = (1 + �)�1XTY = �̂ls/(1 + �)

For the lasso, we want (remember Y TX� = �TXTY )

min
�

1

2
(Y � X�)T (Y � X�) + �

pX

j=1

|�j |

= min
�

1

2
Y TY � Y TX� +

1

2
�TXTX� + �

pX

j=1

|�j |.

6 / 24



Lasso for orthogonal

We can ignore the Y TY term as it does not depend on � and
recall XTX = I , so the problem becomes

min
�

�Y TX� +
1

2
�T� + �

pX

j=1

|�j | (2)

= min
�

�(�̂ls)T� +
1

2
�T� + �

pX

j=1

|�j | (3)

= min
�

pX

j=1

✓
��̂ls

j �j +
1

2
�2
j + �|�j |

◆
. (4)

The last line is a sum of terms, with each term involving one, and
only one, �j , so we can do the minimisation term by term, each
over a separate �j .

7 / 24



Minimising Lasso objective term by term for orthogonal X

We have to minimise

Mj = ��̂ls
j �j +

1

2
�2
j + �|�j |. (5)

Case a: Let �̂ls
j > 0.

Suppose �j < 0. However, we can achieve a smaller Mj by
swapping �j with ��j . This swap leaves �2

j and |�j | unchanged.
Hence, �j � 0.

Take derivative of Mj and set equal to zero (with �j � 0)

@Mj

@�j
= ��̂ls

j + �̂lasso
j + � = 0

=) �̂lasso
j = �̂ls

j � �.

8 / 24



Minimising Lasso for orthogonal X — 2

�̂lasso
j = �̂ls

j � �.

This quantity only feasible if � 0, so solution is

�̂lasso
j = (�̂ls

j � �)+

= sgn(�̂ls)(|�̂ls
j |� �)+, (6)

where x+ = xI(x > 0) and sgn(x) = 2I(x > 0)� 1 or

sgn(x) =

(
1 x > 0

�1 x < 0.

Operation (6) is called soft thresholding: we’ll see it again later.

Case b: Let �̂ls < 0 (see homework).

9 / 24



How di↵erent methods modify coe�cients

LS

Tr
an

sf
or

m
ed

0

Best Subset

D

LS

0

Ridge

LS

0

Lasso

λ

λ

10 / 24



Bayesian formulation: Contours of prior distribution on �

xy

xy

xy
xy

xy

xy

xy

xy

xy

xy

Figures indicate how the �’s start o↵ in the prior.

Axes are �1,�2. Plots are equal contour of |�1|q + |�2|q = 1.
Values of q are (left to right) q = 4, 2, 1, 0.5, 0.1.

See Fig 3.11 in ELS — contours of error distribution are more likely
to touch sharp corners of q = 0 then the flat faces (the corners
‘stick’ out), which correspond to a coe�cient being exactly zero.

11 / 24



NOT EXAMINABLE 2023. Least Angle Regression

Has algorithmic similarity to forward stepwise regression.

Recall, this starts with nothing, and then adds variables to the
active set one at a time.

Actually turns out to be a close cousin of the lasso, and very useful
for understanding lasso AND computing it e�ciently.

12 / 24



NOT EXAMINABLE 2023: Least Angle Regression:
Summary

Enters variables one at a time, but only partially enters them,
depending on how good they are!

That is, imagine the starting coe�cient vector � to be all zeroes,
and then, for the entered variable, gradually increase its
contribution from zero up to its (usual) least squares coe�cient.

Which one do we enter first? The variable that is most correlated
with the response.

As the coe�cient increases, more of the variable is entered.
Progressively, the correlation of the variable with the residual will
decrease (as more of the variable is in the model, not in the
residual).

As soon as the first variable’s residual correlation dips below
another variable, we start entering a second variable, and continue. 13 / 24



NOT EXAMINABLE 2023: LAR Algorithm (ELS Alg 3.2)

1. Standardise the predictors to have zero mean and unit norm.
Start with the residual r = Y � Ȳ ,�1,�2, . . . ,�p = 0.

2. Find the predictor Xj most correlated with r

3. Move �j from 0 to its least-squares coe�cient �̂j =< Xj , r >,
until some other competitor Xk has as much correlation with
the current residual as does Xj .

4. Move �j and �k in the direction defined by their joint least
squares coe�cient of the current residual on (Xj ,Xk), until
some other competitor X` has as much correlation with the
current residual.

5. Continue in this way until all p predictors have been entered.
After min(n� 1, p) steps, we get to the least squares solution.

14 / 24



NOT EXAMINABLE 2023: LAR: Details

Suppose Ak is the active set at the beginning of the kth step.

Let �Ak be the coe�cient vector for these variables at this step.
There will be k � 1 non-zero values, the one just entered will be 0.

The current residual is rk = Y � XAk�Ak

The direction to travel in for this step is

�k = (XT
Ak

XAk )
�1XT

Ak
rk .

Then evolve the coe�cients as

�Ak (↵) = �Ak + ↵ · �k .

15 / 24



NOT EXAMINABLE 2023: LAR: Details 2

Thus the fit at step k , f̂k evolves as

f̂k(↵) = f̂k + ↵ · uk ,

where uk = XAk �k .

The name ”least angle” stems from the fact that uk makes the
smallest and equal angle with each of the predictors in Ak

16 / 24



NOT EXAMINABLE 2023: LAR: Algorithm info

The LAR coe�cients evolve in a piecewise linear fashion.

That’s because coe�cient(s) evolve linearly moving towards a
value and then jump to a new ’state’ when a new competitor is
about to beat the active set.

It turns out that you don’t need to move in small steps. You can
work out what the next competitor is and what direction it needs
to go in, and the amount it needs to move.

This means that LAR is extremely computationally e�cient, as
e�cient as standard least squares.

17 / 24



NOT EXAMINABLE 2023: LAR Correlation Progression

18 / 24



LAR PART NOT EXAMINABLE 2023: LAR/Lasso
Coe�cient Progression

19 / 24



Principal Components Regression

From Lecture 3 we projected the data matrix onto the columns of
V from the SVD — the eigenvectors of the sample covariance
matrix.

Let zm = Xvm, m = 1, . . . , p.

Recall that principal components is just a change of basis (actually
a rotation since VV T = Ip) and it presents the data according to a
new set of variables, z1, . . . , zp, where the variance of the data
according to z1 is greatest, and progressively smaller variances.

An interpretation of this is that the most information(=variance)in
the data set is put into z1; the next largest variance, in a direction
orthogonal to v1, gets put into z2, the next largest, in a direction
orthogonal to v1 and v2 is put into z3, etc.

20 / 24



Principal Components Regression: scree plot

Often, the variance of the last principal components can be very
small.

The variances are just the eigenvalues and can just be plotted
against m. We usually select a M so that variances, m < M are
‘big’ and those m � M are ‘small’ .

●

●

●

●
●

●
●

1 2 3 4 5 6 7

Eigenvalue

Va
ria
nc
e

Here, we might choose M = 4.

21 / 24



Principal Components Regression

PC regression can be written as the sum of univariate regressions
(since the regression variables are orthogonal) as

ŷpcr(M) = Ȳ 1n +
MX

m=1

✓̂mzm, (7)

where ✓̂m =< zm, y > / < zm, zm >, the usual regression
coe�cient, but using {zm}Mm=1 variables not the X s. Since
zm = Xvm and ✓̂m is a scalar we can write:

ŷpcr(M) = Ȳ 1n +
MX

m=1

✓̂mXvm = Ȳ 1n + X
MX

m=1

✓̂mvm, (8)

so we can think of �̂pcr =
PM

m=1 ✓̂mvm.

22 / 24



Comments on Principal Components Regression

Usually operate principal components regression on scaled inputs.

If M = p we get back to usual least-squares (since column space of
both is same, just a rotation).

Principal components regression has similarities to ridge regression.
The latter shrinks the coe�cients of the principal components (the
dj) especially the small ones. Whereas principal components
discards the p �M smallest ones.

Read §3.5.2 of ESL, page 80 on Partial Least Squares.

23 / 24



Summary

This lecture discussed:

I The Lasso

I Least angle regression

I Principal Components Regression

24 / 24



Elements of Statistical Learning: Lecture 5.

Regression Real Examples

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2019 (revision 2). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 39



Regression with the Swiss Data Set

Some of these examples for this lecture originate from the
R-bloggers article “Ridge Regression and the Lasso” by
realdataweb at

https://www.r-bloggers.com/ridge-regression-and-the-lasso/

The swiss data set contains a response: a standardized fertility
measure and five other explanatory variables (listed on next but
one page) obtained from each of 47 French-speaking provinces of
Switzerland in (around) 1888.

We will analyse this data set using linear modelling, ridge
regression, the lasso and least angle regression.

2 / 39



Language distribution of Switzerland

3 / 39



Variables of swiss data set

You can find out for yourself using the ?swiss help command in R.
However, they are:

Fertility common standardized fertility measure

Agriculture % of males involved in agriculture

Examination % draftees receiving highest mark on army exam

Education % education beyond primary school for draftees

Catholic % catholic (as opposed to protestant)

Infant.Mortality live births who live less than one year

All variables, apart from Fertility are as percentage of population
and thus already somewhat standardized.

In 1888 Switzerland was entering a period known as the
‘democratic transition’, where fertility was beginning to fall from
the high level typical of underdeveloped countries.

4 / 39



Source and Bibliographic Details

It is always important to acknowledge the source of the data. The data come from

Project “16P5” from pages 549–551 in Mosteller, F. and Tukey, J. W. (1977) Data

Analysis & Regression: A Second Course in Statistics. Addison-Wesley, Reading Mass.

Data inclusion statement: “Data used by permission of Franice van de Walle. O�ce

of Population Research, Princeton University, 1976. Unpublished data assembled

under NICHD contract number No 1-HD-O-2077.”

WARNING: This is a HISTORICAL data set, collected in times that were di↵erent to

today. One might argue that there is nothing ostensibly wrong with this data set or

collection. There may be sensitivity to certain variables, models, assumptions and so

this lecture is not intended to be prescriptive or suggest that the data are good or bad

in a moral sense. However, most national statistical o�ces, e.g. UK O�ce for

National Statistics still collect ‘religion’ in the Census. E.g. 400k people registered as

Jedi in the 2001 Census

5 / 39



Modern Data

Before we start see:

https://ourworldindata.org/grapher/

fertility-vs-child-mortality

Now back to our data . . .

6 / 39

https://ourworldindata.org/grapher/fertility-vs-child-mortality
https://ourworldindata.org/grapher/fertility-vs-child-mortality


Exploratory plots

attach(swiss)
pairs(~Agriculture+Examination+Education+Catholic+Infant.Mortality)

Agriculture
5

15
25

35

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●●
●

●

●●

●

●●

0
20

60
10
0

●

●

●

●

●

● ●
●●

●
●

●
●● ●

●

●

●

● ●●●

●

● ●●●
●

●

●

●●●●● ● ●●

●
● ●

●

●
●

●
●

●

0 20 40 60 80

● ●

●● ●

●

●
●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

● ●
●

5 15 25 35

●

●
●

●
●

●

●●

●

●

● ●
●

●

●
●

●

●
●

●

●
●

●
●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

Examination

●
●
●

●

●

● ●●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ● ●
●

●

● ●

●

● ●

●

●

●

●

●

● ●
●●
●

●

●
● ● ●

●

●

●

●● ●●

●

●●●●
●

●

●

● ●● ●●●● ●

●
●●

●

●
●

●
●

●

●●

● ● ●

●

●
●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●●
●

●

●
●
●

●

●

●●

●

●

● ●
●

●

●
●

●

●
●

●

●
●

●
●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Education

●

●

●

●

●

●●
●●

●
●

●
● ●●

●

●

●

●●●●

●

●● ●●
●

●

●

● ●● ●● ●● ●

●
●●

●

●
●

●
●
●

0 10 30 50

●●

●● ●

●

●
●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●●
●

0 20 60 100

●

●
●

●
●

●

●●

●

●

●●
●
●

●
●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●● ●
●

●

●●

●

● ●

Catholic

● ●

●●●

●

●
●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

● ●

●

●

●●

● ●
●

0
20

40
60

80

●

●
●
●
●

●

● ●

●

●

●●
●

●

●
●

●

●
●

●

●
●

●
●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0
10

30
50

●
●

●
●

●

●● ●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

● ●●
●

●

●●

●

●●

●

●

●

●

●

●●
●●
●
●

●
● ●●

●

●

●

● ●● ●

●

● ● ●●
●

●

●

● ●●●●●● ●

●
●●

●

●
●

●
●
●

15 20 25

15
20

25

Infant.Mortality

7 / 39



Explanatory variables

Some reasonable correlations may appear, e.g.

cor(Agriculture, Examination)

[1] -0.6865422 cor(Education, Examination)

[1] 0.6984153

So, clearly some non-trivial correlations between explanatory
variables.

8 / 39



Potentially Deceptive Plots: Watch the scale

oldpar <- par(mfrow=c(2,2), pty="s")

plot(Agriculture, Fertility, main="Default R plot")

eqscplot(Agriculture, Fertility, main="eqscplot")

plot(Agriculture, Fertility,

xlim=c(0, 100), ylim=c(0,100), main="Both [0:100]")

plot(Agriculture, Fertility,

xlim=c(-200, 200), ylim=c(0,100),

main="x:[-200:200], y[0:100]")

par(oldpar)

9 / 39



Potentially Deceptive Plots: THE SAME DATA

●
●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0 20 40 60 80

40
50

60
70

80
90

Default R plot

Agriculture

Fe
rti
lit
y

●
●

●

●

●●

●

●

●●
●

●
●

●

●

●
●

●●

●●●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

0 20 40 60 80

20
40

60
80

10
0

eqscplot

Agriculture

Fe
rti
lit
y

●
●

●

●

●●

●

●

●●
●

●
●●

●

●
●

●●

●●●

●●

●● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

0 20 40 60 80 100

0
20

40
60

80
10
0

Both [0:100]

Agriculture

Fe
rti
lit
y

●
●

●

●

●●

●

●

●●
●

●
●●

●

●
●

●●

●●●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

−200 −100 0 100 200

0
20

40
60

80
10
0

x:[−200:200], y[0:100]

Agriculture

Fe
rti
lit
y

10 / 39



Response versus Explanatory: Agriculture

library("MASS")
eqscplot(Agriculture, Fertility)

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0 20 40 60 80

40
60

80
10
0

Agriculture

Fe
rti
lit
y

11 / 39



Response versus Explanatory: Examination

eqscplot(Examination, Fertility)

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−10 0 10 20 30 40 50

40
50

60
70

80
90

Examination

Fe
rti
lit
y

12 / 39



Response versus Explanatory: Education

eqscplot(Education, Fertility)

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50 60

40
50

60
70

80
90

Education

Fe
rti
lit
y

13 / 39



Response versus Explanatory: Catholic

eqscplot(Catholic, Fertility)

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●
●

● ●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

20 40 60 80 100

20
40

60
80

10
0

Catholic

Fe
rti
lit
y

14 / 39



Response versus Explanatory: Infant Mortality

eqscplot(Infant.Mortality, Fertility)

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−10 0 10 20 30 40 50

40
50

60
70

80
90

Infant.Mortality

Fe
rti
lit
y

15 / 39



Comments on Graphs for Modelling

The eqscplot is useful as it plots the variables on equal scales,
which makes it easier to assess relationships.

There are some reasonable looking linear relationships (Fertility on
Examination, Fertility on Education, and, possible, Fertility on
Agriculture).

The Fertility on Catholic — less so.

Seems like Infant.Mortality & Fertility are not linked.

However, the variables themselves are reasonably highly correlated
— so the relationships are not necessarily separate and
independent.

However, we feel confident in fitting a simple linear model.

16 / 39



Fit least squares linear model

swiss.lm <- lm(Fertility ~ Agriculture+Examination+
Education+Catholic+Infant.Mortality)

summary(swiss.lm)

Call:
lm(formula = Fertility ~ Agriculture + Examination +

Education + Catholic + Infant.Mortality)

Residuals:
Min 1Q Median 3Q Max

-15.2743 -5.2617 0.5032 4.1198 15.3213

Comment on residuals

17 / 39



R linear model output

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.91518 10.70604 6.250 1.91e-07 ***
Agriculture -0.17211 0.07030 -2.448 0.01873 *
Examination -0.25801 0.25388 -1.016 0.31546
Education -0.87094 0.18303 -4.758 2.43e-05 ***
Catholic 0.10412 0.03526 2.953 0.00519 **
Infant.Mortality 1.07705 0.38172 2.822 0.00734 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 7.165 on 41 degrees of freedom
Multiple R-squared: 0.7067,Adjusted R-squared: 0.671
F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10

F-stat indicates ‘meaningful’ explanation for group. Drop
Examination, probably too highly correlated with other variables to
provide independent explanation

18 / 39



Remove Examination variable from model and re-fit

swiss.lm2 <- update(swiss.lm, . ~ . -Examination)
summary(swiss.lm2)

Call:
lm(formula = Fertility ~ Agriculture + Education + Catholic +

Infant.Mortality)

Residuals:
Min 1Q Median 3Q Max

-14.6765 -6.0522 0.7514 3.1664 16.1422

19 / 39



Remove Examination and re-fit: contd

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.10131 9.60489 6.466 8.49e-08 ***
Agriculture -0.15462 0.06819 -2.267 0.02857 *
Education -0.98026 0.14814 -6.617 5.14e-08 ***
Catholic 0.12467 0.02889 4.315 9.50e-05 ***
Infant.Mortality 1.07844 0.38187 2.824 0.00722 **
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 7.168 on 42 degrees of freedom
Multiple R-squared: 0.6993,Adjusted R-squared: 0.6707
F-statistic: 24.42 on 4 and 42 DF, p-value: 1.717e-10

All variables now statistically significant at least at the 3% level.
The null hypothesis for each of these tests: H0 : �Agriculture = 0
versus 6=. Omnibus F -test also significant.

20 / 39



Diagnostic Plot: Residuals versus fitted

plot(swiss.lm2, which=1)

40 50 60 70 80 90

−1
5

−1
0

−5
0

5
10

15
20

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

lm(Fertility ~ Agriculture + Education + Catholic + Infant.Mortality)

Residuals vs Fitted

37

47
6

21 / 39



Diagnostic Plot: Residual Q-Q plot

plot(swiss.lm2, which=2)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−2
−1

0
1

2

Theoretical Quantiles

St
an

da
rd

ize
d 

re
si

du
al

s

lm(Fertility ~ Agriculture + Education + Catholic + Infant.Mortality)

Normal Q−Q

37

47 6

22 / 39



Diagnostic Plot: Standardised residuals versus fitted

plot(swiss.lm2, which=3)

40 50 60 70 80 90

0.
0

0.
5

1.
0

1.
5

Fitted values

St
an

da
rd

iz
ed

 re
si

du
al

s ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

lm(Fertility ~ Agriculture + Education + Catholic + Infant.Mortality)

Scale−Location

37

47 6

23 / 39



Comments on Linear Model

Actually, fit does not seem too bad.

Now, let’s split the set into a training set and a test set.

Why? If you evaluate the results of a fit on the same set of data,
then you are fooling yourself. As the model will be tuned to that

set of data. To make it fair you should use completely separate
training and test sets.

We will use the glmnet library to compute ridge and the Lasso.
This uses matrices and vectors rather than data frames in R.

Construct the model matrix, response variable & a � sequence.

x <- model.matrix(Fertility~., swiss)[,-1]
y <- swiss$Fertility
lambda <- 10^seq(from=10, to=-2, length=100)

24 / 39



Generating a Training and Test Sample

set.seed(183)

train <- sample( 1:nrow(x), nrow(x)/2)

test <- -train

ytest <- y[test]

train is a list of 23 indices from 1, . . . , 47. They correspond to 23
provinces on which we’ll fit the models.

test is the complement of train, and gives us a way of excluding
the training observations, leaving just the test provinces.

So ytest are the responses of those observations in the test set.

25 / 39



Fit Models to Training Set

First, fit least squares model to just the training data.

swiss.train.lm <- lm(Fertility~., data=swiss, subset=train)

We use all of the variables here. Now do the same for ridge

swiss.train.ridge <- glmnet(x[train,], y[train], alpha=0,
lambda=lambda)

The alpha variable chooses ridge: alpha=0 or lasso: alpha=1.

We can use cross-validation to find a ‘good’ �:

cv.swiss.ridge <- cv.glmnet( x[train,], y[train], alpha=0)
bestlam <- cv.swiss.ridge$lambda.min
bestlam
[1] 0.6642065

26 / 39



Predicting

We will predict the response associated with (new) test set
observations, based on models built from training set observations.

swiss.predict.lm <- predict(swiss.train.lm,
newdata=swiss[test,])

swiss.ridge.pred <- predict(swiss.train.ridge,
s=bestlam, newx=x[test,])

Here’s a function to compute the (empirical) mean squared error

mse <- function(y1, y2) { sum((y1-y2)^2) }

Let’s now compare the ridge estimate with the least squares

mse(ytest, swiss.predict.lm)
[1] 1980.309
mse(ytest, swiss.ridge.pred)
[1] 1893.207

So, ridge is doing better here.

27 / 39



The Coe�cients

The coe�cients from the linear model are easy to get

coef(swiss.train.lm)

but for the ridge, we use the predict function and have to tell it
which � we’re interested in (here bestlam):

predict(swiss.train.ridge, type="coefficients", s=bestlam)

And put them in a nice table:

Agri Exam Educ Cath InfMort
LS -0.189 -0.354 -0.968 0.079 1.64

Ridge -0.151 -0.343 -0.861 0.072 1.61

So, nicely shrunk (but not that much). Agriculture is shrunk the
most, about 20%.

28 / 39



plot(swiss.train.ridge, xvar="lambda")

−5 0 5 10 15 20

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Log Lambda

C
oe

ffi
ci

en
ts

5 5 5 5 5 5

Agriculture
Examination
Education
Catholic
Infant Mortality

log(0.664)=bestlam
Best Ridge Regression

All parms zero
Estimate is mean

Least Squares Estimates
lambda=0, log(lambda)−> −infty

29 / 39



Lasso

Change alpha=0 to alpha=1.

swiss.train.lasso <- glmnet(x[train,], y[train], alpha=1,
lambda=lambda)

cv.lasso <- cv.glmnet(x[train,], y[train], alpha=1)
bestlam.lasso <- cv.lasso$lambda.min
bestlam.lasso
[1] 0.05776929

swiss.lasso.pred <- predict(swiss.train.lasso,
s=bestlam.lasso, newx=x[test,])

mse(ytest, swiss.lasso.pred)
[1] 1972.31

Lasso is higher than for ridge, but less than least squares.

30 / 39



plot(swiss.train.lasso, xvar="lambda")

−5 0 5 10 15 20

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Log Lambda

C
oe

ffi
ci

en
ts

5 5 0 0 0 0

Agriculture
Examination
Education
Catholic
Infant Mortality

log(0.058)=bestlam.lasso
Best Lasso Regression

All parms zero
Estimate is mean

Least Squares Estimates
lambda=0, log(lambda)−> −infty

31 / 39



Principal Components of X

options(digits=3) # More sensible numbers of digits printed!

prcomp(x)
Standard deviations (1, .., p=5):
[1] 43.36 21.43 7.67 3.73 2.75

Rotation (n x k) = (5 x 5):
PC1 PC2 PC3 PC4 PC5

Agriculture 0.2815 -0.8838 -0.36962 0.0265 0.0486
Examination -0.1207 0.1739 -0.44998 0.8669 -0.0332
Education -0.0584 0.3108 -0.80696 -0.4849 0.1172
Catholic 0.9501 0.3029 0.00166 0.0715 -0.0223
Infant.Mortality 0.0105 0.0193 0.09853 0.0867 0.9911

cumsum(prcomp(x)$sdev^2)/sum(prcomp(x)$sdev^2)
[1] 0.777 0.967 0.991 0.997 1.000

So, about 97% variation is accounted for by first two PCs.

32 / 39



Principal Components Regression

However, variance explained does not necessarily map to ‘response
explained’ — just how big the variation is in di↵erent directions of
X space.

pls is the partial least squares & principal components regression
package.

library("pls")
swiss.train.pcr <- pcr(Fertility~., data=swiss[train,],

validation="CV")
validationplot(swiss.train.pcr)

This plot says we should choose all the PCs (i.e. least squares).
However, maybe 3 is quite good?

33 / 39



PCR validation plot

0 1 2 3 4 5

6
7

8
9

10

Fertility

number of components

R
M

SE
P

34 / 39



Prediction on the test set with PCR model

swiss.pcr.pred <- predict(swiss.train.pcr, swiss[test,],
ncomp=3)

mse(y[test],swiss.pcr.pred)
[1] 1913

Better than lasso and least squares, not quite as good as ridge.

35 / 39



Residuals: Least squares, ridge, lasso, PCR

Blue pic?

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

40 50 60 70 80 90

−1
5

−1
0

−5
0

5
10

15

True Y Test Values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

Least Squares
Ridge
Lasso
PCR

36 / 39



Code behind residuals plot

lm.res <- swiss.predict.lm - y[test]
ri.res <- swiss.ridge.pred - y[test]
la.res <- swiss.lasso.pred - y[test]
pc.res <- swiss.pcr.pred - y[test]
ylim <- range(c(lm.res, ri.res, la.res, pc.res))
plot(y[test], lm.res, ylim=ylim, ylab="Residuals",

xlab="True Y Test Values")
points(y[test], ri.res, col=2)
points(y[test], la.res, col=3)
points(y[test], pc.res, col=4)
abline(h=0, lty=2)
n <- length(pc.res)
ytest <- y[test]
for(i in 1:n) {

rvec <- c(lm.res[i], ri.res[i], la.res[i], pc.res[i])
ix <- which(abs(rvec)==min(abs(rvec)))
lines(c(ytest[i], ytest[i]), c(0, rvec[ix]),

col=ix, lty=2)
}

legend(x="bottomleft", col=1:4, legend=c("Least Squares", "Ridge",
"Lasso", "PCR"), pch=1)

37 / 39



Warnings

After all of these model fits, we should scrupulously examine the
residuals plots and other diagnostic plots.

We have not done this here.

Take all p-values with skepticism — only use them as informal
information to help guide you to a better model and/or collect
more data.

There is a temptation to use statistical models as a “black box”.
The temptation is much greater when you are analysing many data
sets simultaneously — and you need to be quick.

38 / 39



Summary

We have subjected the swiss data set to a

I multiple linear regression fitted by least squares

I ridge regression, with manual and cross-validated choice of
parameters

I lasso (with the same)

I principal components

Di↵erent methods will work di↵erently on di↵erent data sets.
There is not one single best method. However, ridge, lasso and
PCR have strengths, especially when considering explanatory
variables that are correlated.

39 / 39



Elements of Statistical Learning: Lecture 6.

Distance and Dissimilarity Methods

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2023 (revision 4). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 28



The basic problem

The methods in this block are examples of unsupervised learning.

In essence, we are conducting an exploration of the data, to see
what kind of patterns and relationships exist in the data, which
can’t be tensioned or referenced against other variables, such as
response variables or training sets.

In this block, we do not have access to a data matrix, X , which
was observations on n individuals taken on p variables.

With distance (or dissimilarity) based methods, the assumption is
that we have information on the distances (or dissimilarities)
between individuals and we wish to recover what X might look like.

We call a proposed X a configuration: a set of n points in some
space of dimension q, which might not be p.

2 / 28



French Road Distances Example

Obtained PDF of road distance table, scan and use optical
character recognition to produce file

TOURS TOULOUSE TOULON STRASBOURG ST-ETIENNE ROUEN RENNES REIMS
PERPIGNAN PARIS NIMES NICE NANTES NANCY MONTPELLIER MARSEILLE
LYON LIMOGES LILLE LEMANS LEHAVRE GRENOBLE DIJON CLERMONTFD
CHERBOURG CALAIS BREST BORDEAUX BIARRITZ BESANCON ANGERS AMIENS
AMIENS 345 835 970 495 595 115 415 155 1045 130 840 1060 ...
ANGERS 105 560 915 735 530 285 125 435 760 295 735 1005 90 ...
BESANCON 470 740 590 230 265 530 680 315 665 405 460 640 ...
BIARRITZ 530 310 775 1100 695 805 620 910 445 765 595 865 ...
...

Then used a simple text editor to remove the name of the city at
the first column on each row, apart from the first.

3 / 28



Wrangled Road Distances File

After wrangling

TOURS TOULOUSE TOULON STRASBOURG ST-ETIENNE ROUEN RENNES REIMS
PERPIGNAN PARIS NIMES NICE NANTES NANCY MONTPELLIER MARSEILLE
LYON LIMOGES LILLE LEMANS LEHAVRE GRENOBLE DIJON CLERMONTFD
CHERBOURG CALAIS BREST BORDEAUX BIARRITZ BESANCON ANGERS AMIENS
345 835 970 495 595 115 415 155 1045 130 840 1060 480 360 ...
105 560 915 735 530 285 125 435 760 295 735 1005 90 595 ...
470 740 590 230 265 530 680 315 665 405 460 640 660 205 ...
530 310 775 1100 695 805 620 910 445 765 595 865 515 990 ...

So, distance between Tours and Amiens is 345km, etc.

The file frdist2.txt can be read into R using

frdist2 <- read.table("frdist2.txt", header=TRUE)

4 / 28



Sicily Archaeological Data

Data from the archeological site Capo Milazzese, Sicily.

Objects found at 13 sites of possible huts.

374 objects found, classified into 20 di↵erent categories.

Are the huts related to each other? Time dimension?

Can we see construct a picture of the relationship?

Can we get anything from a visual inspection of the table?

Beh, E.J., Lombardo, R. and Alberti, G. (2018) Correspondance analysis and

the Freeman-Tukey statistic: A study of archaeological data. Computational

Statistics and Data Analysis, 128, 73–86.

5 / 28



Sicily Archaeological Data

Code Object Huts - Cxx

1 2 3 4 5 6 8 9 10 11 16 18 20
R1 A-dinner (drink/eat) 0 1 2 1 1 0 1 1 4 6 3 2 2
R2 A-dinner (pour) 1 0 0 0 0 0 0 1 1 0 0 0 1
R3 Ae-cook 0 0 0 0 0 0 0 0 1 0 0 0 0
R4 Ae-dinner (drink/eat) 0 0 0 0 0 0 0 0 1 2 1 1 0
R5 Ae-storage 0 1 1 0 0 0 0 1 1 1 1 1 0
R6 A-storage 0 1 2 0 1 0 0 0 1 0 0 0 0
R7 Cooking 2 6 3 0 1 0 3 5 2 3 2 1 5
R8 Dinner (drink/eat-cware) 1 3 0 0 0 0 0 0 0 0 0 0 1
R9 Dinner (eat-cware) 0 0 0 0 0 0 0 2 1 0 0 1 2

R10 Dinner (drink/eat-fware) 1 3 1 1 1 2 2 5 4 2 2 1 3
R11 Dinner (pour-cware) 0 0 0 0 0 0 1 0 1 0 0 0 1
R12 Dinner (pour-fware) 1 3 4 3 2 2 2 4 4 7 2 5 5
R13 Dinner (supporting) 0 1 4 2 2 1 1 0 0 2 3 2 1
R14 Dinner (processing) 1 0 0 2 1 0 0 2 0 0 0 0 0
R15 Processing 0 6 3 2 0 0 2 15 4 2 1 0 8
R16 Spinning 0 0 0 0 0 0 0 2 5 0 0 0 0
R17 Storage (long-term) 0 2 2 1 0 1 2 2 2 1 4 0 1
R18 Storage (short-term) 2 2 1 2 1 1 3 4 2 1 1 2 3
R19 Storage (other) 5 5 2 2 1 1 2 3 4 0 1 1 1
R20 Working 0 6 8 0 2 6 3 10 12 0 5 5 6

See some clustering?

6 / 28



Distances to configurations

Of course, we can just get a map of France to see how towns are
geographically related to each other.

However, suppose we did not have a map and we wanted to
construct one from the distance table.

Also, the distance table we have is road distances. This is di↵erent
to the distance of “how the crow flies” or the direct distance.

E.g. a city might only be reachable across a slow mountain road,
so its e↵ective road distance might me substantially greater than
the “direct” distance.

Also, we could form distances between huts for the Sicily data.
That is easy to do.

7 / 28



Distances to configurations

We could just use the Euclidean distance:
e2m,` =

Pp
v=1(Xm,v � X`,v )2, even on the Sicily data.

However, does the object absence/presence really lead to a
configuration that makes sense in a Euclidean space?

E.g. if one hut has 3 objects and another hut has 6 is that the
same contribution to distance as if it were 10 and 13??

We just don’t know.

Thinking of an appropriate distance measure is an important step
of the process of moving from distances, or more properly,
dissimilarities to configurations.

8 / 28



Configurations to Distances

Before we study methods that obtain configurations from
distances, let us remind ourselves of how we can calculate a
Euclidean distance from a configuration, X .

Or rather, how to get distances from coordinates.

We already wrote

em,` =
pX

v=1

(Xm,v � X`,v )
2, (1)

the squared Euclidean distance. Let E be the n ⇥ n matrix of
Euclidean distances (em,`).

9 / 28



Configurations to distances 2

Let’s rearrange this

em,` =
pX

v=1

(Xm,v � X`,v )
2 (2)

=
pX

v=1

Xm,vXm,v +
pX

v=1

X`,vX`,v � 2
pX

v=1

Xm,vX`,v (3)

= XT
(m)X(m) + XT

(`)X(`) � 2XT
(m)X(`), (4)

where XT
(m) is the mth row of X , a p-dimensional vector,

m, ` = 1, . . . , n.

Hence, distances are expressible in terms of inner products.

10 / 28



Inner Product Representation of Distances

First form the inner product matrix

B = XXT , (5)

which is an n ⇥ n matrix, where bm,` = XT
(m)X(`).

So, we can write the Euclidean distance as

em,` = bm,m + b`,` � 2bm,`, (6)

m, ` = 1, . . . , n.

11 / 28



Loss of Information (Rotation)

Let P be an orthogonal p ⇥ p matrix - geometrically, this
corresponds to a rotation in the p-dimensional space.

Then the inner product matrix formed from Y = XP is

BY = YY T = XP(XP)T = XPPTXT = XIpX
T = XXT = B .

(7)
So, X and a rotated version, Y , have exactly the same inner
product matrix.

Hence, on going from X to B we lose orientation information.

And, in fact, we often operate on the CENTRED X matrix.

12 / 28



Loss of Information (Position)

Suppose W(m) = X(m) � µ, where µ is an arbitrary p-vector.

Then

W T
(m)W(`) = XT

(m)X(`) � XT
(m)µ� µTX(`) + µTµ. (8)

Now form distances using W

e(W )
m,` = W T

(m)W(m) +W T
(`)W(`) � 2W T

(m)W(`) (9)

= XT
(m)X(m) � XT

(m)µ� µTX(m) + µTµ (10)

+XT
(`)X(`) � XT

(`)µ� µTX(`) + µTµ (11)

�2(XT
(m)X(`) � XT

(m)µ� µTX(`) + µTµ) (12)

= em,`. (13)

Hence, on going from B to E we lose position information.

13 / 28



Recovery of X from B from E : Choosing origin

On going from E to B we have to choose an origin (position):
might as well put the centroid of the data at the origin.

The p-dimensional mean vector, X̄ , associated with data matrix X

X̄ = n�11Tn X , (14)

where 1n is the n-vector consisting of ones.

Hence, we want the condition X̄ = 0 or 1Tn X = 0.

If 1Tn X = 0, then 0 = 1Tn XX
T = 1Tn B = 0, and

If 1Tn B = 0, then 0 = 1Tn XX
T =) 0 = 1Tn XX

T1n =)
1Tn X (1Tn X ) = 0 =) 1Tn X = 0.

Hence 1n is an eigenvector of BT with eigenvalue of 0.

14 / 28



Recovering B from E

Recall from (6)

em,` = bm,m + b`,` � 2bm,`. (15)

Summing over m gives us (e•,` =
Pn

m=1 em,`)

e•,` = b•,• + nb`,` � 2b•,`. (16)

Since 1 is an eigenvector of BT , it is also of B (due to
construction of B = XXT ), hence row and column sums of B are
zero. Hence, b•,` = bm,• = 0.

Hence,
e•,` = b•,• + nb`,`. (17)

15 / 28



Recovering B from E — 2

Similarly,
em,• = b•,• + nbm,m. (18)

Summing over m and n gives

e•,• = nb•,• + nb•,• = 2nb•,•. (19)

Now rearrange (6) to give

bm,` = �1
2(em,` � bm,m � b`,`), (20)

and using (17) and (18) we have

bm,` = �1
2 {em,` � (em,• � b•,•)/n � (e•,` � b•,•)/n} (21)

= �1
2(em,` � em,•

n � e•,`
n + 2b•,•

n ) (22)

= �1
2(em,` � em,•

n � e•,`
n + e•,•

n2 ). (23)

16 / 28



Recovering B from E — 3

bm,` = �1
2(em,` � em,•

n � e•,`
n + e•,•

n2 ) (24)

= �1
2(entry� row av.� col av. + grand av.), (25)

or in matrix terms

B = �1

2
(In � 11T/n)E (In � 11T/n), (26)

it’s an exercise to prove this and that 1n is an eigenvector of B
with eigenvalue 0.

17 / 28



Recovering X (or something like it) from B

Recall B is an n ⇥ n matrix.

Also B = XXT so aTBa = (aTX )(XTa) = (aTX )(aTX )T � 0, so
B is positive semi-definite and symmetric so we can form the
following eigendecomposition:

B =
nX

i=1

�ie
(i)e(i)T , (27)

where �1 � �2 � · · · � �n0 > 0 and �n0+1, . . . ,�n = 0 and {e(i)}
are the eigenvectors of B .

We know at least one of the eigenvalues is zero, with eigenvector 1.

This eigendecomposition is di↵erent to the one for XTX that we
had in the previous block.

18 / 28



Recovering X (or something like it) from B — 2

We define a new set of vectors

f (i) =
p
�ie

(i), (28)

for i = 1, . . . , n0. These are all n-vectors. And write Y as the
stacked matrix of these.

Yn⇥n0 =

0

BB@

...
... · · ·

...
f (1) f (2) · · · f (n

0)

...
... · · ·

...

1

CCA (29)

19 / 28



Recovering X (or something like it) from B — 3

Then

YY T =
n0X

i=1

f (i)f (i)T (30)

=
n0X

i=1

(
p
�ie

(i))(
p
�ie

(i)T ) (31)

=
n0X

i=1

�ie
(i)e(i)T (32)

=
nX

i=1

�ie
(i)e(i)T (33)

= XXT = B , (34)

since �n0+1, . . . ,�n = 0.

20 / 28



Recovering X (or something like it) from B — 4

Note that n0 = rank(B)  p.
Also, note that

(Y TY )n0⇥n0 = (f (j)
T
f (i)) =

p
�j

p
�ie

(j)T e(i) (35)

= diag(�1,�2, . . . ,�n0), (36)

as the eigenvectors e(i) and e(j) are orthonormal.

So, Y is already in principal axis form (i.e. the principal
components of Y are Y ).

21 / 28



Worked Numerical Example

Suppose we have four observations in three dimensions.

X =

0

BB@

3 1 4
1 2 1
2 3 2
4 3 2

1

CCA . (37)

The inner product matrix, B is:

XXT =

0

BB@

3 1 4
1 2 1
2 3 2
4 3 2

1

CCA

0

@
3 1 2 4
1 2 3 3
4 1 2 2

1

A =

0

BB@

26 9 17 23
9 6 10 12
17 10 17 21
23 12 21 29

1

CCA .

(38)
Clearly symmetric.

22 / 28



Getting E from B

Use (6): em,` = bm,m + b`,` � 2bm,`.

Diagonal: em,m = bm,m + bm,m � 2bm,m = 0.

E.g. e1,2 = b1,1 + b2,2 � 2b1,2 = 26 + 6� 18 = 14.

So

E = (em,`) =

0

BB@

0 14 9 9
14 0 3 11
9 3 0 4
9 11 4 0

1

CCA . (39)

Now imagine, we start with E and want to recover configuration.

23 / 28



Getting B 0
from E

Use (26)

B 0 = �1

2
(In � 11T/n)E (In � 11T/n), (40)

Note, B and B 0 might be di↵erent as B 0 assumes origin of data is
at 0, which might not be the case for X . So

B 0 = �1

2

8
>><

>>:

1

4

0

BB@

3 �1 �1 �1
�1 3 �1 �1
�1 �1 3 �1
�1 �1 �1 3

1

CCA

9
>>=

>>;
E

8
>><

>>:

1

4

0

BB@

3 �1 �1 �1
�1 3 �1 �1
�1 �1 3 �1
�1 �1 �1 3

1

CCA

9
>>=

>>;

= 1
8

0

BB@

39 �21 �13 �5
�21 31 7 �17
�13 7 7 �1
�5 �17 �1 23

1

CCA . (41)

This matrix B 0 is di↵erent to B

24 / 28



Computing B 0
from centred X

The mean vector of X is X̄ = (2.5, 2.25, 2.25)T .
If we subtract the mean o↵ every observation in X we get the
centred XC matrix:

XC = 1
4

0

BB@

2 �5 7
�6 �1 �5
�2 3 �1
6 3 �1

1

CCA , (42)

and

XCX
T
C = 1

8

0

BB@

39 �21 �13 �5
�21 31 7 �17
�13 7 7 �1
�5 �17 �1 23

1

CCA = B 0. (43)

25 / 28



Obtaining Y from B 0

Using R the eigendecomposition of B 0 is:

> eigen(Bprime)
eigen() decomposition
$values
[1] 7.711920e+00 4.306294e+00 4.817855e-01 -2.253617e-16

$vectors
[,1] [,2] [,3] [,4]

[1,] 0.6952353 0.5161676 0.01479546 -0.5
[2,] -0.6432941 0.3693135 0.44696789 -0.5
[3,] -0.2512168 -0.1224748 -0.81968899 -0.5
[4,] 0.1992756 -0.7630062 0.35792563 -0.5

Let �1 = 7.71,�2 = 4.31,�3 = 0.482,�4 = 0 (neglecting small
rounding error).

The last eigenvector is (multiple of) 1 with eigenvalue of �4 = 0.

26 / 28



Building f vectors

Clearly, n0 = 3.
So,

f (1)
T

=
p
7.71(0.695,�0.643,�0.251, 0.199) (44)

= (1.93,�1.78,�0.698, 0.553). (45)

Similarly

f (2)
T
= (1.07, 0.766,�0.254,�1.58), (46)

f (3)
T
= (0.01, 0.310,�0.569, 0.248). (47)

27 / 28



Recovered Data Matrix: Y

Y =

0

BB@

1.93 1.07 0.01
�1.78 0.766 0.310
�0.698 �0.254 �0.569
0.553 �1.58 0.248

1

CCA (48)

You can calculate that YY T = B 0 indeed.

And you get E from B 0.

So, Y is a configuration that is consistent with E (but it is not
unique, clearly any translated or rotated configuration will also do).

28 / 28



Elements of Statistical Learning: Lecture 7.
Classical Multidimensional Scaling

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2019 (revision 2). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 25



Classical Multidimensional Scaling

The method of obtaining from Y from E is variously called
classical multidimensional scaling, or metric multidimensional
scaling or principal coordinates analysis.

The earliest work was due to Torgerson (1958) and notable later
contributions have been from Kruskal, Gower and others.

It can be carried out in R using the cmdscale function.

Assume that frdist contains the French road distances data: a
symmetric matrix with zeroes on the diagonal.

2 / 25



French road distances example

# Convert distance matrix into distance object
frdistobj <- as.dist(frdist)

# Apply scaling. Initially choose n’ = 10
frscalesoln <- cmdscale(frdistobj, k=10, eig=TRUE)

# Here are the components of the compound object
names(frscalesoln)
[1] "points" "eig" "x" "ac" "GOF"

points is a 32⇥ 10 proposed configuration solution Y . Here we
chose n0 = 10, but really we need to look properly at the
eigenvalues in eig

3 / 25



The Eigenvalues

The first and last eigenvalues from frscalesoln$eig ⇥100000:

41.5, 19.1, 2.7, 1.6, 1.4, 0.9 . . .

. . . (20 values less than 0.5 magnitude) . . .

. . .� 0.5, � 0.7, �0.8, �1.05, �1.41, �2.47

Really only TWO big ones.

4 / 25



French road distances example: Eigenvalues
plot(1:32, frscalesoln$eig, xlab="Eigenvalue number",

ylab="Eigenvalue")
abline(h=0, lty=2)
abline(v=16, lty=2, col=2)

●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

0 5 10 15 20 25 30

0e
+0

0
1e

+0
6

2e
+0

6
3e

+0
6

4e
+0

6

Eigenvalue number

Ei
ge

nv
al

ue

5 / 25



French road distances example: Log Abs Eigen

the.eigs <- frscalesoln$eig
the.eigs[16] <- NA

plot(1:32, log(abs(the.eigs)), xlab="Eigenvalue number",
ylab="Log(Abs(Eigenvalue))", type="n")

points(1:15, log(abs(the.eigs[1:15])), col=1)
points(17:32, log(abs(the.eigs[17:32])), col=4)
abline(h=0, lty=2)
abline(v=16, lty=2, col=2)
arrows(x0=20, y0=13, x1=16, y1=13.5)
text(x=22, y=12.75, label="Zero eigenvalue")

legend(x="topright", col=c(1,4), pch=1,
legend=c("Positive", "Negative"))

6 / 25



Log Abs Eigen

0 5 10 15 20 25 30

6
8

10
12

14

Eigenvalue number

Lo
g(

Ab
s(

Ei
ge

nv
al

ue
))

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●

●

●

Zero eigenvalue

●

●

Positive
Negative

Apart from the first two, there are as many negative eigenvalues
that are roughly of the same magnitude as the positive ones.

7 / 25



Conclusions from Eigenvalue Plots

Two eigenvalues are significantly bigger than the rest.

There are a lot of negative eigenvalues — these correspond to the
non-Euclidean nature of the road distances.

Why non-Euclidean? Roads are strange — they do not always go
from A to B in the most direct way. There are often hills and
valleys or other natural features to avoid.

But, it looks like two-dimensions are roughly right to project this
data into. So, plot observations according to the first two columns
of Y , which are stored in the points component of frscalesoln.

Also examine 3rd dimension. Which towns have high values on this
dimension?

8 / 25



Plot of towns against first two scaling coordinates

−400 −200 0 200 400 600

−4
00

−2
00

0
20
0

40
0

Y[,1]

Y[
,2
]

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUXBREST

CALAIS

CHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES

ROUEN
ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

Doesn’t look like map of France? Orientation? Where is origin?

9 / 25



Better oriented plot

−400 −200 0 200 400

−6
00

−4
00

−2
00

0
20
0

40
0

−Y[,2]

−Y
[,1
]

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST
CALAISCHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

10 / 25



Map of France

11 / 25



Superimposed true cities and recovered

Plot map of true locations of cities, then superimpose our
configuration.

library("maps")
map(’france’, type="n")
map.cities(x=world.cities, country="France", minpop=100000,

label=TRUE)
text(-frscalesoln$points[,2]/140+2.3,

-frscalesoln$points[,1]/140+47,
labels=dimnames(frdist)[[1]], cex=0.7, col=2)

legend(x="topleft", legend=c("True", "Recovered"),
col=1:2, lty=c(1,1))

Note, the addition of 2.3 and 47 are roughly the longitude and
latitude of France and that, with the scaling of /140 changes the
position and scale of the cities onto the France map. However, this
is not perfect, and we’ll see a better way of doing this later.

12 / 25



Superimposed true cities and recovered

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 Aix−en−Provence

 Amiens

 Angers

 Argenteuil

 Besancon

 Bordeaux

 Boulogne−Billancourt

 Brest

 Caen

 Clermont−Ferrand

 Dijon

 Grenoble

 Le Havre

 Le Mans

 Lille

 Limoges  Lyon

 Marseille

 Metz

 Montpellier

 Mulhouse

 Nancy

 Nantes

 Nice Nimes

 Orleans

 Perpignan

 Reims

 Rennes

 Rouen

 Saint−Etienne

 Strasbourg

 Toulon

 Toulouse

 Tours

 Villeurbanne

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST
CALAISCHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

True
Recovered

13 / 25



Values of third dimension for each town

−200 −100 0 100

0
5

10
15

20
25

30

Value of Third Dimension of Y

Fa
ls

e 
H

ei
gh

t (
us

ed
 to

 s
ep

ar
at

e 
te

xt
 o

nl
y)

BREST
PERPIGNAN

STRASBOURG
GRENOBLE

NANCY
LYON

CHERBOURG
RENNES
MONTPELLIER

DIJON
NANTES

BESANCON
ANGERS

TOURS
LIMOGES
CLERMONTFD

LEMANS
ST.ETIENNE

REIMS
NIMES

BORDEAUX
ROUEN

TOULON
NICE

LEHAVRE
PARIS

AMIENS
MARSEILLE

LILLE
TOULOUSE

BIARRITZ
CALAIS

14 / 25



Third dimension against location

−600 −400 −200 0 200 400 600

−5
00

0
50
0

−Y[,2]

−Y
[,1
]

●

●

●

●

●

●

●

●

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST
CALAISCHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

15 / 25



Symmetry
To form the spectral decomposition of B it needs to be symmetric.

If E is symmetric, then so is B .

However, sometimes E is not symmetric. For example, in the
French road distances example there were cases of the distance
from A to B, was not the same as B to A!

This might have been due to

I an error, e.g. printed, or in the data collection.

I a genuine di↵erence.

Non-symmetric distances (dissimilarities) often occur. E.g. a
one-way system in a city; temporary speed restrictions in one
direction of a two-way railway line, etc.

To use classical scaling, E must be symmetrised.

16 / 25



Classical Scaling in Practice: Ideal

●

●

● ● ● ● ● ●

1 2 3 4 5 6 7 8

0
2

4
6

8

Eigenvalue number

Ei
ge

nv
al

ue

17 / 25



Classical Scaling in Practice: Usual

●

●

●
●

●

●
●

●

●

2 4 6 8

0
2

4
6

8

Eigenvalue number

Ei
ge

nv
al

ue

Euclidean error

Non−Euclidean error
Exact Zero

18 / 25



What does classical scaling give us?

1. Method to recover Y configuration from E .

2. A test for Euclidean-ness.

3. A method for estimating dimensionality.

19 / 25



Summary of Classical Scaling Procedure

1. Form/obtain E , matrix of squared distances.

2. Form B from E (ensure symmetric).

3. Write B =
P

i �
(i)e(i)e(i)T , where

�1 � �2 � · · · � �n0 > 0 = �n0+1 � �n0+2 � · · · � �n.

Choose breakpoint n00  n0 and form f (1), . . . , f (n
00) and Y

associated matrix of these stacked vectors.

20 / 25



Choice of Breakpoint

1. n00 = 2. Often used in practice, as it is then easy to draw and
visualise.

2. Look for a large drop in the values of the eigenvalues (and
choose n00 to be the number of the eigenvalue immediately
before the drop).

3. Trace method. Look at the cumulative sum of the �s. Choose
n00 so that

n00X

i=1

�i ⇡ tr(B).

This is based on the idea that the non-Euclidean error is junk.

4. Magnitude criterion: reject any �i which is not > |�n|.

21 / 25



Sicily Classical Scaling

sicily.eucdist <- dist(t(sicily))
sicily.euccs <- cmdscale(sicily.eucdist, k=5, eig=TRUE)

# Plot eigenvalues
plot(1:13, sicily.euccs$eig,
, xlab="Eigenvalue number", ylab="Eigenvalue")

# Plot cumulative sum, divided by sumx100
plot(1:13, pvarexp(sicily.euccs$eig), ylim=c(0, 100),

xlab="Eigenvalue number",
ylab="Cumulative Sum/Sum of Eigenvalue")

# Where
pvarexp <- function(x)
{
100*cumsum(x)/sum(x)
}

22 / 25



Sicily Eigenvalues

●

●

●

● ●

●
●

● ● ● ● ● ●

2 4 6 8 10 12

0
10

0
20

0
30

0

Eigenvalue number

Ei
ge

nv
al

ue

23 / 25



Sicily Cumulative/Sum Eigenvalues

●

●

●

●

●
●

● ● ● ● ● ● ●

2 4 6 8 10 12

0
20

40
60

80
10

0

Eigenvalue number

C
um

ul
at

ive
 S

um
/S

um
 o

f E
ig

en
va

lu
e

24 / 25



Sicily Two-dimensional Configuration

−15 −10 −5 0 5

−1
5

−1
0

−5
0

5

Y[,1]

Y[
,2
]

C1
C2

C3

C4

C5

C6

C8

C9

C10

C11

C16C18

C20

Configuration is ‘almost’ one dimensional. In archeology this sometimes

happens and the major dimension can align with time (from older huts to

newer ones) — although the scaling solution does not tell you the

direction of time, other information might help with that.

25 / 25



Elements of Statistical Learning: Lecture 8.
Distances + Dissimilaries + Non-metric Scaling

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2023 (revision 3). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 30



Being More Flexible

Often, we clearly don’t have Euclidean configurations in Rn.

Instead of numbers, we might have attributes.

E.g. in a biological application we might have

flower colour 2 {red, yellow, blue}.
petal number 2 {0, 1, 2, . . .}.
chromosome number

plant size 2 {small ,medium, large}.
Rather than distances, we work with dissimilarities.

We now outline some possibilities.

2 / 30



Hamming distance

Given two objects, their Hamming distance is number of times that
they disagree on those attributes.

E.g. suppose objects are described by binary strings, each bit
corresponding to an attribute,

x :01001011010

y :10101101110

Hamming distance is often using in information and
communication theory.

3 / 30



Hamming Distance by Table

We can write it in tabular form as

Bits Sent
1 0

Bits 1 a b
Received 0 c d

The number of mismatches is h(x , y) = b + c .

4 / 30



Properties of a Good Dissimilarity

We usually want a dissimilarity d to satisfy the following definition
of a metric:

1. d(x , y) � 0 and d(x , y) = 0 if x = y (and sometimes ‘only if’,
but not always. E.g. imagine two plants, of di↵erent species,
but have the same attribute set).

2. d(x , y) = d(y , x) — but not always true, e.g. one way tra�c
systems.

3. d(x , y) + d(y , z) � d(x , z) — triangle inequality: maybe,
maybe not.

Lemma: If {d↵}↵2A is a family of metrics, then
P

↵2A d↵ is a
metric.
Proof: Exercise.

5 / 30



Hamming distance is a metric
Suppose we deal with strings of length n. Let

di (x , y) =

(
0 if xi = yi ,

1 otherwise,
where xi , yi is the ith digit of the

strings x and y , respectively.

Then, di (x , y) is a metric because (i) di (x , y) � 0, clearly; (ii) if
x = y , then xi = yi and di (x , y) = 0 and for the triangle inequality,
we can construct a table with 8 rows:

xi yi zi di (x , y) di (y , z) Sum di (x , z)
0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 1 2 0
0 1 1 1 0 1 1
1 0 0 1 0 1 1
1 0 1 1 1 2 0
1 1 0 0 1 1 1
1 1 1 0 0 0 0

6 / 30



Hamming Distance is a Metric

So, the quantity di (·, ·) is a metric.

The Hamming distance d(x , y) =
Pn

i=1 di (x , y) is therefore also a
metric by the lemma.

Let’s slightly reformulate the table we had earlier. Here, a is the
number of times object x and y both have an attribute, similarly
b, c , d :

Attribute x

Yes No

Attribute y
Yes a b

No c d

and a, b, c , d � 0.

7 / 30



Other Similarity/Dissimilarity measures

The simple matching coe�cient between objects x and y is

a+ d

a+ b + c + d
, (1)

This is a similarity and due to Sneath.

The Jaccard distance is given by

dJ(x , y) =
b + c

a+ b + c
. (2)

This is subtly di↵erent on the denominator and useful for, e.g.
archaeological studies, or other studies where you don’t care about
the absence of something in both objects/locations.

E.g. don’t care if two ancient sites are both missing Apple iPhones!

8 / 30



Is Jaccard distance a metric?

Clearly, dJ(x , y) � 0.

Also, dJ(x , y) = 0 is attributes match exactly.

Also, dJ(x , y) = dJ(y , x) (exchange b, c in formula makes no
di↵erence).

What about the triangle inequality?

9 / 30



Jaccard Triangle Assistance Lemma

Let r , s, t � 0 and r  s.

Lemma: r/s  (r + t)/(s + t).

Proof: Since r  s, we have 0  w = r/s  1. Hence:

w
t

s
 t

s
(3)

=) w + w
t

s
 w +

t

s
(4)

=) w(1 + t/s)  w +
t

s
(5)

=) w  w + t/s

1 + t/s
(6)

=) r/s  (r + t)/(s + t). (7)

10 / 30



Triangle Inequality for Jaccard distance

Nb: letters a, b, c are di↵erent from those above!

11 / 30



Proof of Jaccard distance is metric

Let W = (X \ Y ) [ (Y \ Z ) [ (X \ Z ).

Now dJ(X ,W ) = (x + a)/(x + a+ b + c +m), and

dJ(Z ,W ) = (z + c)/(z + a+ b + c +m).

Then

dJ(X ,W ) + dJ(Z ,W ) � (x + a+ z + c)/(x + z + a+ b + c +m)

= dJ(X ,Z )

see by splitting sum in two and that denominator gets addition of
z and x , respectively.

12 / 30



Proof of Jaccard distance is metric — 2

Now

dJ(X ,W ) = (x + a)/(x + a+ b + c +m)

 (x + a+ b)/(x + a+ b + c +m)

 (x + a+ b + y)/(x + y + a+ b + c +m)

= dJ(X ,Y ),

the last step uses the Assistance Lemma.

Similarly, dJ(Z ,W )  dJ(Z ,Y ).

Hence dJ(X ,Y ) + dJ(Y ,Z ) � dJ(X ,W ) + dJ(Z ,W ) � dJ(X ,Z ),
which shows Jaccard distance satisfies the triangle inequality
(proof due to K. Moody).

13 / 30



Some Other Dissimilarities

Maximum this is the L1 norm.

Manhattan Distance or ‘city-block’ as it is the distance you cover
when walking in a regular block city-scape from point A to point
B. If you have two points, x , u in p dimensions it can be written
|x1 � u1|+ |x2 � u2|+ · · ·+ |xp � up|. It is also the L1 metric.

Canberra distance similar to Manhattan, but weighted, e.g.Pp
q=1

|xq�uq |
|xq |+|uq | . (The authors Lance and Williams worked in

Canberra, Australia: I think that is the origin of the name.)

14 / 30



Gower’s similarity coe�cient

Gower’s similarity coe�cient between objects i , j is

Si ,j =
Pp

q=1 wi,j,qSi,j,qPp
q=1 wi,j,q

, where wi ,j ,q quantifies your confidence in

variable q.

Si ,j ,q is the similarity between i , j on variable q.

If variable q is ordinal or continuous then
Si ,j ,q = 1� |xi ,q � xj ,q|/rq, where rq is the range of values on the
qth variable.

If variable q is nominal then Si ,j ,q = 1 if xi ,q = xj ,q or 0 otherwise.

15 / 30



Gower’s similarity coe�cient — 2

For binary q we have this table:

Case i Case j Si ,j ,q wi ,j ,q

Value of attribute q

+ + 1 1
+ � 0 1
� + 0 1
� � 0 0

Reminiscent of the Jaccard coe�cient, and, in fact, if all variables
are binary, then Gower’s coe�cient (1-similarity) is Jaccard.

Gower’s similarity coe�cient is extremely useful for mixed variables.

16 / 30



Ordinal or Non-metric or Shepard-Kruskal Scaling

Essential for when dissimilarities are not Euclidean. In this case we
will

observe a set of dissimilarites �m,`, which are not necessarily
Euclidean distances.

postulate a set of distances, dm,`, which result in some
configuration that we’ve “invented”

17 / 30



Non-metric scaling: Basic procedure

Essentially, create a ‘reasonable’ configuration from the
dissimilarities {�m,`}m,`: the created configuration is X which has
a set of distances: {dm,`}m,`.

We then compute the stress function (or penalty function) that
measures the degree of agreement of {�m,`}m,` with {dm,`}m,`.

We then minimise the stress over all possible configurations.

Di�culty: One cannot do anything (e.g. arithmetic) on the �s, but
we would like a di↵erentiable stress function.

18 / 30



Measuring the closeness of dissimilarities to distances

We start by creating a configuration of n points X in K dimensions
(and have to choose K , more later).

The (Euclidean) distances between each point are dm,`.

We create a set of fitted distances d̂m,` from the dm,` by

computing a monotone linear regression fit, where the d̂m,` are in
the same order as the ordered dissimilarities �m,` of the points.

Both d and d̂ depend on the coordinates in the configuration X ,
but the d̂ are a kind of proxy for the �s.

Temporarily, to ease notation. We rename {dm,`} to be yi for

i = 1, . . . , I and rename {d̂m,`} to be zi , i = 1, . . . , I .

19 / 30



Monotone Linear Regression

Given observations {yi}Ii=1 the task is to minimise
PI

i=1(yi � zi )2,
the residual sum of squares of {yi} about {zi} where we minimize
over z1  z2  · · ·  zI .

There are various strategies to find the best {zi}Ii=1 set.

The Miles Algorithm carries out the following steps:

1. Write down the yi s in singleton blocks.

2. Scanning from left to right, unite any two blocks where there
is not a strict increase from left to right (uniting means
forming the mean of all elements in both blocks, merging the
blocks, keeping the same number of entries, but each entry
replaced by the mean).

3. Keep checking until all boundaries are satisfied.

20 / 30



Miles Algorithm Example
Suppose the yi are 2, 1, 17, 62, 7, 13, 4, 25, 9, which correspond
one-to-one to a set of zi in increasing order.

Write them down in singleton blocks

| 2 | 1 | 17 | 62 | 7 | 13 | 4 | 25 | 9

Now search for first occurrence of non-strict-increasing

| 2 | 1 | 17 | 62 | 7 | 13 | 4 | 25 | 9

Unite these two (2 + 1)/2 = 3/2 = 1.5 gives

| 1.5 1.5 | 17 | 62 | 7 | 13 | 4 | 25 | 9

Now look for others

| 1.5 1.5 | 17 | 62 | 7 | 13 | 4 | 25 | 9

21 / 30



Miles Algorithm Example — 2

Unite these blocks. Mean of 62 and 7 is (62 + 7)/2 = 34.5, other
two means are 8.5 and 17

| 1.5 1.5 | 17 | 34.5 34.5 | 8.5 8.5 | 17 17

Next scan, gives

| 1.5 1.5 | 17 | 34.5 34.5 | 8.5 8.5 | 17 17

Unite: (34.5 + 34.5 + 8.5 + 8.5)/4 = 86/4 = 21.5 and next scan

| 1.5 1.5 | 17 | 21.5 21.5 21.5 21.5 | 17 17

Mean of two blocks is (21.5⇥ 4 + 17⇥ 2)/6 = 20 gives

| 1.5 1.5 | 17 | 20 20 20 20 20 20

22 / 30



Notes on Miles Algorithm

The algorithm must terminate because:

1. The number of blocks decreases at each step, or algorithm
stops.

2. If algorithm continues, it must eventually stop when we are
left with one single block with all elements in.

At the end, we obtain a monotone sequence which consists of a set
of blocks containing constant values, with a strict increase from
block to block.

The function we obtain is piecewise constant.

This algorithm gives us the optimum (but we won’t prove it).

There are variants, which are more e�cient

23 / 30



Young’s boundary search algorithm (optional - for GN)

Recursive from left.

Given monotone regression on 1, . . . , i , append value at i + 1 and
check back to left until we need unite no more.

Starting blocks:

| 2 | 1 | 17 | 62 | 7 | 13 | 4 | 25 | 9

Then
| 1.5 1.5 | 17

O.k., don’t need to unite:

| 1.5 1.5 | 17 | 62

O.k., don’t need to unite:

24 / 30



Young’s boundary search algorithm — 2

| 1.5 1.5 | 17 | 62 | 7

We do need to unite (62 + 7)/2 = 69/2 = 34.5 gives

| 1.5 1.5 | 17 | 34.5 34.5 | 13

We do need to unite (69 + 13)/3 = 82/3 = 271
3 gives

| 1.5 1.5 | 17 | 271
3 271

3 271
3 | 4

We do need to unite (82 + 4)/4 = 86/4 = 21.5 gives

| 1.5 1.5 | 17 | 21.5 21.5 21.5 21.5 | 25

O.k., don’t need to unite:

25 / 30



Young’s boundary search algorithm — 3

| 1.5 1.5 | 17 | 21.5 21.5 21.5 21.5 | 25 | 9

We do need to unite (25 + 9)/2 = 34/2 = 17 gives

| 1.5 1.5 | 17 | 21.5 21.5 21.5 21.5 | 17 17

Unite last boundary (21.5⇥ 4 + 17⇥ 2)/6 = 120/6 = 20 gives

| 1.5 1.5 | 17 | 20 20 20 20 20 20 ,

which gives same answer as before.

There are other variants (due to Kruskal and another by Sibson)
where you grow the sequence alternately right and left, starting at
the left most, or that plus you keep going once you’re winning!

26 / 30



The Stress function

Given a configuration and a set of dissimilarities {�m,`} we can
form the distances {dm,`} and the least squares monotone

regression fit, {d̂m,`} to the d using �s.

Let S⇤ =
P

m<`(dm,` � d̂m,`)2 be the residual sum of squares from
the least squares monotone regression.

Let T ⇤ =
P

m<` d
2
m,`.

Then the stress function S is given by

S(X ) =
p

S⇤/T ⇤. (8)

Note that S depends on the configuration X , as both S
⇤,T ⇤ do,

because both dm,` and d̂m,` do also.

27 / 30



“Created” Configuration and Optimisation

We choose a configuration X , i.e. coordinates for n points in K

dimensions (and we have to choose K ).

Hence, S is a function of NK variables (although a few degrees of
freedom are lost as creation of d loses orientation and position
information AND S is scale invariant (division by T

⇤).

Initial Configuration: Could start with a random configuration.
E.g. all entries of X have random independent uniform distribution
on [0, 1] (or anything really).

Optimisation: huge subject, all by itself. We can evaluate S ,rS

with respect to all xi ,k and use an iterative hill-descending
algorithm to search for the optimum. However, S is usually highly
non-quadratic and so easily gets stuck in local minima.

28 / 30



Initial Configurations

(i) Kruskal suggested an ‘L’-shaped configuration.

(ii) Random starts (as above), but often repeat the procedure each
time on a set of random start configurations to see if they all end
up at the same place.

(iii) ‘high to low’ strategy: e.g. 6 ! 4 ! 2. Start with K = 6
dimensions; Iterate to Optimality. Then project this solution to 4
principal directions (e.g. using principal components). Take this
and iterate to optimality. Then project the 4-dimensional solution
to 2 principal directions. Then iterate to optimality.

(iv) Start from the classical scaling solution — useful for avoiding
local optima. However, this does involve giving dissimilarities
numerical values somehow.

29 / 30



Choice of (Final Dimensionality)

1. K = 1 does not work! S ALWAYS gets stuck in local optima
— this is because points “can’t push through one another on
the line”

2. Often a good idea to have K larger than 1, than you
eventually want

3. traditionally look for ‘elbows’ on an optimal stress versus
dimension graph (e.g. 3D ‘true’ configuration gives high stress
in K = 1 or K = 2, but low stress in K = 3.

4. interpretability: humans can easily visualise K = 3, K = 2
useful for paper graphics. 1D might be useful for seriation
problems, where you are interested in the one dimension of
time.

30 / 30



Elements of Statistical Learning: Lecture 9.

Stress and Stretching

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2021 (revision 3). This material is copyright of the Collegeg unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 30



Di↵erentiation of the Stress

Recall configuration Xn⇥K and stress S =
p

S⇤/T ⇤, where

S⇤ =
P

m<`(dm,` � d̂m,`)2 and T ⇤ =
P

m<` d
2
m,`.

So

@S

@xi ,k
=

1

2S

(
T ⇤ @S⇤

@xi,k
� S⇤ @T⇤

@xi,k

(T ⇤)2

)
(1)

=
S

2

⇢
1

S⇤
@S⇤

@xi ,k
� 1

T ⇤
@T ⇤

@xi ,k

�
. (2)

Here: m, ` correspond to objects/individuals: range 1, . . . , n and

k corresponds to a dimension of the proposed config: k = 1, . . . ,K
and i corresponds to an individual, i = 1, . . . , n.

2 / 30



Derivative of T ⇤

Now
@T ⇤

@xi ,k
=
X

m<`

@d2
m,`

@xi ,k
, (3)

where

d2
m,` =

KX

p=1

(xm,p � x`,p)
2. (4)

So
@d2

m,`

@xi ,k
= 2(xm,k � x`,k)

⇢
@xm,k

@xi ,k
�

@x`,k
@xi ,k

�
. (5)

Note:
@xm,k

@xi,k
= 0 unless m = i and

@x`,k
@xi,k

= 0 unless ` = i . So

@T ⇤

@xi ,k
= 2

X

m<`

(xm,k � x`,k)

⇢
@xm,k

@xi ,k
�

@x`,k
@xi ,k

�
. (6)

3 / 30



Derivative of S⇤.

Examine

@(dm,` � d̂m,`)2

@xi ,k
= 2(dm,` � d̂m,`)

 
@dm,`

@xi ,k
�

@d̂m,`

@xi ,k

!
. (7)

Note that
@d2

m,`

@xi ,k
= 2dm,`

@dm,`

@xi ,k
, (8)

so

@dm,`

@xi ,k
=

1

2dm,`

@d2
m,`

@xi ,k
(9)

=
1

2dm,`
· 2(xm,k � x`,k)

⇢
@xm,k

@xi ,k
�

@x`,k
@xi ,k

�
, (10)

from (5).

4 / 30



Derivative of S⇤ continued

What about
@d̂m,`

@xi,k
? Fortunately, we don’t have to work it out.

Why? Well, we can write the derivative of S⇤ as

@S⇤

@xi ,k
=
X

m<`

2(dm,` � d̂m,`)
@dm,`

@xi ,k
�
X

m<`

2(dm,` � d̂m,`)
@d̂m,`

@xi ,k
(11)

Let’s examine the second part of this and write the sum over m, `
as over ‘blocks’ and ‘sum within blocks’ in the least squares
monotone regression, i.e.

X

blocks

X

within blocks

2(dm,` � d̂m,`)
@d̂m,`

@xi ,k
(12)

Within a block d̂m,` is constant, so we can take
@d̂m,`

@xi,k
out of the

inner sum, leaving

5 / 30



Derivative of S⇤ continued — 2, and then S

X

within blocks

2(dm,` � d̂m,`), (13)

but d̂m,` is the average in a block of the ‘within block values’ so
this sum is zero. Hence, all of the second term is zero, so we don’t

need to work out
@d̂m,`

@xi,k
.

Hence, putting it all together from (2), (6), (11)

@S

@xi ,k
=

S

2

⇢
1

S⇤
@S⇤

@xi ,k
� 1

T ⇤
@T ⇤

@xi ,k

�
(14)

=
S

2

"
1

S⇤

(
X

m<`

2(dm,` � d̂m,`)
@dm,`

@xi ,k

)
(15)

� 2

T ⇤

(
X

m<`

(xm,k � x`,k)

✓
@xm,k

@xi ,k
�

@x`,k
@xi ,k

◆)#
(16)

6 / 30



Notes on Stress Derivative

S is exactly once continuously di↵erentiable (e.g. so perhaps not
useful to look + use second derivative in optimisation algorithm).

Given the complexity of S , and its computation via least squares
monotone regression, it’s kind of remarkable that it is once
continuously di↵erentiable, and hence provides very useful
information to optimisers.

7 / 30



France road distances using ordinal scaling

frisosoln <- isoMDS(d=frdistobj)
# Plot plots BOTH solutions superimposed!

−400 −200 0 200 400

−6
00

−4
00

−2
00

0
20
0

40
0

−Y[,2]

−Y
[,1
]

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST
CALAISCHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST
CALAISCHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

8 / 30



France road distances using ordinal scaling — random start

frisosoln.random1 <- isoMDS(d=frdistobj,
y=matrix(runif(64), nrow=32, ncol=2))

The next plot plots the original scaling solution and superimposes
the random start obtained configuration in red.

However, the red solution has been ‘blown up’ by a factor of 25

−400 −200 0 200 400

−6
00

−4
00

−2
00

0
20
0

40
0

−Y[,2]

−Y
[,1
]

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST
CALAISCHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

AMIENS

ANGERS

BESANCON

BIARRITZ BORDEAUX

BREST CALAIS

CHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES
ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

See next page for bigger version.
9 / 30



France road distances using ordinal scaling — random start

−400 −200 0 200 400

−6
00

−4
00

−2
00

0
20
0

40
0

−Y[,2]

−Y
[,1
]

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST
CALAISCHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

AMIENS

ANGERS

BESANCON

BIARRITZ BORDEAUX

BREST CALAIS

CHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES
ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

10 / 30



Sicily: ordinal scaling on ‘Euclidean’ distances

> sicily.eusiso <- isoMDS(sicily.eucdist)
initial value 14.635084
iter 5 value 8.217162
iter 10 value 6.790808
final value 6.758704
converged

The isoMDS function prints out the stress value as it changes every
five iterations.

There is a significant reduction in stress, so we’d expect the scaling
solution to be di↵erent.
alim <- c(-15, 9)
oldpar <- par(pty="s")
plot(sicily.euccs$points[,1], sicily.euccs$points[,2], type="n",

xlim=alim, ylim=alim, xlab="Y[,1]", ylab="Y[,2]")
text(sicily.euccs$points[,1], sicily.euccs$points[,2],

lab=dimnames(sicily)[[2]])
text(sicily.eusiso$points[,1], sicily.eusiso$points[,2],

lab=dimnames(sicily)[[2]], col=2)
par(oldpar)

11 / 30



Sicily: classical scaling solution and ordinal from classical

−15 −10 −5 0 5

−1
5

−1
0

−5
0

5

Y[,1]

Y[
,2
]

C1
C2

C3

C4

C5

C6

C8

C9

C10

C11

C16C18

C20

C1
C2

C3

C4
C5

C6

C8

C9

C10

C11

C16
C18

C20

12 / 30



Sicily: using a di↵erent distance measure

Let’s use the binary method for computing distances.

Although the Sicily entries are not zero/ones, the binary method
computes Jaccard.

> sicily.bindist <- dist(t(sicily),method="binary")
> sicily.biniso <- isoMDS(sicily.bindist)
initial value 18.890930
iter 5 value 13.354798
final value 13.099448
converged

Again, stress is considerably reduced, so ordinal scaling is changing
the configuration.

In fact, configuration is quite di↵erent. Probably need some way of
matching configurations as origin & orientation are di↵erent.

13 / 30



Sicily: classical+ordinal solutions and ordinal from binary

−15 −10 −5 0 5

−1
5

−1
0

−5
0

5

Y[,1]

Y[
,2
]

C1
C2

C3

C4

C5

C6

C8

C9

C10

C11

C16C18

C20

C1
C2

C3

C4
C5

C6

C8

C9

C10

C11

C16
C18

C20

C1

C2
C3

C4

C5

C6

C8

C9
C10

C11

C16

C18
C20

14 / 30



Missing Distances: great practical importance

The isoMDS() and ordinal scaling can cope with missing distances.

That is, if you don’t know, or can’t work out, the dissimilarity
between two objects then you can put NA into the distance matrix.

It won’t work with a high proportion of missing observations (e.g.
90% is doubtful).

It also won’t work if the missingness is highly concentrated on one
object (e.g. if all the distances to an object are NA, then that
object cannot be placed).

You can also put in 1 dissimilarities (but we won’t use this here).

Missing distances are just omitted from the stress calculation.

15 / 30



French Road Distances: code for missing example

fig.frmissing <- function (no=1)
{
# Establish basic parameters
nrnc <- nrow(frdist)
nvals <- nrnc^2

# Generate initial config and oMDS soln using
# full distances
set.seed(101)
init.config <- matrix(runif(nrnc*2), nrow=nrnc, ncol=2)
friso0soln <- isoMDS(as.matrix(frdist), y=init.config)

# Plot "full" answer
plot(friso0soln$points[,1], -friso0soln$points[,2],

xlab="-Y[,2]", ylab="-Y[,1]", type="n")
text(friso0soln$points[,1], -friso0soln$points[,2],

labels=dimnames(frdist)[[1]], cex=0.7, col=1)
...

16 / 30



French code example — 2

...
if (no==0)

return()

# Turn distance matrix into vector
frdistvec <- as.vector(as.matrix(frdist))

# Introduce 5% missing vals, and turn back to matrix
na.ix <- sample(1:nvals, size=0.05*nvals)
frdistvec5 <- frdistvec
frdistvec5[na.ix] <- NA
frdist5 <- matrix(frdistvec5, nrow=nrnc, ncol=nrnc)

friso5soln <- isoMDS(as.matrix(frdist5), y=init.config)

text(friso5soln$points[,1], -friso5soln$points[,2],
labels=dimnames(frdist)[[1]], cex=0.7, col=2)
...

17 / 30



French code example — 3

...
if (no==1)

return()

# Introduce 20% missing vals, and turn back to matrix
na.ix <- sample(1:nvals, size=0.2*nvals)
frdistvec20 <- frdistvec
frdistvec20[na.ix] <- NA
frdist20 <- matrix(frdistvec20, nrow=nrnc, ncol=nrnc)

friso20soln <- isoMDS(as.matrix(frdist20), y=init.config)

text(friso20soln$points[,1], -friso20soln$points[,2],
labels=dimnames(frdist)[[1]], cex=0.7, col=3)

}

18 / 30



French Road Distances: ordinal scaling random start

−5 0 5

−1
0

−5
0

5

−Y[,2]

−Y
[,1
]

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST
CALAISCHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES
ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

19 / 30



Continued: ordinal scaling random start + 5% missing

−5 0 5

−1
0

−5
0

5

−Y[,2]

−Y
[,1
]

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST
CALAISCHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES
ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST

CALAIS
CHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE
MONTPELLIER

NANCY
NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMSRENNES

ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

20 / 30



Continued: ordinal scaling random start + 5, 20% missing

−5 0 5

−1
0

−5
0

5

−Y[,2]

−Y
[,1
]

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST
CALAISCHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE

MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES
ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST

CALAIS
CHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE
MONTPELLIER

NANCY
NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMSRENNES

ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

AMIENS

ANGERS

BESANCON

BIARRITZ

BORDEAUX

BREST

CALAIS

CHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES

LYON

MARSEILLE
MONTPELLIER

NANCY

NANTES

NICE
NIMES

PARIS

PERPIGNAN

REIMS

RENNES

ROUEN

ST.ETIENNE

STRASBOURG

TOULONTOULOUSE

TOURS

21 / 30



k-means clustering

Here, suppose we have a n ⇥ p configuration X .

Suppose we want to divide the n observations into k clusters.

A k-means clustering solution is one where the k cluster means are
defined as being the mean of all points in the cluster and a point is
in cluster j = 1, . . . , k if and only if it is closer to the jth cluster
mean than any other cluster mean.

Note: choice of k is crucial to the success of the algorithm, and its
often di�cult to know what it should be.

22 / 30



k-means algorithm

Start with an initial set of k (p-dimensional) mean vectors

m(1)
1 , . . . ,m(1)

k . Each step s consists of:

Assignment: assign each observation Xi to the cluster whose mean
has the least squared Euclidean distance. This means forming k

clusters, C (s)
j , at step s, where

C (s)
j = {Xi : ||Xi �m(s)

j ||2  ||Xi �m(s)
r ||2, for all r = 1, . . . , k}.

(17)
Update: calculate new means from observations in the new

clusters:

m(s+1)
j =

���C (s)
j

���
�1 X

Xi2C
(s)
j

Xi . (18)

Then, iterate until clusters remain the same.

23 / 30



Six-dimensional beetle data (n = 74)

library("PP3")
data(beetle)
plot(beetle[,1], beetle[,2], xlab="Beetle Variable 1",

ylab="Beetle Variable 2")

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

120 140 160 180 200 220 240

11
0

12
0

13
0

14
0

Beetle Variable 1

Be
et

le
 V

ar
ia

bl
e 

2

24 / 30



k-means example on beetle data

beet3 <- kmeans(x=beetle, centers=3, nstart=100)
plot(beetle[,1], beetle[,2], type="n")
text(beetle[,1], beetle[,2], col=beet3$cluster, lab=beet3$cluster)

120 140 160 180 200 220 240

11
0

12
0

13
0

14
0

beetle[, 1]

be
et

le
[, 

2]

1

1

1

1

12

1

1
1

2

1

1
1

1

1
1

1
1

1

1

1

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3
3

3

3
3

3

3

3

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2
2

2

2

2

2

2

25 / 30



Beetle k-means + superimposing true clustering

120 140 160 180 200 220 240

11
0

12
0

13
0

14
0

beetle[, 1]

be
et

le
[, 

2]

3

3

3

3

32

3

3

3

2

3

3
3

3

3
3

3
3

3

3

3

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1

1
1

1

1

1

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2
2

2

2

2

2

2

3

3

3

3

33

3

3
3

3

3

3
3

3

3
3

3
3

3

3

3

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1

1
1

1

1

1

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2
2

2

2

2

2

2

26 / 30



Self-organising maps (SOM, simple version)

Think of as constrained version of k-means clustering or type of
artificial neural network. Apparently, method is modelled on how
sensory information is handled in parts of the brain.

SOM with a two-dimensional rectangular grid of k prototypes.

Prototypes are akin to cluster means as being representative of the
cluster values.

Often, prototype are parametrized according to an integer
coordinate pair `j 2 Q1 ⇥Q2.

Where Q1 = {1, . . . q1} and similarly Q2 and k = q1q2.

Here X , the configuration, is thought of as the training data.

27 / 30



Algorithm (basic)

The observations are processed sequentially Xi .

We find the closest prototype to Xi , call it mj .

Find the closest neighbours, m` of mj , move neighbours mk ,
including the closest mj toward Xi via the update:

mk  mk + ↵(Xi �mk), (19)

where ↵ is called the learning rate and neighbours are determined
by any points that are closer than a distance r — these parameters
control the evolution of the algorithm.

The map then evolves to match the configuration, and then the
data get projected down into the map into the “bins” defined by
the prototypes.

28 / 30



Simple SOM example

library("kohonen")
plot(som(beetle, somgrid(5,5, "rectangular")), type="codes")

Codes plot

29 / 30



Summary

Scaling is a method for turning distances or dissimilarities into
‘recovered’ configurations.

It comes in two types: classical and ordinal.

k-means clustering and self-organising maps work on
configurations, but use distance information to form groups and
clusters.

The common link is distance/dissimilarity and the performance of
any algorithm will depend on what dissimilarity you use and/or
things like choice of K and, for SOM, ↵ and r .

30 / 30



Elements of Statistical Learning: Lecture 10.

Procrustes Analysis

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2023 (revision 4). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 30



Procrustes

Procrustes comes from Greek myth and he is the son of Poseidon
(god of the sea, storms, earthquakes and horses).

The myth tells of how Procrustes would invite travellers to spend
the night on his special bed.

If the traveller was too tall, Procrustes would cut some of the
traveller o↵, so that they would fit the bed.

If the traveller was too small, Procrustes would stretch the
traveller on the bed until they fitted.

The traveller usually died. Ewww.

Procrustes was eventually killed by the Greek hero Theseus, who
killed him on his own bed.

2 / 30



Procrustes Analysis

How do we compare scaling methods?

Or di↵erent configurations obtained from di↵erent data sets, or
dissimilarities (e.g. Sicily on Eucidean or binary)?

Suppose we have two configurations X and Y , both described by
n ⇥ K matrices.

Recall that our scaling reconstructions are unique up to position
and orientation (and also scale, e.g. if we’re using dissimilarities
and there is no obvious natural scale provided).

We want to move Y to be as close as possible to X and then see
how close the resemblance is.

3 / 30



Measures of Closeness and How to Make Them Closer

Given X ,Y we measure their closeness using

G (X ,Y ) =
KX

k=1

nX

i=1

(Xi ,k � Yi ,k)
2. (1)

We want to minimise G under the following group actions:
translation group, Euclidean group (rotation, reflections, fixed
scale) and similarity group (similar shape).

It turns out that the best way to do this is sequentially

1. match first under translation

2. then under rotation/reflection

3. then under scale change.

4 / 30



Translation Step

Let X̄k = n�1Pn
i=1 Xi ,k , Ȳk = n�1Pn

i=1 Yi ,k .
Write

G (X ,Y ) =
X

i ,k

(Xi ,k � X̄k + X̄k � Ȳk + Ȳk � Yi ,k)
2 (2)

=
X

i ,k

(Xi ,k � X̄k)
2 +

X

i ,k

(Yi ,k � Ȳk)
2 (3)

+
X

i ,k

(X̄k � Ȳk)
2 + two X terms (4)

+2
X

i ,k

(Xi ,k � X̄k)(Yi ,k � Ȳk). (5)

Term
P

i ,k(Xi ,k � X̄k)2 does not depend on Y .

5 / 30



Translation Step — 2

Term
P

i ,k(Yi ,k � Ȳk)2 does not change if we shift Y by a fixed
vector. The same is true for term (5).
The other two ’X terms’ are of the form

X

i ,k

(Xi ,k � X̄k)(X̄k � Ȳk) =
X

k

(X̄k � Ȳk)
nX

i=1

(Xi ,k � X̄k) (6)

And
Pn

i=1 Xi ,k = nX̄k , which is also the value of the second term.
So (6) is zero and so is the other cross term.

So, to minimize G (X ,Y ) we have to choose Ȳk = X̄k , i.e. match
the centroids of the two configurations.

6 / 30



Rotation Step: notation reminder

Remember some basic things about inner products and norms.

Given two matrices A,B the Frobenius inner product is

< A,B >F=
X

i ,j

Āi ,jBi ,j = tr(ĀTB), (7)

however here we will only considered real-valued matrices so drop
the complex conjugate (bar). The Frobenius norm is

||A||2F =< A,A >F . (8)

7 / 30



Putting our problem into norm form

Suppose we have two configurations X and A = YP , where P is a
rotation matrix.

Then

G (X ,A) =
X

i ,k

(Xi ,k � Ai ,k)
2 =

X

i ,k

(Xi ,k � Ai ,k)(Xi ,k � Ai ,k)(9)

= tr
n
(X � A)T (X � A)

o
(10)

= ||X � A||2F . (11)

We thus want to minimise ||X � YP ||2F over all orthogonal rotation
matrices P to find the P⇤ the minimises it.

8 / 30



Solving the problem

We have

P⇤ = argmin
P

||YP � X ||2F (12)

= argmin
P

< YP � X ,YP � X >F (13)

= argmin
P

< YP ,YP >F + < X ,X >F �2 < YP ,X >F ,

and < YP ,YP >F = tr(PTY TYP) = tr(PPTY TY ) =
tr(IY TY ) = tr(Y TY ) and doesn’t depend on P , by properties of
the trace operator.

Hence, P⇤ = argmaxP < P ,Y TX >F (again, by properties of
trace, if you like).

9 / 30



Solving the problem — 2

Let U⌃V T be the singular value decomposition of Y TX . Then

P⇤ = argmax
P

< P ,U⌃V T >F (14)

= argmax
P

< UTPV ,⌃ >F (15)

= argmax
P

< S ,⌃ >F , (16)

where S = UTPV is an orthogonal matrix as U,P and V are.

Now < S ,⌃ >F=
P

i ,j Si ,j⌃i ,j , but ⌃ is diagonal with
non-negative entries,so ⌃i ,j = 0 for i 6= j , so

< S ,⌃ >F=
X

i ,i

Si ,i⌃i ,i . (17)

10 / 30



Solving the problem — 3

Since S is orthogonal all its entries are bounded in magnitude by 1.
So, the biggest any Si ,i can be is 1 and when all the diagonals are
1, all the other entries must be zero. So, to maximize (16) S must
be the identity.

So, the maximising S = I and this means I = UTPV and hence
the maximising P = UV T .

11 / 30



Procrustes Distance

The Procrustes distance is the minimised distance, when P = P⇤.

I.e.

||YP⇤ � X ||2F = < YP⇤,YP⇤ >F + < X ,X >F �2 < YP⇤,X >F

= < Y ,Y >F + < X ,X >F �2 < P⇤,Y TX >F(18)

= ||Y ||2F + ||X ||2F � 2 < P⇤,U⌃V T >F (19)

= ||Y ||2F + ||X ||2F � 2 < UV T ,U⌃V T >F (20)

= ||Y ||2F + ||X ||2F � 2 < V T ,UTU⌃V T >F (21)

= ||Y ||2F + ||X ||2F � 2 < V TV ,⌃ >F (22)

= ||Y ||2F + ||X ||2F � 2 < I ,⌃ >F , (23)

and < I ,⌃ >= tr(IT⌃) = tr(⌃) =
P

i ⌃i ,i .

Explore P = (Y TX )(XTYY TX )�1/2.

12 / 30



Procrustes Scale Change

We minimize

G (X ,↵Y ) =
X

i ,k

(Xi ,k � ↵Yi ,k)
2 (24)

=
X

i ,k

X 2
i ,k � 2↵

X

i ,k

Xi ,kYi ,k + ↵2
X

i ,k

Y 2
i ,k (25)

= a↵2 + b↵+ c , (26)

where a =
P

i ,k Y
2
i ,k , b = �2

P
i ,k Xi ,kYi ,k , c =

P
i ,k X

2
i ,k .

Minimise with respect to ↵, di↵erentiate and set to zero

@G

@↵
G (X ,↵Y ) = 2a↵+ b = 0, (27)

and a > 0, so we have minimum at ↵ = �b/2a, so set
↵⇤ =

P
i ,k Xi ,kYi ,k/

P
i ,k Y

2
i ,k .

13 / 30



Purpose of Procrustes analysis

1. assessing the performance of scaling methods (e.g. finding the
distribution of Gmin when the distances are perturbed by
normal distribution. So, that we can assess the uncertainty
around scaling solutions, or rather the Procrustes distance)

2. comparing di↵erent configurations produced by scaling (e.g.
to compare scaling methods)

3. compare the results of di↵erent testers. E.g. if a number of
people taste wine, each person’s taste scores can be turned
into their individual distance matrix (one per person). Each
one of these is turned into a scaling configuration and
Procrustes can be used to match them. See, e.g. Filipe-Ribeiro,

L. et al. (2017) Data on changes in red wine phenolic compounds

. . . , Data in Brief, 12,188–202. (see Generalised version, below).

4. matching natural specimens to identify and classify species.

14 / 30



Procrustes in Paleo-biology

https://www.palass.org/publications/newsletter/palaeomath-101/
palaeomath-part-16-who-procrustes-and-what-has-he-done-my-data

15 / 30



Procrustes in Paleo-biology

16 / 30



Procrustes in R

We use the Procrustes() function in the smacof package.

In the following, object frcity has the latitude and longitude of
the French cities in columns two and three.

library("smacof")

X <- cbind(as.numeric(frcity[,2]), as.numeric(frcity[,3]))

Y <- cbind(frscalesoln$points[,1], frscalesoln$points[,2])

fr.procr <- Procrustes(X=X, Y=Y)

frcitynames <- frcity[,1]

plot(X[,2], X[,1], type="n", xlim=c(-5.1, 8.8),

ylim=c(41.5,51.5))

text(X[,2], X[,1], lab=frcitynames, cex=0.7)

text(fr.procr$Yhat[,2], fr.procr$Yhat[,1], lab=frcitynames,

cex=0.7, col=2)

17 / 30



Procustes of scaling solution to true locations

−4 −2 0 2 4 6 8

42
44

46
48

50

X[, 2]

X[
, 1

]
AMIENS

ANGERS
BESANCON

BIARRITZ

BORDEAUX

BREST

CALAIS

CHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES LYON

MARSEILLE
MONTPELLIER

NANCY

NANTES

NICENIMES

PARIS

PERPIGNAN

REIMS

RENNES

ROUEN

ST.ETIENNE

STRASBOURG

TOULON

TOULOUSE

TOURS

AMIENS

ANGERS BESANCON

BIARRITZ

BORDEAUX

BREST

CALAIS

CHERBOURG

CLERMONTFD

DIJON

GRENOBLE

LEHAVRE

LEMANS

LILLE

LIMOGES LYON

MARSEILLE
MONTPELLIER

NANCY

NANTES

NICE

NIMES

PARIS

PERPIGNAN

REIMS

RENNES

ROUEN

ST.ETIENNE

STRASBOURG

TOULONTOULOUSE

TOURS

18 / 30



Notes: Procrustes match of cmdscale solution to truth

Some towns are far away from their true positions, e.g. Brest,
Perpignan, Strasbourg, Toulouse.
These are further from the centre and in, perhaps, slightly harder
to get to locations with roads that have to cope with trickier
natural features (hills, mountains, lakes).

Cities nearer the middle of the country seem to be fairly
well-placed, e.g. Limoges, Tours, Le Mans, Angers.

The value of the return from the Procrustes() function gives the
following extra useful information. The optimum scale factor

↵ = 0.009. The optimum rotation matrix

✓
�0.848 �0.529
�0.529 �0.848

◆
and

the optimum translation vector (46.774, 2.472) — the latter is the
centroid of the latitudes and longitudes of the 32 cities.

19 / 30



Sicily: classical & ordinal scaling (p 12 from Lecture 9)

−15 −10 −5 0 5

−1
5

−1
0

−5
0

5

Y[,1]

Y[
,2
]

C1
C2

C3

C4

C5

C6

C8

C9

C10

C11

C16C18

C20

C1
C2

C3

C4
C5

C6

C8

C9

C10

C11

C16
C18

C20

20 / 30



Sicily: same configs but aligned using Procrustes

−15 −10 −5 0 5

−1
5

−1
0

−5
0

5

Y[,1]

Y[
,2
]

C1
C2

C3

C4

C5

C6

C8

C9

C10

C11

C16C18

C20

C1C2

C3

C4
C5

C6

C8

C9

C10

C11

C16
C18

C20

21 / 30



Generalized Procrustes Analysis

Sometimes we obtain several configurations and we wish to find an
average of them.

E.g. we may have many reference points on several trilobites and
we wish to work out the average of them.

Generalised Procrustes Analysis takes a set of configurations
X1, . . . ,XL, all of dimension n ⇥ p and returns a configuration
average of the same order.

Define S{X`}L`=1
({R`}L`=1,M) =

PL
`=1 ||X`R` �M||2F ,we wish to

solve
min

{R`}L`=1,M
S{X`}L`=1

({R`}L`=1,M), (28)

i.e. find the M that is closest in average squared Procrustes
distance to all the shapes.

22 / 30



Generalised Procrustes Analysis algorithm

The generalised Procrustes average can be obtained by

1. choose an arbitrary configuration, Xi , say, and set M = Xi ;

2. use Procrustes analysis to match all configurations (apart
from Xi if this is the first loop) to M — call the matched
configurations Y1, . . . ,YL (and Yi = Xi on the first loop) and
the matching matrices {R`}L`=1.

3. compute the mean shape of all the matched configurations:
M  L�1PL

i=1 Yi .

4. compute S{X`}L`=1
({R`}L`=1,M) and see if it has converged, if

not, then go to 2.

23 / 30



Generalised Procrustes Analysis: Suresh signature

from Hastie, Tibshirani and Friedman book, page 541.

24 / 30



Using Generalised Procrustes Analysis in R

Data from the Namib desert:

(image from conservationinstitute.org).

25 / 30



Using Generalised Procrustes Analysis in R — 2

Using data from the provenance package in R: 14 sand samples
from Namib Sand Sea and two from Orange River (southern
Africa).

library("provenance")
data(Namib)
Namib$DZ[[3]]$T1 # One location T1

[1] 268.0 1051.2 1741.0 522.2 1152.5 1288.8 558.4 1072.4 530.7 475.5
[11] 641.3 1084.0 531.4 848.1 768.4 925.5 535.0 765.7 1196.4 1326.6
[21] 1077.0 518.4 1077.0 566.8 1016.3 532.2 513.9 1631.4 1021.2 1222.9
[31] 560.1 590.4 549.8 1966.0 1056.4 1066.4 1052.1 891.7 521.0 1268.8
[41] 960.2 3148.4 558.4 1061.2 510.1 1097.6 673.8 509.2 1650.3 1038.6
[51] 502.3 1231.0 1049.6 1048.4 1891.0 521.4 1157.4 921.9 986.5 1106.3
[61] 850.9 1097.1 283.2 2731.0 1094.1 978.5 1785.6 1098.3 1069.8 581.9
[71] 506.9 1066.8 526.1 537.8 477.9 1145.1 2128.8 512.4 1192.5 590.5
[81] 1099.5 1836.4 662.9 997.0 1881.5 528.4 898.8 637.5 260.0 1267.9
[91] 553.2 2759.3 276.2 525.7 1166.5 1046.0 1305.5 1097.6 930.5 542.6

[101] 409.4 703.6 521.0 1906.7 1002.5 1215.5

26 / 30



Using Generalised Procrustes Analysis in R — 3

Heavy minerals at locations, N14, N13, etc, minerals zirconium,
tourmaline, rutile, etc.

> Namib$HM[[2]]
zr tm rt TiOx sph ap ep gt st and ky sil amp cpx opx

N14 0 0 1 1 0 1 5 8 0 0 0 0 18 162 6
N13 2 1 2 4 3 4 47 13 0 0 0 0 20 121 4
N12 3 0 0 1 0 1 5 3 0 0 0 0 8 184 5
N11 1 0 2 0 0 0 7 27 1 0 0 0 11 158 1
N10 2 0 0 0 4 0 16 28 2 0 1 0 34 126 0
N9 10 2 0 0 9 0 26 80 2 0 0 0 18 56 0
N8 5 0 0 0 2 0 23 46 1 0 0 1 11 113 0
N7 4 0 1 0 0 0 12 19 0 1 0 0 10 155 1
N6 3 1 2 1 2 0 11 12 1 0 0 0 31 139 3
N5 1 2 2 5 12 2 91 43 5 2 0 0 32 10 1
N4 0 2 4 1 4 0 59 54 0 1 0 0 19 54 2
N3 1 0 0 1 1 0 9 21 1 0 0 0 10 157 1
N2 0 0 1 0 3 1 11 18 1 0 0 1 3 170 1
N1 1 1 0 0 0 1 10 24 2 0 0 0 1 163 1
T8 0 1 0 0 2 0 7 1 0 0 0 0 25 162 2
T13 2 0 1 0 0 2 11 1 0 0 0 0 24 154 4

27 / 30



Using Generalised Procrustes Analysis in R — 4

Configurations formed from these quite di↵erent data sets via
distances.

Then matched using Procrustes.

library("provenance")

data(Namib)

GPA <- procrustes(Namib$DZ,Namib$HM)

coast <- c(’N1’,’N2’,’N3’,’N10’,’N11’,’N12’,’T8’,’T13’)

snames <- names(Namib$DZ)

bgcol <- rep(’yellow’,length(snames))

bgcol[which(snames %in% coast)] <- ’red’

plot(GPA,pch=21,bg=bgcol)

28 / 30



Using Generalised Procrustes Analysis in R — 5

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●
●

−0.05 0.00 0.05 0.10

−0
.1

0
−0

.0
5

0.
00

x$points[, 1]

x$
po

in
ts

[, 
2]

N1

N2

N3 N4

N5

N6
N7N8

N9

N10

N11

N12
N13N14

T8T13

29 / 30



Summary

In this lecture we covered:

Procrustes formulation

Three steps: translation, rotation and scaling and how to do it

Procrustes in R with smacof package on French road distances
and Sicily data

Generalised Procrustes Analysis problem specification

Examples of Generalised Procrustes Analysis Suresh’s signature
and the Namib desert data.

30 / 30



Elements of Statistical Learning: Lecture 11.
Basis Expansions (Splines)

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2023 (revision 4). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 34



Diverging from linear functions

So far, in regression, we’ve looked at linear representations.

I.e. the function f (X ) = E(Y |X ) is a linear function of X .

In the simple linear regression, it was

f (X ) = E(Y |X ) = a+ bX . (1)

Reasons why linear can be good:

I the data, and diagnostics, indicate that linear is good fit;

I you don’t have much data, e.g. n small and you can’t do
much more complicated;

I you need something simple, either to communicate or
automate, and the fit is tolerable for the purposes you need.

Otherwise, if the data suggest the function is bendy or has
discontinuities, we will need something else, more flexible.

2 / 34



New idea for flexibility + better fit

Idea is we replace the vector of inputs X with additional variables,
which are transformations of X , and then use linear models
involving these new inputs.

As ESL denote by hm(X ) : Rp
! R the mth transformation of X ,

m = 1, . . . ,M.Then model

f (X ) =
MX

m=1

�mhm(X ), (2)

which is a linear basis expansion in X .

The advantage of this approach is that, once the {hm} have been
fixed, the models are still linear in {�m}, so we can use all the
fitting tools from before.

3 / 34



Some examples of useful and popular hms

hm(X ) = Xm, m = 1, . . . , p is the original linear model.

hm(X ) = X
2
j or hm(X ) = XjXk creates additional inputs that

model polynomial terms, which can be used to approximate to
higher orders. However, note that the number of variables grows
exponentially in the degree of the polynomial. A full quadratic
model of p variables requires O(p2) square and cross-product
terms, or, more generally, O(pd) for a degree d polynomial.

hm(X ) = log(Xj),
p
Xj ,X

�1
j , sin(Xj), . . .. Functions can involve

more than one input, e.g. hm(X ) = ||X ||.We already used this in
the previous lecture.

hm(X ) = I(Lm  Xk  Um), an indicator for the region [Lm,Um],
results in a piecewise constant model.

4 / 34



Why are global polynomials not very useful

Getting global polynomials to fit parts of the data can result in
unwieldy behaviour in other parts. It’s hard to get it all right.

Experience has shown that it is better to deal with ‘chunks’ of data
‘reasonably disconnected’ to other chunks.

We’ll look at families of piecewise polynomials, splines and
wavelets.

However, these families tend to have MANY flexible members, far
too many to fit all of them.

The member sets are often called dictionaries. Or dictionaries can
be sets of bases.

5 / 34



Complexity Control

We need some way of controlling the number/style of our model.

This is called controlling the complexity. Three main types

Restriction methods: where we limit the class of functions a priori.
For example, we could insist on additive models of the form

f (X ) =
pX

j=1

fj(Xj) (3)

=
pX

j=1

MjX

m=1

�j ,mhj ,m(Xj). (4)

The size of the model is limited by the Mj for component
j = 1, . . . , p.

6 / 34



Complexity Control — 2

Selection methods: which continually look at the dictionary and
put in members (basis functions) that improve the fit or remove
those which are not contributing. For example, variable selection
methods such as forward stepwise.

Regularization methods: where the whole dictionary is included,
but the coe�cients are restricted - e.g. ridge regression or the lasso.

We’ll assume one dimension from now on, but more
dimensions/variables can be handled.

7 / 34



Piecewise polynomial

A piecewise constant polynomial might be

h1(X ) = I(X < ⇠1), h2(X ) = I(⇠1  X < ⇠2), h3(X ) = I(⇠2  X ),
(5)

since they’re constant over disjoint regions, the best least squares
fit assigns the mean over each region to the coe�cient.

E.g. if f (X ) =
P3

m=1 �mhm(X ) then �̂ = Ȳm, where Ȳm is the
mean of the Y values in the mth region.

This fit can be seen in the top-left panel of the figure on the next
page

8 / 34



Piecewise polynomial

9 / 34



Piecewise linear

The top-right panel displays a piecewise linear fit. We need three
additional basis functions hm+3(X ) = hm(X )X , m = 1, 2, 3.

So, the polynomial on the first part will be �1 + x�4,and on the
second one �2 + x�5.

Often, we prefer the bottom right panel, which is also piecewise
linear, but it is forced to be continuous at the two knots ⇠1, ⇠2.

The constraint forces a kind of smoothness or, at least, regularity
onto the fitted curve.

This means that f (⇠�1 ) = f (⇠+1 ) =) �1 + ⇠1�4 = �2 + ⇠1�5

And have to have similar constraint at ⇠2.

10 / 34



Continuous piecewise linear

For the continuous piecewise linear we start with six free
parameters �1, . . . ,�6, or six degrees of freedom.

The two constraints mean we lose two degrees of freedom. So, the
piecewise continuous linear system has 6� 2 = 4 degrees of
freedom.

Alternatively, we can build the constraints directly into the basis
functions, e.g.

h1(X ) = 1, h2(X ) = X , h3(X ) = (X�⇠1)+, h4(X ) = (X�⇠2)+,
(6)

where t+ is the positive part of t.

E.g., so having h4 means that it only e↵ects the linear bit on the
last region, but does not e↵ect the earlier regions.

11 / 34



Piecewise cubic polynomials
Similar to piecewise linear, but we have a cubic on each piece.
Where we have continuity and continuity of first and second
derivatives the total function is called a cubic spline.

A basis represents any of these (on these regions):

h1(X ) = 1, h3(X ) = X
2, h5(X ) = (X � ⇠1)

3
+, (7)

h2(X ) = X , h4(X ) = X
3, h6(X ) = (X � ⇠2)

3
+. (8)

Why six?

Each cubic has four parameters a+ bx + cx
2 + dx

3 and there are
three regions: so 4⇥ 3 = 12 in total.

At each knot: three constraints: for continuity, 1st and 2nd deriv.

There are two knots, so total constraints takes away 2⇥ 3 = 6
degrees of freedom. So, total number of degrees of freedom is
12� 6 = 6.

12 / 34



Remarks on piecewise splines

Cubic splines are (meant to be) the lowest order spline for which
the knot-discontinuity is not visible to the human eye

With fixed knots, these are known as regression splines.

You need to select the order of the spline (e.g. cubic), the number
of knots and their placement.

There are many alternative bases doing the same thing.

A natural cubic spline is a cubic spline where the pieces at the two
end regions are linear, not cubic. This releases four degrees of
freedom (for the quad. and cubic bits, at each end) to put more
knots in the middle.

13 / 34



Natural Cubic Spline basis

A natural cubic spline with K knots is represented by K basis
functions, given by (see ELS-(5.4))

N1(X ) = 1, N2(X ) = X , Nk+2(X ) = dk(X )� dK�1(X ), (9)

where

dk(X ) =
(X � ⇠k)3+ � (X � ⇠K )3+

⇠K � ⇠k
. (10)

for k = 1, . . . ,K � 2.

Read §5.1, §5.2, §5.3 of ELS.

14 / 34



Smoothing Splines

Widely used. Easy to use Nice functions in R. Don’t have to select
knots — uses maximal set. Complexity is controlled by
regularization.

Given a set of data (xi , yi )ni=1.

Consider the following. Let F be the set of all functions with two
continuous derivatives.

Find f 2 F that minimises the following penalised residual sum of
squares:

RSS(f ,�) =
nX

i=1

{yi � f (xi )}
2 + �

Z
{f

00(t)}2dt, (11)

where � is a fixed smoothing parameter.

15 / 34



Smoothing splines (explanation)

The first term
Pn

i=1{yi � f (xi )}2 measures the fidelity or goodness
of fit of the model, f (xi ) to the data yi .

The second term,
R
{f

00(t)}2dt penalizes curvature.

E.g. if f (x) is constant or linear then the penalty is zero.

The � value controls the tradeo↵ between the two aspects.

Two special cases are:

� = 0: f 2 F can be any function that interpolates the data

� = 1: the simple least squares line fit, as no second
derivative/curvature is allowed.

We can models f from very rough to very smooth by changing �.

16 / 34



Motorcycle Data

Data set called mcycle in the MASS library.

Gives a series of 133 measurements of head acceleration in a
simulated motorcycle accident, used to test crash helmets.

Is a data frame with two variables:

times time in milliseconds after impact

accel, in g , of the head

From: Silverman, B.W. (1985) Some aspects of the spline smoothing

approach to non-parametric curve fitting. Journal of the Royal Statistical

Society, Series B, 47, 1–52.

17 / 34



Motorcycle Data

10 20 30 40 50

−1
00

−5
0

0
50

Time (ms)

Ac
ce

le
ra

tio
n 

(g
)

18 / 34



Code for 4 smooth.spline fits to motorcycle data

library("MASS")
data(mcycle)

oldpar <- par(mfrow=c(2,2)) # Set up 2x2 plots

lvec <- c(1e-14, 0.0001, 0.001, 5) # Set up lambda

# Do four plots
for(i in 1:4) {

plot(mcycle$times, mcycle$accel, xlab="Time (ms)",
ylab="Acceleration (g)", col="grey",
main=paste("lambda=", lvec[i]))

ss <- smooth.spline(x=mcycle$times, y=mcycle$accel,
lambda=lvec[i], all.knots=TRUE)

lines(ss$x, ss$y, col=2)
}
par(oldpar) # Restore plot settings

19 / 34



Four smooth.spline fits to the motorcycle data

10 20 30 40 50

−1
00

−5
0

0
50

lambda= 1e−14

Time (ms)

Ac
ce

le
ra

tio
n 

(g
)

10 20 30 40 50

−1
00

−5
0

0
50

lambda= 1e−04

Time (ms)

Ac
ce

le
ra

tio
n 

(g
)

10 20 30 40 50

−1
00

−5
0

0
50

lambda= 0.001

Time (ms)

Ac
ce

le
ra

tio
n 

(g
)

10 20 30 40 50

−1
00

−5
0

0
50

lambda= 5

Time (ms)

Ac
ce

le
ra

tio
n 

(g
)

20 / 34



Interpolating for � = 0?

In the top-left plot of the previous page, the fit does not seem to
interpolate.

Why not?

This is because there is sometimes more than one yi for each xi .

For example, both (55.0,�2.7) and (55.0, 10.7) exist

The spline then interpolates the mean (�2.7 + 10.7)/2 = 8/2 = 4.

The argument all .knots = TRUE uses all of the data points as
knots.

21 / 34



Results about the solution

The space F is infinite dimensional (actually a Sobolev space).

It can be shown that (11) has an explicit finite-dimensional unique
minimizer, which is a natural cubic spline, with knots at the unique
values of xi

See, e.g.

https://www.cs.utexas.edu/users/cline/CS383D/
ReinschSmoothing.pdf

or the paper by Reinsch therein, which uses calculus of variations.

It might seem that the problem is over-parametrised, since we have
n knots =) n parameters, but the penalty shrinks them.

22 / 34



Understanding the smoothing spline

As the solution is a natural spline, we can write it as

f (x) =
nX

j=1

Nj(x)✓j , (12)

where Nj(x) are an n-dimensional set of basis functions for
representing this family of natural splines.

Hence, the criterion to optimise reduces to

RSS(✓,�) = (y � N✓)T (y � N✓) + �✓T⌦n✓, (13)

where the matrix {N}i ,j = Nj(xi ), and

23 / 34



Understanding the smoothing spline — 2

Z
{f

00(t)}2dt =

Z
8
<

:

nX

j=1

N
00
j (t)✓j

9
=

;

2

dt (14)

=

Z nX

j=1

N
00
j (t)✓j

nX

i=1

N
00
i (t)✓i dt (15)

=
nX

j=1

nX

i=1

✓i✓j

Z
N

00
i (t)N

00
j (t) dt (16)

=
nX

j=1

nX

i=1

✓i✓j(⌦n)i ,j (17)

=
nX

j=1

✓j

nX

i=1

✓i (⌦n)i ,j = ✓T⌦n✓. (18)

24 / 34



Understanding the smoothing spline — 3

And

(⌦n)i ,j =

Z
N

00
i (t)N

00
j (t) dt. (19)

The criterion

RSS(✓,�) = (y � N✓)T (y � N✓) + �✓T⌦n✓, (20)

is similar that of reparametrised ridge regression with solution

✓̂ = (NT
N + �⌦n)

�1
N

T
y . (21)

(see exercises). The fitted smoothing spline is then

f̂ (x) =
nX

j=1

Nj(x)✓̂j , (22)

and f̂ is the vector of fitted values.

25 / 34



Choosing �

Clearly, � is crucial to the performance.

If � is prechosen and fixed, then the smoothing spline is a linear

smoother because the estimated parameters, ✓̂ are then linear
combinations of the yi .

Then:
f̂ = N(NT

N + �⌦n)
�1

N
T
y = S�y , (23)

where S� is called the smoother matrix.

Note: S� does not depend on y , just x and �.

S� has similarities to the hat matrix we defined in Lecture 2 and
worked out an e↵ective degrees of freedom in Lecture 3 as
df = tr(H�).

26 / 34



E↵ective degrees of freedom
We can do the same here with S� and call the e↵ective degrees of

freedom of a smoothing spline to be

df� = tr(S�). (24)

For the motorcycle data:

� 10�14 0.0001 0.001 5
df� 94.00 12.54 7.55 2.05

So, for � = 5 penalty is ‘essentially infinite’ so have straight line
with slope parameter and intercept parameter, so two degrees of
freedom. Why 94.00 and not 133? Well,
length(unique(mcycle$times))is 94 (actually software reports
93.99996.).
See Green, P.J. and Silverman, B.W. (1994) Nonparametric regression and Generalized Linear Models: a roughness

penalty approach. CRC Press, section 3.3.4 on page 37. Chapter 2 and 3 describe in great detail the construction

of splines and the smoothing spline (but the detail is beyond the scope of this course).

27 / 34



Understanding the smoothing spline — 4

We can write the smoother matrix in Reinsch form:

S� = (I + �K )�1, (25)

where K does not depend on �.

Since f̂ = S�y solves

min
f
(y � f )T (y � f ) + �f TKf , (26)

K is known as the penalty matrix.

S� is symmetric and positive semi-definite (see exercises).

28 / 34



Understanding the smoothing spline — 5

The eigendecomposition of S� is

S� =
nX

k=1

⇢k(�)uku
T
k , (27)

where uk are the eigenvectors and ⇢k(�) are its eigenvalues and it
can be shown that

⇢k(�) =
1

1 + �dk
, (28)

where dk is the corresponding eigenvalue from K .

Looks like a shrinkage operation.

29 / 34



Facts about smoothing spline

1. The eigenvectors are not a↵ected by �, the whole family of
smoothing splines (for a particular x) indexed by � have the same
eigenvectors.

2. S�y =
Pn

k=1 uk⇢k(�) < uk , y >. So, the smoothing spline
operation decomposes y into the basis u and then shrinks the
components by ⇢k(�) (whereas selection does 0-1).

3. See other facts at the end of §5.5 of ELS.

30 / 34



Automatic choosing of �

One method is to use ‘leave one out cross-validation’.

Goal is to make f̂� as close as possible to f (x).

E.g. minimise E
R n

f̂�(x)� f (x)
o2

dx

�
= MISE.

But we don’t know f (x), as that’s what we’re trying to obtain.

Define f̂
(�i)
� to be the smoothing spline estimator for f constructed

without the ith point.

So, estimate MISE by CV(f̂�) =
Pn

i=1

n
yi � f̂

(�i)
� (xi )

o2
.

I.e. yi proxy for f (x) and f̂
(�i)
� (xi ) proxy for f̂�(x).

31 / 34



Automatic choosing of � — 2

It turns out that

CV(f̂�) = n
�1

nX

i=1

(
yi � f̂�(xi )

1� S�(i , i)

)2

, (29)

which can be computed for each value of � from the original fitted
values and the diagonal elements S�(i , i), don’t have to compute

each f̂
(�i)
� .

See Christensen, R. (2010) Plane Answers to Complex Questions.

Springer, New York — Proposition 13.5.5 to get general idea.

32 / 34



Equivalent Kernels

33 / 34



Summary

This lecture covered the following topics

Alternatives to linearity

Piecewise polynomial: linear + cubic

Constraints, knots and splines

Smoothing splines

Smoothing spline is like ridge regression, shrinkage

Choosing smoothing parameter and cross-validation

Equivalent Kernels

34 / 34



Elements of Statistical Learning: Lecture 12.
Kernel Smoothing

Guy Nason
1

Department of Mathematics
Imperial College

1©Imperial College 2023 (revision 5). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 32



Kernel Smoothing
Kernel smoothing refers to a wide range of techniques for doing

density estimation and nonparametric regression.

The estimators from kernel smoothing are then often used in

further analyses, such as classification, discrimination or just plain

visualising.

Some good books on kernel smoothing (in case you’re interested):

Wand, M.P. and Jones, M.C. (1994) Kernel Smoothing, Chapman

and Hall, Boca Raton.

Silverman, B.W. (1986) Density Estimation for Statistics and Data
Analysis, Chapman and Hall, Boca Raton.

Note: the kernel methods here are di↵erent to the ones used in

machine learning, such as those used by support vector machines.

2 / 32



Density Estimation — the problem

Suppose we have a set of data X1, . . . ,Xn which is an IID sample

from probability density f (x).

Here, we suppose Xi 2 R, but sometimes we have higher

dimensional data.

We don’t know f (x).

Problem: we observe X1, . . . ,Xn and we wish to estimate f (x).

The simplest method — the histogram — is something that we’re

surely all seen and been taught from a reasonably young age.

3 / 32



The histogram

However, the histogram su↵ers from several problems:

I the heights of bars depend quite drastically on the width of

the bins. You can sometimes get a quite di↵erent looking

histogram, just by changing the bar width.

I bars can be of di↵erent widths, which makes interpretation

sometimes hard

I the histogram generally produces an estimator with

discontinuities — this is not satisfactory if the true density

f (x) is smooth.

4 / 32



Kernels for kernel density estimation

We define the kernel function K : R ! R which satisfies:

K (x) � 0, for all x

R
R K (x) = 1.

Usually: K (�x) = K (x), i.e. K is symmetric and often we choose

K to be smooth.

A key point is that WE choose the kernel.

5 / 32



Kernel Density Estimator

The kernel density estimator for X1, . . . ,Xn, with kernel function K
and bandwidth h is given by

f̂n,h,K (x) =
1

nh

nX

i=1

K

✓
Xi � x

h

◆
. (1)

The bandwidth is sometimes called the window width.

Sometimes we drop some of the subscripts and write f̂h(x), etc.

The key is the component K{(Xi � x)/h}.

This term places a kernel function, centred at Xi , with width

controlled by h.

6 / 32



Some kernel components

−10 −5 0 5 10

0.
0

0.
4

0.
8

X_i= −3, ww=1, 4

x

de
ns

ity
 c

om
po

ne
nt

−10 −5 0 5 10

0.
0

0.
4

0.
8

X_i = 5, ww=1, 0.4

x

de
ns

ity
 c

om
po

ne
nt

7 / 32



Kernel placement h = 1 (sample data set of 6 points)

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

x

D
en
si
ty

8 / 32



As before, but averaging kernels

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

x

D
en
si
ty

9 / 32



Four di↵erent bandwidths (h = 0.1, 0.316, 1.41, 3.16)

−10 −5 0 5 10

0
10
0

20
0

30
0

40
0

x

D
en
si
ty

−10 −5 0 5 10

0
2

4
6

8
10

12

x

D
en
si
ty

−10 −5 0 5 10

0.
00

0.
04

0.
08

0.
12

x

D
en
si
ty

−10 −5 0 5 10

0.
00
0

0.
00
4

0.
00
8

0.
01
2

x

D
en
si
ty

10 / 32



Choice of bandwith is very important

If h is small, then the density estimate is highly variable.

If h is too large, then the density estimate is very biased.

h smaller =) higher variance, lower bias.

h larger =) higher bias, lower variance.

Note: f̂n,h,L(x) is a random variable, depends on X1, . . . ,Xn.

11 / 32



Working out the bias and variance
Given a single observation, X , what is the probability of it landing

in the interval (x � h/2, x + h/2)?

This is

p = P(x � h/2 < X < x + h/2) = F (x + h/2)� F (x � h/2), (2)

where F (x) is the distribution associated with f (x).

Now suppose we use a rectangular kernel function

K (x) =

(
1 for x 2 (�1/2, 1/2),

0 otherwise.
(3)

Hence, we only get a contribution with respect to Xi when

�1/2  (Xi � x)/h  1/2 i↵ x � h/2  Xi  x + h/2. (4)

12 / 32



Bias and variance — rectangular kernel
So

nX

i=1

K

✓
Xi � x

h

◆
(5)

counts the number of X1, . . . ,Xn that fall into the interval

(x �
h
2 , x +

h
2 ).

Hence n�1Pn
i=1 K

⇣
Xi�x
h

⌘
is the average number of points in the

interval and f̂n,h(x) = average number of points/h.

What is the number of points that fall into the interval?

This is a random variable, call it N⇤
. Since the chance of one point

falling in is p (above, distributed according to a Bernoulli r.v.), by

summing over all the points, the distribution of N⇤
is

nhf̂n,h(x) ⇠ Bin(n, p). (6)

13 / 32



Bias and variance — rectangular kernel — 2
Recall that the mean and variance of a Bin(n, p) binomial r.v. is

E(N⇤
) = np, var(N⇤

) = np(1� p). (7)

Hence,

E{f̂n,h(x)} = (nh)�1n{F (x + h/2)� F (x � h/2)} (8)

=
F (x + h/2)� F (x � h/2)

h
. (9)

We’d like E{f̂n,h(x)} = f (x), but it is not. So, the density

estimator is, in general, biased.

However, if F (x) is di↵erentiable then

F (x + h/2)� F (x � h/2)

h
! f (x) as h ! 0, (10)

so the bias of the estimate should decrease as h gets small.This fits

in with our experience of the plots.

14 / 32



Comments on h

Clearly, h cannot be too small because

I few points will end up under most of the kernels

I the estimator will be very variable.

However, if we get more data, and n increases there will be many

more points and we can allow h to shrink.

This suggests that a good h should depend on n, i.e. h = hn and

hn ! 0 as n ! 1. (11)

15 / 32



Variance of (rectangular) kernel estimator

Invent notation

F (x � h/2, x + h/2) = F (x + h/2)� F (x � h/2). (12)

Due to properties of binomial random variables

var{nhf̂ (x)} = nF (x�h/2, x+h/2){1�F (x�h/2,F+h/2)} (13)

Since var(cW ) = c2 var(W ) we can write (13) as

var{f̂ (x)} = (nh)�2nF (x � h/2, x + h/2){1� F (x � h/2,F + h/2)}

=
1

nh

F (x � h/2, x + h/2)

h
{1� F (x � h/2, x + h/2)}.(14)

If h is small, then F (x + h/2)� F (x � h/2) is small as this is the

probability that X lies in the interval (x � h/2, x + h/2).

16 / 32



Variance of (rectangular) kernel estimator — 2

Hence,

1� F (x � h/2, x + h/2) ! 1 as h ! 0. (15)

For the second term of (14), this is the area under the f (x) curve,
which, since h is small we can approximate by a rectangle with

width h and height f (x). So,

F (x � h/2, x + h/2) ⇡ hf (x). (16)

So, the second term is this divided by h, so the second term

of (14) tends to f (x).

Hence, putting it altogether

var{f̂ (x)} ⇡
1

nh
f (x). (17)

17 / 32



Consistency

Consistency means that the mean squared error tends to zero as

n ! 1.

This means that we want the bias and the variance to tend to zero

as n ! 1. (Recall we showed that MSE = bias
2
+ variance).

For the bias, we need hn ! 0 from above.

For the variance, we need

nhn ! 1 as n ! 1. (18)

Tradeo↵: if h is small, then bias is good, but variance large and

the opposite happens if h is large.

18 / 32



Best choice of h?

Suppose we want to minimise the MSE as a function of h?

We have a good approximation for the variance, but now we need

one for the bias too (which we’d previously only worked out a limit

for).

We use Taylor approximation to do this.

However, we need an extra assumption that f is twice

di↵erentiable.

We will expand F (x + h/2) around F (x) assuming h small.

19 / 32



Taylor Series for F

First, the generic series expansion:

F (x + �) = F (x) + �F 0
(x) + �2F 00

(x)/2! + �3F (3)
(x)/3! +O(�4).

(19)

Also, recall that f (x) = F 0
(x), density is derivative of distribution.

Hence,

F (x+h/2) = F (x)+
h

2
f (x)+

1

2
f 0(x)

✓
h

2

◆2

+
1

6
f 00(x)

✓
h

2

◆3

+O(h4).

(20)

Similarly,

F (x�h/2) = F (x)�
h

2
f (x)+

1

2
f 0(x)

✓
h

2

◆2

�
1

6
f 00(x)

✓
h

2

◆3

+O(h4).

(21)

20 / 32



Taylor Series for F — 2

Then the di↵erence is

F (x � h/2, x + h/2) = hf (x) +
1

24
h3f 00(x) +O(h4). (22)

Hence, the bias from (10) is

bias{f̂ (x)} =
F (x � h/2, x + h/2)

h
� f (x) ⇡

1

24
h2f 00(x), (23)

ignoring remainder terms. Now use MSE = variance + bias
2

MSE{f̂n,h,K (x)} ⇡ C1
1

nh
f (x) + C2{f

00
(x)}2h4, (24)

where C1 = 1 and C2 = (1/24)2.

21 / 32



Minimising MSE over h

The derivative

@MSE

@h
⇡ �C1n

�1h�2f (x) + 4C2{f
00
(x)}2h3. (25)

Setting
@MSE
@h |h⇤ = 0 gives

C1n
�1

(h⇤)�2f (x) = 4C2{f
00
(x)}2(h⇤)3 (26)

which implies

(h⇤)5 =
C1

4C2

f (x)

{f 00(x)}2
n�1. (27)

or

h⇤ = C ⇤n�1/5, (28)

where C ⇤
=

h
C1
4C2

f (x)
{f 00(x)}2

i1/5
.

22 / 32



Properties of optimal bandwidth

Clearly, hn ! 0 as n ! 1.

Clearly nhn / n4/5 ! 1 as n ! 1.

But h⇤ depends on C ⇤
and we don’t know f (x), let alone f 00(x),

that is what we are trying to estimate. These calculations for

optimal bandwidth often fall into a circular argument.

The bandwidth h⇤ depends on x . So, the best bandwidth depends
on where in the domain of f you are trying to estimate.

For more general kernels, C2 =
1
4{
R
x2K (x) dx}2 = 1

4C
2
3 and

C1 =
R
K 2

(x) dx .

23 / 32



Expectation with general kernel

Take expectation of the definition (1) directly.

E{f̂ (x)} = (nh)�1
nX

i=1

E
⇢
K

✓
Xi � x

h

◆�
. (29)

Let

(⇤) = E
⇢
K

✓
Xi � x

h

◆�
(30)

=

Z
K{(y � x)/h}f (y) dy . (31)

Substitute v = (y � x)/h. Hence dv = dy/h. Also h > 0.

24 / 32



Expectation with general kernel — 2

Now we use a Taylor expansion of f around x , so

f (x + �) = f (x) + �f 0(x) + �2f 00(x)/2! +O(�3). (32)

So with � = hv we have

(⇤) = h

Z
K (v)f (hv + x) dv (33)

= hf (x)
������*

1Z
K (v) dv + h2f 0(x)

�������*0Z
vK (v) dv (34)

+
1

2
h3f 00(x)⇠⇠⇠⇠⇠⇠⇠:C3

Z
v2K (v) dv +O(h4). (35)

The middle zero because K (x) is symmetric.

25 / 32



Expectation with general kernel — 3

So,

(⇤) = hf (x) + 1
2C3h

3f 00(x) +O(h4), (36)

so that

bias{f̂n,h,K (x)} ⇡
1
2C3h

2f 00(x). (37)

The bias of our estimator depends on the second derivative of f (x)

So, the bias in our estimator will be worse near to areas where

f 00(x) is large.

The areas where f 00(x) are large are area of high curvature.

So, we expect our estimator to be biased near to where f (x) is
very wiggly.

26 / 32



Bounding variance with general kernel

First, recall that

var(W ) = E(W 2
)� E (W )

2
 E(W 2

). (38)

Then

var{f̂ (x)} =
1

nh2
var

⇢
K

✓
Xi � x

h

◆�
(39)


1

nh2
E
⇢
K 2

✓
Xi � x

h

◆�
(40)

=
1

nh2

Z
K 2

✓
y � x

h

◆
f (y) dy (41)

=
1

nh

Z
K 2

(v)f (hv + x) dv , (42)

now using the same Taylor series expansion for f (x + hv) as
before, gives . . .

27 / 32



Bounding variance with general kernel

var{f̂ (x)} 
1

nh

⇢
f (x)

Z
K 2

(v) dv + hf 0(x)

Z
vK 2

(v) dv(43)

+O(h2)
 

(44)

=
1

nh
f (x)C1 +

1

n
C4 +O(h/n) (45)

! 0 as n ! 1, (46)

where C4 = f 0(x)
R
vK 2

(v) dv .

Variance is high when the density is high.

Unsurprisingly, the bias and variance are similar to previously, with

the rectangular kernel, so same kind of optimal bandwidth results.

28 / 32



Some Example Kernels

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Rectangular

uu

un
iK
(u
u)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Triangular

uu

tri
K(
uu
)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

Epanechnikov (parabolic)

uu

ep
an
K(
uu
)

−2 −1 0 1 2

0.
05

0.
15

0.
25

0.
35

Gaussian

uu

no
rm
K(
uu
)

29 / 32



Some Example Kernels Compared

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

uu

un
iK
(u
u)

30 / 32



Example Kernel Formulae

Rectangular

K (x) =

(
1/2 x 2 (�1, 1),

0 otherwise.

Triangular

K (x) =

(
1� |x | x 2 (�1, 1),

0 otherwise.

Epanechnikov

K (x) =

(
3
4(1� x2) x 2 (�1, 1),

0 otherwise.

Normal/Gaussian

K (x) = (2⇡)�1/2
exp(�x2/2), x 2 R.

31 / 32



Summary

This lecture has covered:

Kernel Smoothing

Kernel Density Estimation

Bias and Variance and bandwidth selection for Kernel DE

Types of Kernel

32 / 32



Elements of Statistical Learning: Lecture 13.

Kernel DE and Regression

Guy Nason1

Department of Mathematics

Imperial College

1©Imperial College 2023 (revision 9). This material is copyright of the College unless explicitly stated

otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for

your private study only.

1 / 25



precip kernel density estimates

plot(density(precip, bw=0.01))

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

density.default(x = precip, bw = 0.01)

N = 70   Bandwidth = 0.01

D
en

si
ty

10 20 30 40 50 60

0.
00

0.
05

0.
10

0.
15

density.default(x = precip, bw = 0.1)

N = 70   Bandwidth = 0.1

D
en

si
ty

10 20 30 40 50 60 70

0.
00

0.
01

0.
02

0.
03

0.
04

density.default(x = precip, bw = 1)

N = 70   Bandwidth = 1

D
en

si
ty

−20 0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

density.default(x = precip, bw = 10)

N = 70   Bandwidth = 10

D
en

si
ty

2 / 25



precip with automatic estimate of bandwidth

plot(density(precip, bw=bw.nrd(x=precip)), main="BW: Thumb, CV + SJ")

0 20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

BW: Thumb, CV + SJ

N = 70   Bandwidth = 4.532

D
en

si
ty
Rule−of−thumb
Cross−Validation
Sheather+Jones

3 / 25



Kernel Regression

Suppose now we have variables X ,Y and we want to find E(Y |X ).

We go via the joint density fX ,Y (x , y).

E(Y |X ) =

Z
yf (y |x) dy (1)

=

Z
y
f (x , y)

f (x)
dy (2)

=

R
yf (x , y) dy

f (x)
(3)

Now we make use of our kernel density estimate for X

f̂ (x) = n�1

nX

i=1

Kh(x � Xi ), (4)

where Kh(x) = h�1K (x/h).

4 / 25



Kernel Regression — 2

We introduce the 2D kernel density estimator

f̂ (x , y) = n�1

nX

i=1

Kh(x � Xi )Kh(y � Yi ) (5)

So,

Ê(Y |X = x) =

R
y f̂ (x , y) dy

f̂ (x)
(6)

=

Pn
i=1

Kh(x � Xi )
R
yKh(y � Yi ) dyPn

i=1
Kh(x � Xi )

, (7)

and the n�1 cancel.

5 / 25



Kernel Regression — 3

Now let v = y � Yi , then
Z

yKh(y � Yi ) dy =

Z
(v + Yi )Kh(v) dv (8)

=
�������*0Z

vKh(v) dv + Yi
������*1Z

Kh(v) dv , (9)

= Yi (10)

since the kernel is symmetric and integrates to 1.

Hence.

Ê(Y |X = x) =

Pn
i=1

YiKh(x � Xi )Pn
i=1

Kh(x � Xi )
(11)

This estimator is called the Nadaraya-Watson kernel regression.

6 / 25



Local Polynomial Regression

This generalizes the Nadaraya-Watson estimator.

First, we define the local polynomial estimator:

mx0(x) =
pX

j=0

�j(x0)(x � x0)
j , (12)

centred on x0 or local to x0.

E.g. {�j(x0)} are the regression coe�cients near to x0 and

{�j(x1)} are the regression coe�cients near to x1.

I.e. the local regression coe�cients change over location.

7 / 25



Local Polynomial Regression — 2

Here, we have a weighted residual sum of squares:

RSS(x0) =
nX

i=1

{Yi �mx0(Xi )}2 Kh(Xi � x0). (13)

The h bandwidth ensures that only (Xi ,Yi ) close to x0 get
included in the local regression.

The nearer they are, the higher their contribution.

Writing the design matrix as

X =

0

B@
1 X1 � x0 · · · (X1 � x0)p

...
...

. . .
...

1 Xn � x0 · · · (Xn � x0)p

1

CA (14)

8 / 25



Local Polynomial Regression — 3

Write the n ⇥ n weight matrix as

Wx0 = diag{Kh(X1 � x0), · · · ,Kh(Xn � x0)} (15)

Then, the weighted least-squares problem (13) can be written

RSS(x0) = {Y � X�(x0)}TWx0{Y � X�(x0)}. (16)

We can minimize this using previous methods (easy to see, W 1/2
x0

exists, as Wx0 is diagonal and all entries � 0. Set XR = W 1/2
x0 X

and YR = W 1/2
x0 Y and use least squares method on XR ,YR .)

The minimiser of RSS(x0) is

�̂(x0) = (XTWx0X )�1XTWx0Y . (17)

9 / 25



Bias of NW [Local Constant] and Local Linear regression

Long calculation.

Let f (x) be density of the {Xi} as above, and g(x) = E(Y |X = x)
be the unknown regression function.

Variance of NW and local linear regressions is the same, up to
order o{(nh)�1}.

Bias of NW is

h2
⇢

1

2
g 00(x) +

g 0(x)f 0(x)

f (x)

�Z
K 2(u) du + o(h2), (18)

Bias of local linear is

h2 1
2
g 00(x)

Z
K 2(u) du + o(h2). (19)

Generally, choose odd polynomial order.
10 / 25



Motorcycle: Nadaraya-Watson with di↵erent bandwidths

10 20 30 40 50

−1
00

−5
0

0
50

Times (ms)

Ac
ce

le
ra

tio
n 

(g
)

BW: 0.1
BW: 0.5
BW: 1
BW: 10

11 / 25



Motorcycle: NW, local linear and quadratic. BW=1.44

xx <- mcycle[,1]
yy <- mcycle[,2]

good.bw <- dpill(x=xx, y=yy)

cat("Good bw: ", good.bw, "\n")

lp.d0 <- locpoly(x=xx, y=yy, degree=0, bandwidth=good.bw)
lp.d1 <- locpoly(x=xx, y=yy, degree=1, bandwidth=good.bw)
lp.d2 <- locpoly(x=xx, y=yy, degree=2, bandwidth=good.bw)

plot(xx, yy, col="gray", xlab="Times (ms)",
ylab="Acceleration (g)")

lines(lp.d0$x, lp.d0$y)
lines(lp.d1$x, lp.d1$y, col=2)
lines(lp.d2$x, lp.d2$y, col=3)

12 / 25



Motorcycle: NW, local linear and quadratic. BW=1.44

10 20 30 40 50

−1
00

−5
0

0
50

Times (ms)

Ac
ce

le
ra

tio
n 

(g
)

Nadaraya Watson
Local Linear
Local Quadratic

Boundary bias of quadratic

LL bias good

13 / 25



Orthogonal series expansions

Here, let {⇢⌫(x)} be an orthogonal series basis for some function
space (assume univariate and real-valued).

This means, for functions, f (x), in the space we have

f (x) =
X

⌫

f⌫⇢⌫(x), (20)

where the coe�cients {f⌫} are found by

f⌫ =< f , ⇢⌫ >=

Z
f (x)⇢⌫(x) dx . (21)

The orthogonality between the {⇢⌫(x)} means

Z
⇢⌫(x)⇢µ(x) dx = �⌫,µ, (22)

where the Kronecker delta �⌫,µ = 1 if ⌫ = µ and 0 otherwise.
14 / 25



Two-dimensional expansion

A 2D separable expansion might be

f (x , y) =
X

⌫

X

µ

f⌫,µ⇢⌫(x)⇢µ(y), (23)

where

f⌫,µ =

Z Z
f (x , y)⇢⌫(x)⇢µ(y) dxdy . (24)

We also have (insist) that the set of basis functions is complete for
the space of functions we are interested in, which means

lim
m!1

Z (
f (x)�

mX

r=�m

fr⇢r (x)

)2

dx = 0, (25)

for all f in the space.

15 / 25



Orthogonal Series Regression

Now (3) says we can make use of f (x). Can we estimate it?
From (21) we have

f⌫ =

Z
f (x)⇢⌫(x) dx = E{⇢⌫(X )} ⇡ n�1

nX

i=1

⇢⌫(Xi ) = f̂⌫ . (26)

as f (x) is the density of X .Similarly,

f⌫,µ = E{⇢⌫(X )⇢µ(Y )} ⇡ n�1

nX

i=1

⇢⌫(Xi )⇢µ(Yi ) = f̂⌫,µ. (27)

We can use {f̂⌫} and {f̂⌫,µ} to estimate f (x), f (x , y) by plugging
the coe�cients into (20) and (23), respectively.

16 / 25



Orthogonal Series Regression — 2

If we can calculate f̂⌫ well for all ⌫ then

E{f̂ (x)} = E
"
X

⌫

(
n�1

nX

i=1

⇢⌫(Xi )

)
⇢⌫(x)

#
(28)

= n�1

nX

i=1

X

⌫
⇠⇠⇠⇠⇠⇠: f⌫
E{⇢⌫(Xi )}⇢⌫(x) (29)

= n�1

nX

i=1

f (x) = f (x), (30)

i.e., it looks like f̂ (x) is unbiased.

But, the range of ⌫ is often infinite, e.g. ⌫ = �1, . . . ,1.

And we can’t use a finite set of things X1, . . . ,Xn to estimate an
infinite number of things sensibly.

17 / 25



Linear Orthogonal Series Estimators

So, usually we only estimate for ⌫ = �m, . . . ,m, with m < n and

f̂ (x) =
mX

⌫=�m

f̂⌫⇢⌫(x), (31)

which is called the linear orthogonal series estimator with
truncation point of m.This new estimator is biased, e.g.

bias{f̂ (x)} = E{f̂ (x)}� f (x) (32)

=
mX

⌫=�m
���* f⌫
E(f̂⌫)⇢⌫(x)�

1X

⌫=�1
f⌫⇢⌫(x) (33)

= �
X

|⌫|>m

f⌫⇢v (x), (34)

which is not zero, in general. As for kernel density estimation,
approximation to the bias and variance can be worked out, and
good behaviours for m worked out (as we did for h⇤ for the kernel
density estimator).

18 / 25



Fourier Basis Example

Let’s consider density functions on the real line. For PDFs we
know that

R
R f (x) dx = 1 and f (x) � 0. Hence, PDFs f are

absolutely integrable, f 2 L1(R) and the Fourier transform exists.

What are the Fourier transform coe�cients of a kernel DE?

Rh(!) =

Z

R
f̂h(x)exp(�2⇡i!x) dx (35)

= (nh)�1

nX

j=1

Z

R
K

✓
Xj � x

h

◆
exp(�2⇡i!x) dx . (36)

Substituting y = (Xj � x), dy = �dx gives

19 / 25



Fourier Basis Example

Rh(!) = n�1

nX

j=1

Z

R
Kh(y)exp(�2⇡i![Xj � y ]) dy (37)

And exp{�2⇡i!(Xj � y)} = exp(�2⇡i!Xj) exp(2⇡i!y), so

Rh(!) = n�1

nX

j=1

exp(�2⇡i!Xj)

Z

R
Kh(y) exp(2⇡i!y) dy(38)

= X̂ (!)K̃h(!), (39)

where X̂ (!) = n�1
Pn

j=1
e�2⇡i!Xj & K̃h(!) =

R
R Kh(y)e2⇡i!y dy .

K has been decoupled from the Xj . So, e.g. the X̂ term, the
discrete Fourier transform of the data, only need be computed
once. The K̃ can often be computed in closed form. So, it’s quick
and easy to compute Rh(!) for di↵erent h, e.g.

20 / 25



Orthogonal series estimator on [�T ,T ]

Recall the Fourier series estimator on the interval [�T ,T ] for
some T > 0.

We will think of our data, all of its density and estimators to live
entirely within this interval.

With densities that are supported entirely on the line, e.g. �(x)
itself, we will ignore the teeny bit of density that would be outside
of the interval for T large enough. T can be chosen by us and be
as large as we like to make the ‘excess’ density negligible.

21 / 25



Orthogonal series on [�T ,T ]

The orthogonal series we will use on [�T ,T ] is

f (x) =
1X

⌫=�1
f⌫e

2⇡i⌫x
T , and f⌫ = (2T )�1

Z T

�T
f (x)e�

2⇡i⌫x
T , (40)

which are just (21) and (22) for a specific example and

f̂⌫ =
1

2nT

nX

j=1

exp

⇢
�
2⇡i⌫Xj

T

�
= T�1X̂ (⌫/T ), (41)

which is (26) and using (39) for the definition of X̂ .

This orthogonal series estimator truncated at m is then

f̂ OS

m (x) = T�1

mX

⌫=�m

X̂ (⌫/T )e
2⇡i⌫x

T . (42)

22 / 25



Kernel is modified Fourier

Fourier trans. coefs of KDE from (39) are Rh(!) = X̂ (!)K̃h(!).

So, using the inverse Fourier transform, the KDE is

f̂ KDE

h (x) =

Z

R
Rh(!) e

2⇡ix! d! (43)

=

Z

R
K̃h(!) X̂ (!) e2⇡ix! d!. (44)

In practice, the integral (44) is computed numerically on a
discretized set, {!q}Mq=�M , as

f̂ KDE

h (x) =
MX

q=�M

K̃h(!q)X̂ (!q)e
2⇡i!qx , (45)

where typically M > m. Compare (42) with (45). Interesting, what
is K̃h?

23 / 25



Fourier transform of Gaussian kernel

Let, e.g., K (x) = (2⇡)�1/2 exp(�x2/2) = standard normal.

Since the Fourier transform is equivalent to taking the
characteristic function (E[e itX ]) it is the case that

K̃h(!) =

Z
Kh(y) exp(2⇡i!) dy (46)

= exp(�2⇡2h2!2). (47)

Clearly, K̃h(!) gets rapidly smaller as |!| moves away from zero.

So, instead of choosing m, a cuto↵ to form a linear series
estimator, kernel density estimation is e↵ectively equivalent to a
Fourier series estimator, but the coe�cients of the estimator are
caused to be rapidly downweighted.

24 / 25



Summary

In this lecture we learnt about

Some examples of kernel density estimates

Kernel regression and the Nadaraya Watson estimator

Local polynomial regression

Orthogonal Series Expansions

25 / 25



Elements of Statistical Learning: Lecture 14.
Wavelets

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2019 (revision 3). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 35



Wavelet Methods
Let’s consider L2 functions, to be definite. However, the methods
in this section apply to much more interesting spaces, such as
Besov spaces, which contain functions with discontinuities,
discontinuities in derivatives (e.g. |x |) and other inhomogeneities.

(2D) Functions that are images have discontinuities, and hence
wavelets perform well for tasks such as image compression, e.g.
contained within the JPEG2000 standard. In fact, wavelets’ good
compression abilities is what makes them useful for statistics, and
form the background for the popularity of sparsity-based methods.

Hence, wavelet methods are extremely general and, hence,
powerful and do not assume much. In contrast to Fourier and
kernel-type methods that assume smoothness.

Those methods typically do not (and can not) test for smoothness
and it tends to, sadly, get ignored, stupidly.

2 / 35



Multiresolution Analysis (MRA) — informal

MRA is a framework for examining functions at di↵erent scales.

With MRA, one can “zoom-in” to examine fine scale details, or
‘zoom-out’ to get the big picture.

We will index scale by j .

Examination of function f at resolution j is by linear projection of
f onto an approximation space Vj , some subspace of L2.

Informally, define Vj to be the functions that are of resolution  j .

So, functions in Vj , for j large, contain functions that possess a
high level of detail.Similarly, those in Vj for j small, contain
‘coarse’ looking functions.
Nason, G.P. (2008) Wavelet Methods in Statistics with R, Springer: Berlin, for further info on L14

3 / 35



MRA definition
The spaces {Vj}j2Z form a ladder as low res. spaces automatically
belong to higher res. spaces.

MRA1 · · · ⇢ V�2 ⇢ V�1 ⇢ V0 ⇢ V1 ⇢ V2 ⇢ · · · (1)

And

MRA2
[

j2Z
Vj = L2(R) (2)

which means that the collection of {Vj} spaces contains all of the
functions we are interested in.

The functions get progressively less detailed as j ! �1 so

MRA3
\

j2Z
Vj = {0}, (3)

the zero function.
4 / 35



MRA definition 2
The next property links the spaces across scales.

MRA4 f (x) 2 Vj =) f (2x) 2 Vj+1, 8j 2 Z, (4)

and we also need

MRA5 f (x) 2 V0 =) f (x � k) 2 V0, 8k 2 Z, (5)

integer translates of a function in V0 are also in V0.

Finally, there exists �(x) 2 V0 such that {�(x � k)}
k2Z is an

orthonormal basis for V0. This is MRA6.

If {Vj}j2Z and � satisfy MRA1 to MRA6 they are said to form a
MRA of L2.

The � is called the father wavelet. They often look like kernels,
but are used di↵erently.

5 / 35



Haar MRA

The Haar father wavelet is

�H(x) =

(
1 x 2 (0, 1)

0 otherwise.
(6)

Recall inner product < f , g >=
R
f (x)g(x) dx , then

||�H ||
2 =< �H ,�H > =

Z
�2
H
(x) dx =

Z 1

0
1 dx = 1. (7)

And
< �H(x � `),�H(x �m) >= �`,m, (8)

as di↵erent integer translates of �H(x) do not overlap, `,m 2 Z.

So {�H(x � `)}`2Z forms an orthonormal set and we can set
V0 = span`2Z{�H(x � `)}. We drop the H subscript for now.

6 / 35



Scaling and Dilation
Dyadically scale & translate the wavelet (or any function) by

�j ,k(x) = 2j/2�(2jx � k), 8j , k 2 Z. (9)

Each set {�j ,k(x)}k2Z forms an orthonormal basis for Vj , j 2 Z.

The next plot shows �(x) = �0,0(x); a�1,0(x) and b�1,1(x).

Then we show for an original function f (x)

Pj f =
X

k2Z
cj ,k�j ,k(x), (10)

for j = 5, 3, 1: the projection of f (x) onto Vj , where

cj ,k =

Z
f (x)�j ,k(x) dx , (11)

because of orthogonality.
7 / 35



Father wavelets at di↵erent scales

b

a

0 1

Scale 0

Scale 1/2

Note: �(x) = �(2x) + �(2x � 1).

8 / 35



Father wavelets at di↵erent scales

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Original

x

Pi
ec

ew
is

e 
po

ly

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Wavelet approx (to scale 5)

x

H
aa

r A
pp

ro
x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Wavelet approx (to scale 3)

x

H
aa

r A
pp

ro
x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Wavelet approx (to scale 1)

x

H
aa

r A
pp

ro
x

9 / 35



What disappears when going from finer scale to coarser?
Suppose our function f (x) is

f (x) =

(
a x 2 (0, 1/2),

b x 2 (1/2, 1).
(12)

for a, b 2 R. Now on (0, 1/2) we have �1,0(x) =
p
2�(2x), so the

height of this basis function on (0, 1/2) is
p
2.

So, f (x) = ap
2
�1,0(x) +

bp
2
�1,1(x) = f1(x): scale j = 1

representation.And c1,0 = a/
p
2, c1,1 = b/

p
2.

What is f0(x), i.e. the projection of f (x) onto V0? We need to
compute

c0,0 =

Z 1

0
f (x)�(x) dx =

Z 1/2

0
a dx +

Z 1

1/2
b dx = (a+ b)/2. (13)

So f0(x) = (a+ b)�0,0(x)/2.
10 / 35



c0,0 and c1,0, c1,1 relation & di↵erence between V0,V1.

We have
c0,0 = (a+ b)/2 = 1

2(
p
2c1,0 +

p
2c1,1) = (c1,0 + c1,1)/

p
2. So

f0(x)� f1(x) = c0,0�0,0(x)� c1,0�1,0(x)� c1,1�1,1(x) (14)

= c0,0�0,0(x)� c1,0
p

2�(2x)� c1,1
p

2�(2x � 1)

= c0,0{�(2x) + �(2x � 1)}

�c1,0
p

2�(2x)� c1,1
p

2�(2x � 1) (15)

= (c0,0 �
p

2c1,0)�(2x) + (c0,0 �
p

2c1,1)�(2x � 1)

= {(c1,1 � c1,0)�(2x) + (c1,0 � c1,1)�(2x � 1)}/
p

2,

as c0,0 �
p
2c1,0 = c1,0/

p
2 + c1,1/

p
2�

p
2c1,0 and

1p
2
�
p
2 = (1� 2)/

p
2 = �1/

p
2.

11 / 35



Di↵erence between V0 and V1: wavelet

Now define d0,0 = (c1,1 � c1,0)/
p
2, then

f0(x)� f1(x) = d0,0{�(2x)� �(2x � 1)}. (16)

At this point, we define the Haar mother wavelet

 H(x) =

8
><

>:

1 x 2 (0, 12)

�1 x 2 (12 , 1)

0 otherwise.

(17)

Then

f0(x)� f1(x) = d0,0 (x). =) f1(x) = c0,0�(x)� d0,0 (x). (18)

So, the higher resolution f1 can be obtained from the lower
resolution f0 plus some detail encapsulated in the wavelet and its
coe�cient.

12 / 35



Multiscale
We can call the space spanned by  (x � k) W0. Note that  (x) is
orthogonal to �(x) overlay the diagrams: V1 = V0 �W0. The �

means that the functions in the two spaces are also orthogonal.
What we’ve seen so far is
I On [0, 1]
I Only from one scale to the next

We can extend the idea to multiple scales and locations to

f (x) =
X

k2Z
cj0,k�j0,k(x) +

1X

j=j0

X

k2Z
dj ,k j ,k(x), (19)

for a function f , which is called a wavelet representation starting
at primary resolution j0. Note infinite scales and we can get

L2 = Vj0 �

1M

j=j0

Wj (20)

The set {dj ,k} are called the wavelet coe�cients.
13 / 35



Wavelets are orthogonal series: discrete wavelet transform

The wavelets are all mutually orthogonal, hence (19) is an
orthogonal series representation.

Recall that if we had c1,0, c1,1 we can obtain the coarser father
wavelet coe�cient and the associated wavelet coe�cient by

c0,0 = (c1,1 + c1,0)/
p

2 (21)

d0,0 = (c1,1 � c1,0)/
p

2. (22)

This can be generalised to obtain:

cj�1,k = (cj ,2k+1 + cj ,2k)/
p

2 (23)

dj�1,k = (cj ,2k+1 � cj ,2k)/
p

2 (24)

Suppose we start with sequence 1, 1, 7, 9, 2, 8, 8, 6 as c3,i = yi then
the coarser coe�cients (without the

p
2 scaling) are:

14 / 35



Example of Haar wavelet transform: Pyramid algorithm

i1 7 9 2 8 8 6

0 2 6 −2

2 16 10 14

4

18 24

6

42

1

14

y

d

c

d

c

d

c0

0

1

1

2

2

There are 7 d and 7 c operations for 8 data. Algorithm is O(n)
FAST!

15 / 35



Matrix Representation

W =

2

66666666664

p
2/4

p
2/4

p
2/4

p
2/4

p
2/4

p
2/4

p
2/4

p
2/4

1/
p
2 �1/

p
2 0 0 0 0 0 0

0 0 1/
p
2 �1/

p
2 0 0 0 0

0 0 0 0 1/
p
2 �1/

p
2 0 0

0 0 0 0 0 0 1/
p
2 �1/

p
2

1/2 1/2 �1/2 �1/2 0 0 0 0
0 0 0 0 1/2 1/2 �1/2 �1/2p
2/4

p
2/4

p
2/4

p
2/4 �

p
2/4 �

p
2/4 �

p
2/4 �

p
2/4

3

77777777775

,

(25)

If the input data is y = c(1, 1, 7, 9, 2, 8, 8, 6)T , then the wavelet
coe�cients can be written as d = Wy .

Although, the pyramid algorithm is used in practice.

16 / 35



Other mother wavelets

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

Haar  (Enhanced)

Haar wavelet
x

ps
i

−1.0 −0.5 0.0 0.5 1.0 1.5

−1
.0

0.
0

1.
0

Daubechies 2  (Enhanced)

Daub cmpct on ext. phase N=2
x

ps
i

−1.5 −0.5 0.5 1.0 1.5 2.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

Daubechies 4  (Enhanced)

Daub cmpct on ext. phase N=4
x

ps
i

−4 −3 −2 −1 0 1 2 3

−1
.0

−0
.5

0.
0

0.
5

Daubechies 10  (Enhanced)

Daub cmpct on ext. phase N=10
x

ps
i

Formula (23) is generalised to cj�1,k =
P

` h`�2kcj ,`, and similar
one involving g`�2k for ds.

17 / 35



Haar wavelet transform of Blocks signal

0 200 400 600 800 1000

−5
0

5
10

15
20

x

Bl
oc

ks

0 200 400 600 800 1000

−5
0

5
10

15
20

x

Bl
oc

ks

Standard transform Haar wavelet
Translate

R
es

ol
ut

io
n 

Le
ve

l

9
7

5
3

1

0 128 256 384 512

Standard transform Haar wavelet
Translate

R
es

ol
ut

io
n 

Le
ve

l

9
7

5
3

1

0 128 256 384 512

Left: coe�cients on same scale; Right: scaled according to level. Note

horizontal alignment between coe�cients and original

18 / 35



Vanishing moments

You may have noticed that the coe�cients near to smooth parts of
the function were zero.

This is no accident.

A wavelet has m vanishing moments if it satisfies
Z

x` (x) dx = 0, (26)

for ` = 0, . . . ,m � 1 (with some other conditions).

This is part of the secret of wavelets’ success. It essentially means
that the wavelet coe�cients of the smooth parts of functions is
zero, and mostly the non-zero coe�cients relate to
inhomogeneities.

19 / 35



Piecewise polynomial and its wavelet coe�cients

0.0 0.2 0.4 0.6 0.8 1.0
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Translate

R
es

ol
ut

io
n 

Le
ve

l

8
7

6
5

4
3

2
1

0

0 0.2 0.4 0.6 0.8 1

20 / 35



Sparsity

Wavelet transforms of a wide variety of functions are very sparse.

library("wavethresh") # An R wavelet library
length(example.1()$y)
[1] 512
sum(abs(wd(example.1()$y, filter.number=4,

family="DaubExPhase")$D) < 1e-10)
[1] 418

The example.1()$y function generates the piecewise polynomial.
It has 512 entries.

wd computes the wavelet transform (here with 4 vanishing
moments, as piecewise polynomial has cubic terms). The $D
extracts the wavelet coe�cients.

E↵ective number of zeroes is 418 — compressed 512 to 94.

21 / 35



Sparsity — 2

Wavelet transforms have the ability to sparsify signals.

This is why they are used in compression applications.

There are ‘variants’ especially for images — e.g. curvelets,
ridgelets, etc.

However, it makes them REALLY useful for statistical learning.

22 / 35



Wavelet Shrinkage
Suppose our model is:

yi = fi + ✏i i = 1, . . . , n, (27)

where we observe {yi}ni=1. We assume that ✏i are a set of IID
random variables with mean zero and variance of �2 (so the ✏
vector has covariance matrix of �2In) and the {fi}ni=1 is an
unknown function that we want to estimate from the y data.

The wavelet transform of the noise e = W ✏ has the following
interesting properties:

E(e) = WE(✏) = 0 (28)

and var(e) = E(eeT ) =

WE(✏✏T )W T = W var(✏)W T = �2WInW
T = �2WW T = �2In.

(29)
Note: W orthogonality, other way round than previously.

23 / 35



Wavelet Shrinkage — 2: Useful properties

Applying W to the (27), w = Wy , d = Wf gives

w = d + e, (30)

The noise, e, is uncorrelated (and independent if ✏ is Gaussian)
and hence the noise gets spread ‘evenly’ across all coe�cients.

The d is sparse, as it’s a wavelet transform of a (sampled) function.

Due to Parseval’s theorem, and that wavelets are orthogonal series
we have ||d || = ||f ||.

So, f gets squeezed into much fewer locations, but has the same
energy.

Hence, the signal to noise ratio for signal coe�cients is MUCH
IMPROVED. Strategy for denoising: get rid of small coe�cients.

24 / 35



Bumps signal (simulacrum of NMR signal)
v <- DJ.EX()
x <- (1:1024)/1024 # X coordinates
plot(x, v$bumps, type="l", ylab="Bumps")

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

x

Bu
m
ps

25 / 35



Noisy bumps
set.seed(100)
ssig <- sd(v$bumps)
e <- rnorm(1024, mean=0, sd=ssig) # SNR=1
y <- v$bumps + e
plot(x, y, type="l", ylab="Noisy bumps")

0.0 0.2 0.4 0.6 0.8 1.0

−2
0

0
20

40
60

x

N
oi

sy
 b

um
ps

26 / 35



Wavelet transform of Bumps
xlv <- seq(from=0, to=1.0, by=0.2)
bumpswd <- wd(v$bumps)
plot(bumpswd, main="", sub="", xlabvals=xlv*512,

xlabchars=as.character(xlv), xlab="x")

x

R
es

ol
ut

io
n 

Le
ve

l

9
8

7
6

5
4

3
2

1
0

0 0.2 0.4 0.6 0.8 1

27 / 35



Wavelet transform of Noisy Bumps
ywd <- wd(y)
plot(ywd, main="", sub="", xlabvals=xlv*512,

xlabchars=as.character(xlv), xlab="x")

x

R
es

ol
ut

io
n 

Le
ve

l

9
8

7
6

5
4

3
2

1
0

0 0.2 0.4 0.6 0.8 1

28 / 35



Inverted Thresholded Estimates of Bumps

0.0 0.2 0.4 0.6 0.8 1.0

−2
0

0
20

40
60

Hard thresh=5

x

yw
r1

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

Hard thresh=15

x

yw
r2

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

10
30

50

Hard thresh=20

x

yw
r3

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

0
10

20
30

Hard thresh=40

x

yw
r4

29 / 35



Cross-validated smoothing spline estimate of Bumps
yss1 <- smooth.spline(x=x, y=y)
plot(x, yss1$y, type="l", ylim=c(-15,60))
lines(x, v$bumps, col=2, lty=2)

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

x

ys
s1
$y

Mean-squared error is 17.39.
30 / 35



Cross-validated wavelet shrinkage estimate of Bumps
ywr1 <- wr(threshold(ywd, policy="cv", type="hard"))
plot(x, ywr1, type="l", ylim=c(-15,60))
lines(x, v$bumps, col=2, lty=2)

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

x

yw
r1

Mean-squared error is 15.27
31 / 35



Thresholding Types

To “get rid” of small coe�cients, we can use hard thresholding:

Thard(w ,�) = wI(|w | > �). (31)

Or soft thresholding

Tsoft(w ,�) = sgn(w)(|w |� �)I(|w | > �), (32)

where w is the noisy wavelet coe�cient.

32 / 35



Bayesian Wavelet Shrinkage

For many functions, their wavelet transforms are sparse.

So their coe�cients have a ‘size’ or are precisely zero.

Actually “many” in this context really means ‘all functions we’ll
probably want to think about’.

So, it is natural to think of the following as a prior distribution for
the wavelet coe�cients

dj ,· = �jN(0, ⌧2j ) + (1� �j)�0(x), (33)

where �0(x) is a point mass (Dirac delta) at zero and �j is a
Bernoulli random variable with parameter pj . [ �0 can be thought
of as a ‘density’ with distribution function H�(u) = I(u > 0). H is
known as the Heaviside step function.]

33 / 35



Bayesian Wavelet Shrinkage — 2

The likelihood comes from w = d + e and, if e assumed Gaussian
we have w |d ⇠ N(d ,�2).

It can be shown that

F (d |w) = r�

⇢
d � w⌫2

�⌫

�
+ (1� r)I(d > 0), (34)

where � is the Gaussian CDF, ⌫2 = ⌧2(�2 + ⌧2)�1 and r 2 (0, 1).

The form of F (d |w) is exactly that of the prior (33), (the
Berger-Müller prior). Distribution on coe�cients =) distribution
on functions =) Bayesian nonparametrics.

So, estimated coe�cients are either exactly zero, or something not
zero. Later versions of wavelet shrinkage replace the Gaussian
in (33) by a heavy-tailed distribution, such as the Student’s t.

34 / 35



Summary

In this lecture, we covered:

Multiresolution Analysis MRA

Wavelets mother, father, Haar, Daubechies

Discrete Wavelet Transform the pyramid algorithm.

Vanishing moments sparsity

Bumps and Blocks function

Wavelet shrinkage

Bayesian wavelet shrinkage

35 / 35



Elements of Statistical Learning: Lecture 15.

Exploratory Projection Pursuit

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2023 (revision 4). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 25



Background to Principal Components

In lecture 3 we came across the SVD of a n ⇥ p data matrix X

X = UDV
T , (1)

where U and V are n ⇥ p and p ⇥ p orthogonal matrices,
respectively and D a p ⇥ p diagonal matrix with entries
d1 � d2 � · · · � dp � 0.

The p ⇥ p sample covariance matrix S = n
�1

X
T
X of the centred

data matrix could be written

S = n
�1

X
T
X = n

�1
VD

2
V

T , (2)

an eigendecomposition with eigenvectors vj (columns of V ), called
principal components, with eigenvalues d2

j
.

2 / 25



Principal Components Review

We can project the data matrix X onto the principal components
forming

zn⇥1 = Xn⇥pvp⇥1. (3)

We also showed that the variance of the new projected
one-dimensional data set z1 was d2

1/n, and the variance of the
data set projected onto v2, i.e. z2 was d2

2/n in the direction v2,
which is orthogonal to v1, as they are eigenvectors. This continues
by projecting onto the third principal component, v3 to get
one-dimensional set z3, . . . , until we get to the pth one.

Suppose we project onto an arbitrary p-vector a, i.e.
yn⇥1 = Xn⇥pa? What is the variance of this new data set y?

3 / 25



Projection onto arbitrary vector

First, we can show that y has zero mean because

n
�1

y
T1 = n

�1
a
T
X

T1 = 0, (4)

as X is centred.

The variance of y is thus

Sy (a) = n
�1

y
T
y = n

�1
a
T
X

T
Xa = a

T
Sa, (5)

where S is the sample variance matrix of X .

We can make Sy as big as we like, just by choosing entries of a
big. This is not a well-posed problem.

So, the question is what a makes the variance biggest, for when a

is a unit vector. I.e. aTa = 1? The answer is a = v1 and, since v1

is the first column of an orthogonal matrix it is of unit length!
4 / 25



Optimisation formulation of PCA

First PC is solution to optimisation

max
a

Sy (a) subject to a
T
a = 1. (6)

The ith PC, i = 2, . . . , p is solution to

max
a

Sy (a) subject to a
T
a = 1 and a

T
vj = 0, (7)

for all j = 1, . . . , i � 1, where vj is the jth PC.

5 / 25



Picture of Projected PC data

−100 −50 0 50

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

density.default(x = xdfproj[, 1])

Projected Values

D
en

si
ty

Projection onto 1st PC
Projection onto 2nd PC

Is large variance alway interesting?

6 / 25



Variance?

Is large variance always interesting?

In previous picture, black has two humps, but not clearly separated.

So, big doesn’t mean interesting. If the projected data was split
into two or more clusters, that would be more interesting.

7 / 25



Exploratory Projection Pursuit

8 / 25



What is interesting?

A Gaussian distribution is boring.

It only has one mode.

We’d like to get away from a boring Gaussian, e.g. find something
that is multimodal.

9 / 25



Kullback-Leibler Divergence and Entropy

Let f (x), g(x) be two densities on R.

The Kullback-Leibler Divergence of g from f is

DKL(g ||f ) =
Z

R
g(x) log

⇢
g(x)

f (x)

�
dx . (8)

Easy to see that DKL(g ||f ) � 0, as f , g are densities (which are
� 0) and DKL(g ||f ) = 0 if and only if f = g almost everywhere.

The entropy of density g is defined to be

H(g) = �
Z

R
g(x) log{g(x)} dx (9)

10 / 25



Entropy measures ’interestingness’

We aren’t interested in large variance, PCA can do that. So, we
only consider densities with the same variance, e.g. 1.

Also, our data matrix is usually centred, so we consider only
densities with zero mean.

We find the Gaussian N(0,�2) to be the most boring. So, let’s
find a criterion that is maximised by a Gaussian and then find
densities that minimise that criterion.

11 / 25



Gaussian maximises entropy

Let f (x) be the density of a N(0,�2) variable.

Let g(x) be any other density with mean zero and variance of �2.

Then

0  DKL(g ||f ) (10)

=

Z

R
g(x) log

⇢
g(x)

f (x)

�
dx (11)

=

Z

R
g(x) log{g(x)} dx �

Z

R
g(x) log{f (x)} dx (12)

= �H(g)�
Z

R
g(x) log{f (x)} dx . (13)

Recall f (x) = (2⇡�2)�1/2 exp{�x
2/(2�2)},

12 / 25



Gaussian maximises entropy — 2

log{f (x)} = �1

2
log(2⇡�2)� x

2

2�2
. (14)

So the second integral in (13) is

�1

2
log(2⇡�2)

������*
1Z

R
g(x) dx� 1

2�2
�������*

�2
Z

R
x
2
g(x) dx = �1

2
log(2⇡�2)� 1

2
.

(15)
The entropy of our Gaussian is

�H(f ) =

Z

R
f (x) log{f (x)} dx (16)

= �1

2
log(2⇡�2)

������*
1Z

R
f (x) dx � 1

2�2
�������*

�2
Z

R
x
2
f (x) dx (17)

= �1

2
log(2⇡�2)� 1

2
. (18)

13 / 25



Gaussian maximises entropy — 3

So,
0  �H(g) + H(f ) =) H(f ) � H(g), (19)

for arbitrary density g(x) with variance of �2.

So, N(0,�2) maximises the entropy.

14 / 25



(Centring and) Sphering

We have already mention centring a data matrix (translating so its
centroid is the origin) — assume X centred.

Sphering, transforms matrix so that its variance is the identity.

Recall S = n
�1

X
T
X . Calculate R = S

�1/2 (e.g. using method we
used for classical scaling) and then form sphered data matrix
W = XR .

The variance matrix of W is then

SW = n
�1

W
T
W = n

�1
R
T
X

T
XR = R

T
SR = Ip. (20)

Principal components then has nothing to use as

var(Wa) = a
T
SW a = a

T
a = 1, (21)

i.e. the variance is the same in all directions.
15 / 25



Summary of process and optimisation

1. Start with centred and sphered data matrix, W .

2. Choose initial unit projection vector, a.

3. Form projected data ua = Wa.

4. Form density estimate, f̂U,a(u), from u1, . . . , un.

5. Compute entropy H{f̂U,a(u)}.
6. Solve argmina:aT a=1 H{f̂U,a(u)}.

It is often possible to derive
@H{f̂U,a(u)}

@aj
analytically.

All other steps are usually carried out numerically.

Can build up multidimensional solutions, by then optimising over
unit b that is orthogonal to a, etc.

16 / 25



Principal Components of Beetle

●
●

●

●

●

●

●●●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

−40 0 20 40 60

−3
0

−1
0

10
30

PC 1

PC
 2

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

−40 0 20 40 60

−1
5

−5
0

5
10

PC 1

PC
 3

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

−30 −10 10 30

−1
5

−5
0

5
10

PC 2

PC
 3

17 / 25



ThreeD Projection Pursuit Solution

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●
●

●●

●

●

●
● ●

●

●

●

●

●

40 60 80 120

50
0

55
0

60
0

65
0

Direction 1

D
ire

ct
io

n 
2

●

●

●
●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●●
●
●

●

●

●
●●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●●

●

●
●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

40 60 80 120

10
0

20
0

30
0

40
0

Direction 1

D
ire

ct
io

n 
3

●

●

●
●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●
● ●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●●

●

●●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

500 550 600 650

10
0

20
0

30
0

40
0

Direction 2

D
ire

ct
io

n 
3

18 / 25



PCA Beetle with labels

●
●

●

●

●

●

●●●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

−40 0 20 40 60

−3
0

−1
0

10
30

PC 1

PC
 2

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

−40 0 20 40 60

−1
5

−5
0

5
10

PC 1

PC
 3

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

−30 −10 10 30

−1
5

−5
0

5
10

PC 2

PC
 3

19 / 25



3D PP solution with labels

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●
●

●●

●

●

●
● ●

●

●

●

●

●

40 60 80 120

50
0

55
0

60
0

65
0

Direction 1

D
ire

ct
io

n 
2

●

●

●
●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●●
●
●

●

●

●
●●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●●

●

●
●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

40 60 80 120

10
0

20
0

30
0

40
0

Direction 1

D
ire

ct
io

n 
3

●

●

●
●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●
● ●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●●

●

●●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

500 550 600 650

10
0

20
0

30
0

40
0

Direction 2

D
ire

ct
io

n 
3

20 / 25



Remarks

Have to choose starting value of a.

This value then gets changed by the optimiser as it tries to move
to a minimum.

Often, choose initial value of a using random values.

However, final solution then depends on initial random starting
position.

If initial value is in very uninteresting position, then final view can
be uninteresting also.

Optimiser often gets stuck in local minima.

21 / 25



Command for PP3

So, usually, we repeat the projection pursuit procedure from
multiple random starts and pick the best one.

We can get pseudo-p-values by performing projection pursuit on an
identical n, p configuration, but coordinates chosen at random.

beetle.PP3 <- PP3many(t(beetle), nrandstarts=100)

plot(beetle.PP3)

22 / 25



Plot showing PP3 indices

Projection Index Value Histogram

Projection Index

D
en

si
ty

12 14 16 18 20 22

0.
00

0.
05

0.
10

0.
15

0.
20

23 / 25



Remarks

PP obtains di↵erent information than PCA.

Sometimes it ’works’ better, sometimes not.

PCA uses centred and standardised variables (makes marginal
variance the same for all variables, i.e. on diagonal of variance
matrix).

PP uses centred and sphered — transforms variance matrix to
identity — much harsher.

Both methods can additionally use the Varimax method afterwards.

Rotate solution in plane of projection solution to try and put
maximum weight on fewest original variables. This is a penalised
optimisation like lasso. Can be added to PP optimisation as
penalty.

24 / 25



Summary

PCA equate interesting with large variance, which does
not always equal clustering.

Exploratory PP looks for divergence from Gaussian distribution +
ignores variance.

Gaussian maximises entropy

Sphering variance matrix to identity

Exploratory PP is numerically optimised, PCA computed
’immediately’ from eigendecomposition.

25 / 25



Elements of Statistical Learning: Lecture 16.
Independent Components Analysis

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2023 (revision 5). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 18



Background

Often data comes as a set of results and we think there are
common underlying reasons.

I Educational tests. Tests in a variety of subjects (maths,
english, languages, science, humanities) and results might be
seen as a reflection of pupils’ general intelligence, drive, social
background.

I a large portfolio of financial funds — prices driven by common
factors (economy, politics, energy costs, global pandemic).

Let’s use first scenario. Suppose the test result for pupil
i = 1, . . . , n on test j = 1, . . . , p is Xi ,j

2 / 18



Factor Model

Then, can imagine

Xi ,1 = a1,1Si ,1 + a1,2Si ,2 + · · ·+ a1,pSi ,p (1)

Xi ,2 = a2,1Si ,1 + a2,2Si ,2 + · · ·+ a2,pSi ,p (2)

...
...

Xi ,p = ap,1Si ,1 + ap,2Si ,2 + · · ·+ ap,pSi ,p (3)

The X will be correlated, but we want the S to be uncorrelated (to
make interpretation easier).

Using SVD we have X = UDV
T . Let S =

p
nU, (n ⇥ p) and

A
T = DV

T/
p
n, we can write X = SA

T .

To make the maths a bit simpler we assume that the X is centred
(and hence so is S).

3 / 18



Remarks on Factor Model

What is (empirical) covariance of S?

n
�1

S
T
S = n

�1p
nU

T
U
p
n = Ip, (4)

so S variables are uncorrelated.

Let R be a p ⇥ p orthogonal matrix and write

X = SA
T = SRR

T
A
T = S

⇤(A⇤)T , (5)

and
cov(S⇤) = R

T cov(S)R = R
T
R = Ip. (6)

So, there is no unique decomposition into uncorrelated factors
S1, . . . , Sp. In (5) either S or S⇤ will do the job, even though these
are potentially di↵erent factors.

4 / 18



Factor Analysis Model

Xi ,1 = a1,1Si ,1 + a1,2Si ,2 + · · ·+ a1,qSi ,q + ✏i ,1 (7)

Xi ,2 = a2,1Si ,1 + a2,2Si ,2 + · · ·+ a2,qSi ,q + ✏i ,2 (8)

...
...

Xi ,p = ap,1Si ,1 + ap,2Si ,2 + · · ·+ ap,qSi ,q + ✏i ,p (9)

Here, there are q < p factors, ✏ are zero mean and uncorrelated
and S often assumed to be Gaussian.

Can fit using maximum likelihood, but identifiability problem
mentioned in (5) still exists.

So, some view this method with suspicion.

5 / 18



Independent Component Analysis

ICA model has same form as (1)–(3) except the S` are now
assumed to be statistically independent, not just uncorrelated.

This specifies relationships with moments of all orders concerning
S , not just second order.

Gaussian assumptions on S put us in the same situation as before
(as independence and uncorrelated are the same thing for
Gaussian).

So, independence assumptions do not help for Gaussian model.

Hence, for something unique, we have to assume that the S are
independent AND non-Gaussian.

6 / 18



ICA

As with Exploratory PP we sphere X — this is also known as
whitening.

Since both S ,X have identity covariance matrix, this means we are
searching for orthogonal A in the problem X = SA

T .

Problem is: find orthogonal A such that the components of vector
random variable S = AX are independent and non-Gaussian (n.b.
vectors here, data matrices come a bit later).

7 / 18



Cocktail party problem

A set of microphones Xj pick up a mixture of di↵erent independent
sources=, S` (people having di↵erent conversations).

ICA can perform blind source separation — disentangle the signals
from data Xj to estimate the original conversations S`.

ICA often uses entropy H.

8 / 18



Blind source separation of ICA

9 / 18



ICA: Measure of dependence

If Y ⇠ g (i.e. g is pdf of Y ) can write H(g) = H(Y ).

Define the mutual information between components of a
p-dimensional random vector Y to be

I (Y ) =
pX

j=1

H(Yj)� H(Y ), (10)

where H(Yj) is the entropy of the component Yj and H(Y ) of the
entire vector.

Not di�cult to see that
Pp

j=1 H(Yj) is the entropy of the

’independence version’ of the density of Y , i.e.
Qp

j=1 gj(yj) and
H(Y ) the entropy of the full p-dimensional density g(y). (Exercise
Homework 4)

10 / 18



ICA: Measure of dependence — 2
Now, if X has covariance I , and Y = A

T
X , with A orthogonal

then, it can be shown that (Exercise Homework 4):

I (Y ) =
pX

j=1

H(Yj)� H(X )� log | detA| (11)

=
pX

j=1

H(Yj)� H(X ). (12)

We are minimising this over A. Since X is fixed, the only thing
that can change are the Yjs, we need to minimise

Pp
j=1 H(Yj).

This amounts to making them all as non-Gaussian as possible.

In practice, a version of H(Yj) re-centred by H(�) is used, or
[DKL(g ||f ) from Lecture 15, called negentropy] which is � 0, then
minimising the sum amounts to trying to force all of the individual
negentropies to be as small as possible.

11 / 18



Example (from fastICA)
Let’s build a sine wave and a sawtooth function.

library("fastICA")

S <- cbind(sin((1:1000)/20), rep((((1:200)-100)/100), 5))

oldpar <- par(mfrow=c(2, 1))

plot(1:1000, S[,1 ], type = "l", main = "Original Signals",

xlab = "", ylab = "")

plot(1:1000, S[,2 ], type = "l", xlab = "", ylab = "")

0 200 400 600 800 1000

−1
.0

0.
0

0.
5

1.
0

Original Signals

0 200 400 600 800 1000

−1
.0

0.
0

0.
5

1.
0

12 / 18



Mix the signals

A <- matrix(c(0.291, 0.6557, -0.5439, 0.5572), 2, 2)

X <- S %*% A

plot(1:1000, X[,1 ], type = "l", main = "Mixed Signals",

xlab = "", ylab = "")

plot(1:1000, X[,2 ], type = "l", xlab = "", ylab = "")

0 200 400 600 800 1000

−1
.0

0.
0

0.
5

Mixed Signals

0 200 400 600 800 1000

−1
.0

0.
0

1.
0

13 / 18



Apply ICA

> a <- fastICA(X, 2, alg.typ = "parallel", fun = "logcosh",

alpha = 1, method = "R", row.norm = FALSE, maxit = 200,

tol = 0.0001, verbose = TRUE)

Centering

Whitening

Symmetric FastICA using logcosh approx. to neg-entropy function

Iteration 1 tol = 6.259096e-05

> plot(1:1000, a$S[,1 ], type = "l",

main = "ICA source estimates", xlab = "", ylab = "")

> plot(1:1000, a$S[, 2], type = "l", xlab = "", ylab = "")

14 / 18



Apply ICA Plots

0 200 400 600 800 1000

−1
.5

−0
.5

0.
5

1.
5

ICA source estimates

0 200 400 600 800 1000

−1
.5

0.
0

1.
0

15 / 18



Mix the signals

set.seed(100)

Xnoise <- X + matrix(rnorm(2000, mean=0, sd=0.4), ncol=2)

0 200 400 600 800 1000

−2
−1

0
1

Mixed Signals

0 200 400 600 800 1000

−1
0

1
2

16 / 18



Apply ICA Plots on the noisy version

0 200 400 600 800 1000

−2
0

1
2

ICA source estimates

0 200 400 600 800 1000

−3
−1

1
2

3

17 / 18



Summary

This lecture covered:

Common factors the idea

Factor model

Identifiability issues

Independent Components Analysis

Cocktail Party Problem

Examples using the fastICA package

18 / 18



Elements of Statistical Learning: Lecture 17.

Neural Networks

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2021 (revision 4). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 38



Background

Here, we are doing regression again.

In vector terms, we have

X a p-dimensional explanatory variable vector

Y the response, also known as a target

Note: when we collected data, then the vector X becomes the
data matrix X .

2 / 38



Projection Pursuit Regression

Here the model is

f (X ) =
MX

m=1

gm(!
T
mX ), (1)

this is an additive model on the derived directions Vm = !T
mX , and

not the X directly; !m are unit vectors

the functions gm are not specified and estimated as part of the
regression, along with the !m using a flexible smoothing method.

The function gm(!T
mX ) is called a ridge function in Rp and only

varies in the direction !m.

The Vm is the projection of X onto !m, and we want to find !m so
the model fits well: like projection pursuit.

3 / 38



PPR: Issues

The PPR model is extremely general and flexible.

E.g. X1 · X2 can be obtained from {(X1 + X2)2 � (X1 � X2)2}/4.

For large M, for appropriate {gm}, the PPR model can
approximate any continuous function on Rp arbitrarily well. Called
a universal approximator.

However, it is easy to overfit and so we need to keep things simple,
restrictions on M and, perhaps, the {gm}.

Interpretation can be very di�cult — map from inputs X to f can
be complex involving two layers of linear combination and the very
flexible {gm} functions.

The model with M = 1 is called the single index model.

4 / 38



How to fit PPR models

Suppose we have training data (xi , yi ), i = 1, . . . , n; xi 2 Rp

We wish to find approximate minimisers of the error

E =
nX

i=1

(
yi �

MX

m=1

gm(!
T
mxi )

)2

, (2)

over {gm} and direction vectors {!m}.

Let’s consider M = 1 model and drop the m subscript.

Given a direction, !, we can form vi = !T xi .

Now have a 1D smoothing problem of yi on vi . Can use, e.g.
smoothing spline.

5 / 38



Finding good directions

Assume that we’ve found a suitable g , via smoothing spline.

Now we want to minimise the error of !.

We can use Gauss-Newton search (i.e. numerical calculus).

Let !old be the existing estimate of !.

Then

g(!T xi ) ⇡ g(!T
oldxi ) + g 0(!T

oldxi )(! � !old)
T xi , (3)

6 / 38



Finding good directions — 2

So that

E =
nX

i=1

{yi � g(!T xi )}2 (4)

⇡
nX

i=1

{yi � g(!T
oldxi )� g 0(!T

oldxi )(! � !old)
T xi}2 (5)

=
nX

i=1

g 0(!T
oldxi )

2

⇢
yi � g(!T

oldxi )

g 0(!T
oldxi )

� (! � !old)
T xi

�2

=
nX

i=1

g 0(!T
oldxi )

2

⇢
!T
oldxi +

yi � g(!T
oldxi )

g 0(!T
oldxi )

�
� !T xi

�2
.(6)

This is just a weighted least squares regression with target⇥
!T
oldxi + {yi � g(!T

oldxi )}/g 0(!T
oldxi )

⇤
on the input xi with weights

g 0(!T
oldxi )

2 and no intercept. Gives !new.

7 / 38



Alternating/Iterating algorithm

The PPR algorithm proceeds by iterating:

I finding good g using current ! (e.g. smoothing spline)

I using g to update current ! to !

Iterate until convergence — e.g. only need to examine changes in
!.

For general M — add a (!m, gm) pair after convergence at each
stage.

Can decide M by examining drop in error as M increases — and
stop when error drop isn’t worth it — and/or cross-validation.

8 / 38



Neural Networks

Large class of models — variety of descriptions

We will discuss the single hidden layer back-propagation network or
single layer perceptron.

Possibly over-hyped in the sense that they are just nonlinear
statistical models.

However, to be fair, enormous computational resources have been
thrown at these problems and that it is this that has really helped
them become popular.

9 / 38



Neural Network Diagram (Fig. 11.2 in book)

10 / 38



Neural Network Explanation

The inputs (explanatory variables) X1, . . . ,Xp are at the bottom.

There are K units at the top. For regression usually K = 1.

For classification, the K units relate to K classes, with zero/one in
depending on whether the inputs have stimulated membership of
any of the classes.

Derived features Zm are created from linear combinations of the
inputs, and then Yk is modeled as a function of linear
combinations of the Zm.

11 / 38



Neural Network Model

The model is

Zm = �(↵0,m + ↵T
mX ), m = 1, . . . ,M, (7)

Tk = �0,k + �T
k Z , k = 1, . . . ,K , (8)

fk(X ) = gk(T ), k = 1, . . . ,K , (9)

where Z = (Z1, . . . ,ZM) and T = (T1, . . . ,TK ).

The function �(v) is called the activation function and often
chosen as

�(v) = 1/{1 + exp(�v)}, (10)

or something similar.

12 / 38



Example activation functions

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v

Si
gm

oi
d

1
0.5
10

Large s implies hard activation — bit like a threshold

13 / 38



Remarks

Intercepts can be added to add bias, where needed.

The output function gk(T ) permits a final transformation of the
vector of outputs.

For regression, typically gk(Tk) = Tk the identity.

For classification, the identity was used, but now the softmax
function

gk(T ) =
exp(Tk)PK
`=1 exp(T`)

, (11)

is used and occurs elsewhere in statistics.

14 / 38



Remarks — 2

The derived features Zm are more properly known as hidden units
as the Zm are not directly observed.

There is often more than one hidden layer.

If � is the identity, then we’re back to a linear model — so a
neural network is a nonlinear generalisation, greatly enlarged.

Indeed, if the values of the ↵s in (7) are small, then the X ! Z
relationship will be operating in the linear range of �.

15 / 38



Brain Model

The name, neural network, comes from the fact that they were
originally developed as models for the human brain. Each unit a
neuron and the connections are the synapses.

The sigmoid activation is a reflection of the fact that neurons need
enough stimulus to fire, and then, when they get it, it fires.

However, the brain is much more complex: neurons process stu↵
inside also themselves (each neuron may store di↵erent charges in
di↵erent places, hence can run parallel internal calculations and
calculations running through time); di↵erent types of chemical
internals and interactions between neurons; network architecture is
much more complex (not just layers); vastly more neurons; vastly
more power e�cient; comes with ‘built-in’ laws about the world.

16 / 38



Connection with PPR

(Artificial) Neural Network (ANN) with one hidden layer has the
same form as a the PPR model.

The main di↵erence is that the PPR model uses nonparametric
functions gm(v), whereas the ANN uses the simpler function based
on �(v).

Indeed, we can write

gm(!
T
mX ) = �m�(↵0,m + ↵T

mX ) (12)

= �m�(↵0,m + ||↵m||(!TX )), (13)

where !m = ↵m/||↵m|| is the mth unit vector.

Since �(v) is less complex than gm, you tend to need many more
nodes in ANN than functions in PPR to get the same
approximative power.

17 / 38



Fitting Neural Networks

The parameters are called weights.

The weights, {✓}, are:

{↵0,m,↵m : m = 1, . . . ,M} M(p + 1)weights (14)

{�0,k ,�k ; k = 1, . . . ,K} K (M + 1)weights. (15)

For regression we use the usual sum of squares criterion for
goodness of fit:

R(✓) =
KX

k=1

nX

i=1

{yi ,k � fk(xi )}2 (16)

Typically, we need some constraints as the global minimiser of
R(✓) is likely to severely overfit the data.

Minimisation happens by gradient descent, which is called back
propagation here.

18 / 38



Back propagation

We need to the gradient, which is not tricky to do, due to the
component nature.

Let zm,i = �(↵0,m + ↵T
mxi ) from (7) and let zi = (z1,i , . . . , zM,i ).

Then

R(✓) =
nX

i=1

Ri (✓) =
nX

i=1

KX

k=1

{yi ,k � fk(xi )}2, (17)

with derivatives via chain rule:

@Ri (✓)

@�k,m
= �2{yi ,k � fk(xi )}g 0

k(�
T
k zi + �0,k)zm,i , (18)

@Ri (✓)

@↵m,`
= �2

KX

k=1

{yi ,k � fk(xi )}g 0
k(�

T
k zi + �0,k)�k,m

⇥ �0(↵T
mxi + ↵0,m)xi ,`. (19)

19 / 38



Back propagation — 2

From these derivatives, we can form a back-propagation/gradient
descent algorithm by

�(r+1)
k,m = �(r)

k,m � �r

nX

i=1

@Ri (✓)

@�(r)
k,m

, (20)

and

↵(r+1)
m,` = ↵(r)

m,` � �r

nX

i=1

@Ri (✓)

@↵(r)
m,`

, (21)

where �r is called the learning rate.

Now write (18) and (19) as �k,izm,i and sm,ixi ,` respectively, these
can be seen as the “errors” of the current model at the output and
hidden layers, respectively.

20 / 38



Back-propagation equations

Putting it all together we can get

sm,i = �0(↵T
mxi + ↵0,m)

KX

k=1

�k,i�k,m (22)

These are called the back-propagation equations.

The algorithm proceeds in two stages:

Forward pass: the current weights are fixed, and the predicted
values f̂k(xi ) are computed from (7)—(9). Then

Backward pass: the errors �k,i are computed from (18) and then
back-propagated via (22) to give the errors sm,i and these form the
gradients for the updates in (20) and (21).

21 / 38



Issues around fitting ANNs

Starting values: usually chosen to be random, but small, near zero.
Then the ANN is similar to a linear model (as noted earlier) and
the weights get increased over time.

Overfitting: so many parameters so that optimising too hard
results in overfitted solution. Early techniques just stopped. More
modern versions optimise more, but shrink the weights — this is
like ridge regression.

Scaling of inputs: as with other methods but perhaps worse -
solution is sensitive to input scales. So, as with earlier methods
often centre and standardise inputs.

Number of hidden units and layers: usually use too many hidden
units, can always optimise their weights to zero. More tricky to
know the best number of hidden layers — experimentation with a
problem.

Multiple minima: the error R(✓) is non-convex and possesses many
local minima. So, final solution tends to depend heavily on the
starting weights. So, advice is to use multiple random starts or
things like bagging.

See examples in course book

22 / 38



Neural networks on Boston data

See:

https://www.r-bloggers.com/
fitting-a-neural-network-in-r-neuralnet-package/

Boston: data on housing in the Boston area, 506 and 14 variables.
Two possible response variables: MEDV - median value of
owner-occupied homes and NOX, nitrogen oxide levels

library("MASS")
librart("glmnet")
library("neuralnet")
data(Boston)

23 / 38



Boston data plot of two variables

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
● ●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●●

●
●

●●●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●●●●

●●

●
●
●●

●●
●●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●
●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

2 4 6 8 10 12

10
20

30
40

50

DIS: Weighted distances to five Boston employment centres

M
ED

V:
 m

ed
ia

n 
va

lu
e 

of
 o

w
ne

r−
oc

cu
pi

ed
 h

om
es

 in
 $

1k

24 / 38



Boston data plot of two other variables

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●
●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●
●●
●
●●

●
●

●●●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●●●●

●●

●
●
●●

●●
●●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●●●
●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

14 16 18 20 22

10
20

30
40

50

PTRATIO: pupil−teacher ratio by town

M
ED

V:
 m

ed
ia

n 
va

lu
e 

of
 o

w
ne

r−
oc

cu
pi

ed
 h

om
es

 in
 $

1k

25 / 38



Neural networks on Boston data

set.seed(500)
# Generate training and test set
train.index <- sample(1:nrow(Boston), round(0.75*nrow(Boston)))
train <- Boston[train.index,]
test <- Boston[-train.index,]

# Fit linear model to training set
Boston.train.lm <- lm(medv ~ ., data=train)

# Predict new Boston data on the linear model
pr.Boston <- predict(Boston.train.lm, newdata=test)

# Plot the predictions against the truth
plot(test$medv, pr.Boston, xlab="Actual Data", ylab="Predicted")
abline(a=0, b=1, lty=2)

ssq <- sum((pr.Boston - test$medv)^2)
cat("SSQ: ", ssq, "\n")

26 / 38



Continued — 2

# Fit updated model, by dropping insignficant variables
Boston.lm2 <- update(Boston.train.lm, . ~ . -indus-age-chas,

data=train)
pr.Boston2 <- predict(Boston.lm2, newdata=test)

# Plot the prediction of the updated model
points(test$medv, pr.Boston2, col=2)

ssq <- sum((pr.Boston2 - test$medv)^2)
cat("(Back. deletion:) SSQ: ", ssq, "\n")

# Create model matrices for ridge and lasso software
xB <- model.matrix(medv ~., train)[,-1]
xBtest <- model.matrix(medv ~., test)[,-1]
yB <- train$medv
# Compute Ridge CV value
cv.Boston.train <- cv.glmnet(xB, yB, alpha=0)
bestlam <- cv.Boston.train$lambda.min
cat("bestlam: ", bestlam, "\n")

27 / 38



Continued — 3

# Compute ridge model and prediction
Boston.train.ridge <- glmnet(xB, yB, alpha=0, lambda=0.5)
Boston.train.predict.ridge <- predict(Boston.train.ridge,

s=bestlam, newx=xBtest)

# Plot the predictions
points(test$medv, Boston.train.predict.ridge, col=3)

ssq <- sum((Boston.train.predict.ridge - test$medv)^2)
cat("(CV Ridge:) SSQ: ", ssq, "\n")

28 / 38



Predictions against truth

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

10 20 30 40 50

0
10

20
30

40

Actual Data

Pr
ed

ic
te

d

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

● ●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

LM
Back. del
Ridge

29 / 38



Neural Network code

# Get max and min of each variable in Boston
maxs <- apply(Boston, 2, max)
mins <- apply(Boston, 2, min)

# Rescale data to be on similar scales
scaled <- as.data.frame(scale(Boston, center=mins,

scale=maxs-mins))

# Get training and test set from scaled data
trainS <- scaled[train.index,]
testS <- scaled[-train.index,]

# Do neuralnet fit with two hidden layers with 5 and 3 nodes
nm <- names(trainS)
form <- as.formula(paste("medv ~",

paste(nm[!nm %in% "medv"], collapse=" + ")))
Boston.nn <- neuralnet(f=form, data=trainS, hidden=c(5,3),

linear.output=TRUE)

30 / 38



Neural Network code — 2

# Compute predictions from ANN model, omit medv
predict.Boston.nn <- compute(Boston.nn, testS[, 1:13])

# Undo the earlier scaling
predict.Boston.unsc <- predict.Boston.nn$net.result*

(max(Boston$medv)-min(Boston$medv)) + min(Boston$medv)

points(test$medv, predict.Boston.unsc, col=2)
legend(x="topleft", legend=c("LM", "ANN"), col=1:2, pch=1)

31 / 38



Predictions against truth

●
●

●

●

●

●

●
●

●

●

●

●
● ●

● ●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

10 20 30 40 50

−1
0

0
10

20
30

40
50

60

Actual Data

Pr
ed

ic
te

d ●

●

●

●

●

●

●

●

●●

●

●

● ●
● ●

●
●

●
●
●

●

●
●●

●

●

●
●

●
●

●●

● ●●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●● ●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

LM
ANN

32 / 38



Projection pursuit regression

Boston.ppr <- ppr( medv ~ ., data=trainS, nterms=2,
max.terms=5)

predict.Boston.ppr <- predict(Boston.ppr, newdata=testS)

predict.Boston.ppr.unsc <- predict.Boston.ppr*
(max(Boston$medv)-min(Boston$medv)) + min(Boston$medv)

points(test$medv, predict.Boston.ppr.unsc, col=2)
legend(x="topleft", legend=c("LM", "PPR"), col=1:2, pch=1)

33 / 38



Predictions against truth

●
●

●

●

●

●

●
●

●

●

●

●
● ●

● ●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

10 20 30 40 50

−1
0

0
10

20
30

40
50

60

Actual Data

Pr
ed

ic
te

d

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●
● ●

●

●

●

LM
PPR

34 / 38



Sum of squared error

Method SSQ
Least Squares 3939
Back deletion 4020

Ridge 3981
Lasso 3938
ANN 2073
PPR 1651

35 / 38



Fitted neural network

36 / 38



PPR solution

Smoothing functions gm are supersmoother.
Directions

Variable !1 !2

crim -0.507 -0.174
zn -0.002 -0.010

indus 0.058 -0.275
chas -0.010 0.136
nox -0.168 -0.408
rm 0.541 -0.509
age -0.052 0.158
dis -0.258 -0.544
rad 0.091 0.226
tax -0.156 0.042

ptratio -0.163 0.056
black 0.120 0.031
lstat -0.525 -0.269

37 / 38



Summary

This lecture covered

Projection Pursuit Regression (PPR)

Fitting PPR models

Neural Networks Model connection to PPR + the brain model

Fitting Neural Networks Back-propagation

Issues around fitting ANNs

38 / 38



Elements of Statistical Learning: Lecture 18.
Tree-Based Methods

Guy Nason
1

Department of Mathematics
Imperial College

1©Imperial College 2019 (revision 2). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 31



Introduction

Suppose we have a list of variables X1,X2,X3.

These variables come together to make a 3D feature space.

We assume that, for individual i , there is a response Yi that is

associated with Xi ,1,Xi ,2,Xi ,3.

E.g. in the child height-weight data, child 5 is X5,1 = female, of

age X5,2 = 191 months (nearly 16), of height X5,3 = 158.75cm and

weight Y5 = 51.02kg.

Tree-based methods partition feature space into a set of

rectangles, and then assign a constant to each of those rectangles.

The constant is the estimate for the ‘truth’ in that region of the

explanatory variables.

2 / 31



Intro: Classification and Regression Trees (CART)

3 / 31



Nomenclature

The top of the tree is called the root.

The bottom nodes R1, . . . ,R5 are called leaves or terminal nodes.

Decisions split the tree, there are no decisions at the leaves.

The outcome for a new observation can be obtained by looking at

its explanatory variables, then answering the ‘decision questions’ at

each node, following the Yes/No questions, and traversing the tree

from the root to one of the leaves.

The leaves can be numerical values (for regression) or categories

(for classification).

4 / 31



Intro: Options

Let’s now consider 2D explanatory variables (e.g. age & height).

Could partition space with separators at any angle or even shape.

Extremely hard to do computationally and also very hard to study.

Simpler: use horizontal and vertical splits only — corresponds to

simple functions of the explanatory variables, but again, still hard

to study/explain and a huge range of possible choices.

So, what has survived are recursive binary splits — like the

right-hand plot of the previous picture.

5 / 31



Intro: Binary splits explained

The binary splits depicted in the top-right can be explained by:

The tree in the bottom-right.

First, decide if X1  t1. If so, then proceed down that branch;

Then look in the region to the left of X1  t1,

That is then split on X2  t2 and depending on which will either

give the value R1 or R2.

The estimated function is shown in the bottom-right.

6 / 31



Example: on the child data

library("rpart") # Does trees, see also tree package

library("rattle")

library("rpart.plot") # Nice plotting functions

library("RColorBrewer") # Has color palettes

childtree2D <- rpart( weight ~ height + age, data=childhwDF)

# Regular plot

plot(childtree2D,

main="Child Data: height and age variables")

text(childtree2D)

# Fancy plot

fancyRpartPlot(childtree2D, main=

"Child Data: height and age variables")

7 / 31



Regular Plot

Child Data: height and age variables

|height< 151.5

height< 143.9 height< 164.2

age< 176.5 age< 192

34.24 40.58

45.78 49.97
53.41 63.42

8 / 31



Fancy Plot

height < 152

height < 144 height < 164

age < 177 age < 192

yes no

1

2

4 5

3

6

12 13

7

14 15

height < 152

height < 144 height < 164

age < 177 age < 192

46
n=237  100%

38
n=79  33%

34
n=29  12%

41
n=50  21%

50
n=158  67%

47
n=105  44%

46
n=76  32%

50
n=29  12%

55
n=53  22%

53
n=42  18%

63
n=11  5%

yes no

1

2

4 5

3

6

12 13

7

14 15

Child Data: height and age variables

Rattle 2020−Feb−24 13:19:05 magpn 9 / 31



How good is it?
# Generate test and training set indices

set.seed(20)

nkids <- nrow(childhwDF)

nsample <- round(0.6*nkids)

train <- sample(1:nkids, size=nsample)

test <- -train

# Train tree

kids.train.tree <- rpart(weight ~ height + age,

data=childhwDF, subset=train)

fancyRpartPlot(kids.train.tree) # Plot tree

# Get explanatory variables on test set

kids.newdata <- childhwDF[test,]

# Predict values on test set using model

kids.tree.predict <- rpart.predict(object=kids.train.tree,

newdata=kids.newdata)

10 / 31



How good is it? — 2

# Get the truth too

kids.truth <- childhwDF[test, "weight"]

# Calculate least squares linear estimator on these vars

kids.lm <- lm(weight ~ height+age, data=childhwDF,

subset=train)

# Predictions using this model

kids.lm.predict <- predict(kids.lm, newdata=kids.newdata)

# Plot tree predictions against truth

oldpar <- par(pty="s") # Square plot

eqscplot(kids.truth, kids.tree.predict, xlab="True Weight",

ylab="Predicted Weight",

main="Predicted weight againts true weight")

points(kids.truth, kids.lm.predict, col=2)

abline(a=0, b=1, lty=2) # Plot y=x line for visual guidance

par(oldpar)

11 / 31



How good is it? — 3

# Compute SSQ error for both sets of predictions

ssq.tree <- sum( (kids.tree.predict-kids.truth)^2)

ssq.lm <- sum( (kids.lm.predict-kids.truth)^2)

cat("SSQ Tree: ", ssq.tree, "\n")

cat("SSQ LM: ", ssq.lm, "\n")

The printed SSQ values are:

SSQ Tree: 3655.515

SSQ LM: 2767.588

12 / 31



Tree constructed from training set of child data

height < 154

height < 146

height < 152

age < 192

height < 164

age < 177

age >= 166

yes no

1

2

4

5

10 11

3

6

12

24

48 49 25 13 7

height < 154

height < 146

height < 152

age < 192

height < 164

age < 177

age >= 166

46
n=142  100%

40
n=60  42%

35
n=21  15%

42
n=39  27%

41
n=28  20%

44
n=11  8%

50
n=82  58%

49
n=74  52%

47
n=47  33%

46
n=36  25%

44
n=17  12%

48
n=19  13%

50
n=11  8%

52
n=27  19%

63
n=8  6%

yes no

1

2

4

5

10 11

3

6

12

24

48 49 25 13 7

Rattle 2020−Feb−24 13:19:05 magpn

13 / 31



Tree predictions and those from linear modelling

●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

● ●

●

●

●

●

●

●

●●

●

●

● ●

●

● ●●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

30 40 50 60 70

30
40

50
60

70

Predicted weight againts true weight

True Weight

Pr
ed

ic
te

d 
W

ei
gh

t

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

14 / 31



How it works: growing a tree
The algorithm needs to decide:

which variables to split on;

whereabouts to split on a given variable;

and what shape the tree is (e.g. binary or ternary, etc)

Suppose that we have a partition into M regions: R1, . . . ,RM ,

and model the response as constant cm in each region so that

f (x) =

MX

m=1

cmI(x 2 Rm). (1)

We want to minimise the criterion:

SSQ =

nX

i=1

{Yi � f (Xi )}
2 . (2)

15 / 31



How it works: growing a tree — 2
Since we’re fitting a constant to each region, the estimate must be

the mean of all the Yi in that region, i.e.

ĉm = n
�1
m

X

i :Xi2Rm

Yi = ave(Yi |Xi 2 Rm). (3)

where nm are the number of Xi 2 Rm.

Finding the best binary partition in terms of SSQ is

computationally infeasible.

So, we use a greedy algorithm. Start with all the data.

Consider a splitting variable j = 1, . . . , p and split point s

(somewhere on Xj), and define the pair of half-planes:

R1(j , s) = {x |Xj < s} and R2(j , s) = {x |Xj > s}. (4)

16 / 31



How it works: growing a tree — 3

Then, we seek the splitting variable j and split point s that solves

min
j ,s

8
<

:min
c1

X

Xi2R1(j ,s)

(Yi � c1)
2
+min

c2

X

Xi2R2(j ,s)

(Yi � c2)
2

9
=

; . (5)

The inner minimisations are easily solved by

ĉ1 = ave(Yi |Xi 2 R1(j , s)) and similarly for ĉ2.

For a given j , finding the split s that minimises

X

Xi2R1(j ,s)

(Yi � ĉ1)
2
+

X

Xi2R2(j ,s)

(Yi � ĉ2)
2, (6)

isn’t too tricky. Why?

17 / 31



How it works: growing a tree — 4

The sum in (6) does not change, except when s crosses Xi for

some i .

When s crosses Xi from left to right, then one point (Xi ,Yi )

moves from the right-hand term, to the left hand-term.

So, there will only be n + 1 (quickly computable) di↵erent values

for (6) and we choose the s that gives us the minimum.

We can repeat the inner minimisation over all variables j and this

is worst case O{p(n + 1)} calculation.

We partition the data into the two resulting regions, and the

repeat the splitting process on each of the regions.

This is then repeated. However, when do we stop?

18 / 31



Ideas for stopping

If the tree is grown too large, down to the bottom, then there will

be one ‘leaf’ for each data point and the ĉm will match the Yi .

Such a model is not a summary of the data and overfits.

If the tree is too small, i.e. not many splits, then we might miss

important structure in the data.

This is underfitting.

We could grow the tree and stop when the next split does not

substantially improve the sum of squares criterion.

However, this can quickly be shown to be a poor strategy, as the

split-after-next could suddenly be an e↵ective one, with a large

reduction of SSQ.

19 / 31



Better Idea: Cost-complexity pruning

The usual strategy is: grow a large tree T0, only stopping when

the leaves contain five (Xi ,Yi ) or fewer.

Then we prune the tree, using cost-complexity pruning.

Define a subtree T ⇢ T0, to be any tree that can be obtained by

pruning T0. That is, collapsing any number of its internal

(non-terminal) nodes.

We index terminal nodes (leaves) by m, with node m representing

region Rm.

Let |T | be the number of terminal nodes (leaves) of tree T .

20 / 31



Better Idea: Cost-complexity pruning — 2

Let ni as previously described (number of Xi 2 Rm).

Then ĉm = n
�1
m

P
Xi2Rm

Yi , and

Qm(T ) = n
�1
m

P
Xi2Rm

(Yi � ĉm)
2
.

Then, the cost-complexity criterion is

C↵(T ) =

|T |X

m=1

nmQm(T ) + ↵|T |. (7)

The idea is to find, for each ↵, the subtree T↵ ✓ T0 that

minimizes C↵(T ).

21 / 31



Cost-complexity pruning: how does it work?

If T is a small tree, then |T | is small, but
P|T |

m=1 nmQm(T ) is large

(not great fit).

If T is a large tree, then |T | is large, but
P|T |

m=1 nmQm(T ) is small

(overfit).

So, with minimizing C↵(T ) we want to hit the sweet spot and the

‘rate of interchange’ between |T | and
P|T |

m=1 nmQm(T ) is governed

by ↵.

So, if ↵ = 0, then the full tree is fitted.

If ↵ is very large, then a small tree gets fitted.

22 / 31



Weakest link pruning

We create a sequence of trees.

Start with the full tree, T0.

Then, successively collapse the internal node with the smallest

per-node increase in
P|T |

m=1 nmQm(T ).

Until we end up with a single node tree.

It can be shown that this sequence contains tree T↵, the tree that

minimises C↵(T ).

Estimation of ↵ is found usually by five- or ten-fold

cross-validation. The final tree is T↵̂.

23 / 31



Pruning and Cross-validation example

library("tree") # Use the tree library, not rpart

kids.train.tree <- tree(weight ~ height + age,

data=childhwDF, subset=train)

# This tree turns out to be the same as the one from rpart,

# but I think that this is not always the case

kids.train.tree.cv <- cv.tree(kids.train.tree)

plot(kids.train.tree.cv)

The plot suggests we choose a big tree.

24 / 31



Pruning and Cross-validation

size

de
vi

an
ce

50
00

60
00

70
00

80
00

90
00

10
00

0

1 2 3 4 5 6 7 8

4000 1300  580  480  160  100 −Inf

25 / 31



Classification Trees

Here, the outcome is not a ‘number’, but a discrete target, e.g.

category 1, 2, . . . ,K .

E.g. you have a number of attributes about you and the categories

are the movies you might like to watch (e.g. historical, comedy,

romantic, documentary, thriller, horror, scifi, etc) then can build

recommender system to recommend new movies to people.

Few changes from regression trees. For regression we used Qm(T ),

SSQ not appropriate for classification.

However, we can use

p̂m,k = n
�1
m

X

Xi2Rm

I(Yi = k), (8)

the proportion of class k observations in node m.

26 / 31



Classification Trees — 2

We classify the observations in node m to class

k(m) = argmaxk p̂m,k , the majority class in node m.

Then we can use the following alternatives for Qm(T ):

Misclassification error:

n
�1
m

P
i2Rm

I{Yi 6= k(m)} = 1� p̂m,k(m).

Gini index:P
k 6=k 0 p̂m,k p̂m,k 0 =

PK
k=1 p̂m,k(1� p̂m,k).

Cross-entropy:

�
PK

k=1 p̂m,k log p̂m,k .

27 / 31



Pros and Cons of CART

Method is simple — basic idea works well for regression and

classification.

Easily explained to non-technical person (just follow tree)

Fast to compute.

Lack of continuity: small changes in input data can result in very

di↵erent trees.

Ine�cient in some cases (e.g. class divide lines on a line not

parallel to axes

28 / 31



Oncology Example

Application of CART analysis to the prostate biopsy deci-

sion results in a significant reduction in unnecessary biop-

sies while retaining a high degree of sensitivity when com-

pared with the standard of performing a biopsy of all pa-

tients with an abnormal PSA or DRE.

Conclusion of ‘Improved Detection of Prostate Cancer using

Classification and Regression Tree Analysis’, Garzotto, M. et al.

(2005), Journal of Clinical Oncology, 23, 4322–4329.

PSA: prostate-specific antigen; DRE: digital rectal examination.

29 / 31



CART for Prostate Cancer Data

30 / 31



Summary

This lecture covered

Basic idea of a tree

An example of a regression tree on the child data

How to grow a tree

How to stop growing

How to choose the ‘right’ tree

Classification trees

31 / 31



Elements of Statistical Learning: Lecture 19.
Model Inference, Averaging, Bootstrap, Bagging

and Random Forests

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2019 (revision 2). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 28



Bootstrap

In the beginning is a distribution function F .

Suppose we acquire an IID sample {Xi}ni=1 from F .

A statistic, ✓, is some functional of F . E.g. the mean of Xi

✓(F ) =

Z
x dF (x) =

Z
xf (x) dx . (1)

We can estimate ✓(F ) by replacing F by the empirical distribution
function:

F̂n(x) = n
�1

nX

i=1

I(Xi  x). (2)

From earlier courses (or books) that Fn(x) ! F (x) in several
modes of convergence (e.g. almost surely, uniformly)

2 / 28



Bootstrap — 2

We can simulate from F̂n(x) as it puts mass of 1/n on each of the
X1, . . .Xn.

So, let X (1)
1 , . . . ,X (1)

n be a random sample from X1, . . . ,Xn with
replacement.

So, X (1)
1 is picked at random from X1, . . . ,Xn, each with

probability 1/n, then replaced, and then this repeated n times, to

get X (1)
2 ,X (1)

3 , . . .

Call {X (b)
i }ni=1 the bth bootstrap sample and let their empirical

distribution be F̂
(b) for b = 1, . . . ,B

3 / 28



Mean example

Let’s return to our mean example.

We replace F by F̂ in our mean functional (1).

✓̂ = ✓(F̂ ) =

Z
xdF̂ (x) = n

�1
nX

i=1

Xi , (3)

as dF̂ (x) puts a point mass of n�1 at each Xi .

Or, if you refer a formula to ’magic’ then the (distributional)
derivative of F̂ is

dF̂ (x) = n
�1

nX

i=1

�(x � Xi )dx , (4)

where �(x) is the Dirac delta function.

4 / 28



Sampling Distribution

Usually most interested in the sampling distribution of ✓̂ around ✓.

Classically, we’d assume a distribution for {Xi} (eg normal) and
use this to work out the distributional properties of ✓̂.

E.g. if Xi ⇠ N(µ, 1), then X̄ ⇠ N(µ, n�1).

However, {X (b)
i } gives us direct information on the sampling

distribution, F̂ (x), as it is a sample from that distribution and we
can repeat the sampling operation as often as we like.

Loosely speaking, we can estimate the distribution of the
distribution and get a handle on the sampling distribution of things
like ✓̂, without making strong distributional assumptions on Xi

and/or F .
Bootstrap also works, when it is hard to work out the maths

5 / 28



Example: estimating � from exponential

(Also, read §8.2 in ELS.)

Suppose X ⇠ Exp(1/4), so mean and sd are 4 respectively.

bsexp <- function (Bsims=100, n=30, the.seed=500)

{

set.seed(the.seed)

x <- rexp(n, rate=1/4) # Generate sample

bssd <- rep(0, Bsims) # Space for the bootstrap sd

for(b in 1:Bsims) {

bs.sam <- sample(x, size=n, replace=TRUE)

bssd[b] <- sd(bs.sam)

}

6 / 28



Example: estimating � — 2

nts <- 10000 # True samples (for comparison)

tsd <- rep(0, nts)

for(i in 1:nts) {

x <- rexp(n, rate=1/4)

tsd[i] <- sd(x)

}

return(list(bssd=bssd, tsd=tsd))

}

> tmp <- bsexp(Bsims=10000, the.seed=102)

> quantile(tmp$bssd, probs=c(0.025, 0.975)) # uses SINGLE sample

2.5% 97.5%

2.177554 4.347557

> quantile(tmp$tsd, probs=c(0.025, 0.975))

2.5% 97.5%

2.329919 6.078311

7 / 28



Bagging
Bootstrap (above) was used to discover sampling distribution info.

We can use it to find better estimators also.

Suppose we have regression data (as usual)
Z = {(x1, y1), . . . , (xn, yn)} and then fit a regression model f̂ (x) at
input x .

We can produce B bootstrap samples Z (b) for b = 1, . . . ,B and
each one giving estimate f̂

(b)(x).

The Bootstrap aggregation, or Bagging, estimate averages these
predictions over many bootstrap samples by

f̂bag(x) = B
�1

BX

b=1

f̂
(b)(x). (5)

8 / 28



(Actual) bagging

Let P̂ be the distribution that puts mass of n�1 onto each of the
(xi , yi ).

The ”true” bagging estimate is defined by EP̂{f̂
⇤(x)}, where f̂

⇤ is

obtained from a set Z ⇤ = {(x⇤i , y⇤i )}ni=1, where each (x⇤i , y
⇤
i ) ⇠ P̂ .

Then f̂bag(x) is an estimate of the true bagging estimate,
approaching as B ! 1.

The bagged estimate will only di↵er from the original estimate,
f̂ (x), when the estimator is a nonlinear or adaptive estimator.

If the estimator is linear then f̂bag(x) ! f̂ (x) as B ! 1.

9 / 28



Bagging Regression Trees
tmp <- tree(weight ~height+age+sex, data=childhwDF)

plot(tmp) # Tree on actual data

text(tmp)

|height < 151.511

height < 143.891 height < 164.211

age < 176.5
age < 142age < 165.5

age < 192

height < 170.18

34.24 40.58

39.73 47.66 43.97
49.97

53.41
57.74 68.15

10 / 28



Bootstrap data frame

> bsdf <- function (df)

{

n <- nrow(df) # number of cases

# Bootstrap sampling indices

bs.sample <- sample(1:n, size=n, replace=TRUE)

return(df[bs.sample,]) # Return the bootstrapped data frame

}

Now bootstrap tree

set.seed(100)

tmpdf <- bsdf(childhwDF)

tmp <- tree(weight ~height+age+sex, data=tmpdf)

plot(tmp)

text(tmp)

11 / 28



Bagging Regression Trees — 1

|height < 153.416

height < 143.256 height < 169.291

height < 163.576 age < 189.5

age < 178.5 age < 203

32.78 40.31

47.81 51.68
52.26 61.14 65.36 74.39

12 / 28



Bagging Regression Trees — 2

|height < 155.956

height < 147.701

height < 143.256
age < 163.5

age < 178.5

age < 187

height < 163.576 height < 166.497
33.81 37.09 43.25

42.42 48.58

47.51 51.96 52.00 61.70

13 / 28



Bagging Regression Trees — 3

|height < 163.576

height < 147.701

height < 141.986 height < 152.146
age < 187

age < 191
height < 164.846

33.07 37.83 42.45
46.07 52.28

57.67 52.07
58.72

14 / 28



Bagging Regression Trees

So, we generate MANY bootstrapped trees.

Then, given a new case, run that case through every tree.

Then average the results from each tree.

E.g. suppose child: male, age=162 months & height 162.5 then:

Tree 1: right>left>left! 47.81
Tree 2: right>left>left! 47.51
Tree 3: left>right>right>left! 46.07

Bagged prediction over three trees =
(47.81 + 47.51 + 57.67)/3 = 51.0.

Usually, do many more trees.

15 / 28



Why does bagging work?

Assume that training observations {(xi , yi )}ni=1 are drawn
independently from distribution P .

Think about the ideal bagging estimator fag(x) = EP f̂
⇤(x).

x is fixed and the bootstrap data (x⇤i , y
⇤
i ) is drawn from P , NOT

the data.

So, it’s not a practical estimate, but useful to use to think about
the problem.

Now consider . . .

16 / 28



Why does bagging work? — 2

EP

h
{Y � f̂

⇤(x)}2
i

= EP

h
{Y � fag(x) + fag(x)� f̂

⇤(x)}2
i

(6)

= EP
⇥
{Y � fag(x)}2

⇤
+ EP

h
{f̂ ⇤(x)� fag(x)}2

i

� EP
⇥
{Y � fag(x)}2

⇤
. (7)

The cross term

EP

h
{Y � fag(x)}{fag(x)� f̂

⇤(x)}
i
= 0, (8)

because the two terms are statistically independent as f̂ ⇤(x) is
generated by the resampling process and the first term involves P
and EP{f̂ ⇤(x)} = fag(x).

Hence, the true population aggregate never increases mean
squared error, which suggests bagging will often decrease mean
squared error.

17 / 28



Bagging Trees

The bootstrap trees look similar.

In fact, they tend to be highly correlated (especially, when there
are ‘dominant’ variables).

Suppose W1, . . . ,WB are a set of independent random variables,
with variance �2.

Let W̄ = B
�1PB

b=1Wb. Then

var(W̄ ) = B
�2 var(

BX

b=1

Wb) = B
�2

BX

b=1

var(Wb) = B
�2

BX

b=1

�2 = B
�1�2,

(9)
and var(W̄ ) = B

�1�2 ! 0 as B ! 1.

18 / 28



Bagging Trees — 2

Now suppose cov(Wb,Wd) = �2⇢ > 0 for b 6= d , then

var(W̄ ) = B
�2 var(

BX

b=1

Wb) = B
�2 cov(

BX

b=1

Wb,
BX

d=1

Wd) (10)

= B
�2

BX

b=1

BX

d=1

cov(Wb,Wd) (11)

= B
�2

8
<

:

BX

b=1

cov(Wb,Wb) +
BX

b=1

BX

d=1,d 6=b

cov(Wb,Wd)

9
=

;

= B
�2

�
B�2 + B(B � 1)⇢�2

 
(12)

= �2/B + ⇢�2 � ⇢�2/B = ⇢�2 +
1� ⇢

B
�2, (13)

which does not tend to 0 as B ! 1. So, correlated trees limits
the e↵ectiveness of bagging.

19 / 28



Random Forests

How can we make the trees be random and look less similar?

Essentially, we add an extra step into the tree construction.

At each tree split decision, we randomly select a set of variables to
split on.

If a couple of variables are dominant, then occasionally they do not
get considered to split.

Even thought, in regular tree construction, they might be good
choices.

See Algorithm 15.1 in ELS.

20 / 28



Random Forests Algorithm 15.1

1. For b = 1, . . . ,B :
1.1 Draw a bootstrap sample Z

⇤ of size n from the training data.
1.2 Grow a random-forest tree Tb to the bootstrapped data, by

recursively repeating the following steps for each terminal node
of the tree, until the minimum node size nmin is reached.
1.2.1 Select m variables at random from the p variables.
1.2.2 Pick the best variable/split-point among the m.
1.2.3 Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}Bb=1.

For a prediction at new point x :
Regression: f̂

B
rf (x) = B

�1PB
b=1 Tb(x).

Classification: let Ĉb(x) be the class prediction of the bth random-
forest tree. Then Ĉ

B
rf (x) = majority vote{Ĉb(x)}Bb=1.

21 / 28



Child HW example (small number of vars)
library("randomForest")

tmp <- randomForest(weight~sex+age+height, data=childhwDF)

plot(tmp)

0 100 200 300 400 500

40
50

60
70

tmp

trees

Er
ro
r

22 / 28



Child HW example: variable importance plot

varImpPlot(tmp)

sex

age

height

●

●

●

0 1000 2000 3000 4000 5000 6000

tmp

IncNodePurity

23 / 28



Random Forests — Out of bag samples

In cross-validation, we removed a point i , computed the estimator
without that point, then compared the fit without the point f̂ (�i)

to yi .

With random forests, we can do that as we go along and as we add
trees, get a continually updated plot of the prediction error with
those trees.

How? Essentially compare (xi , yi ) to trees produced by bootstrap
samples that (randomly) did not contain that point.

This gives plots like the first one: 0 100 200 300 400 500

40
50

60
70

tmp

trees

Er
ro
r

24 / 28



Random Forests — Variable Importance Plot

At each split in the tree, the improvement in the split-criterion is
added to the importance measure for that variable, and then this
accumulated over all trees in the forest.

Alternatives can involve prediction accuracy. E.g. by threading
OOB samples down, you can measure the predictive performance
of variables, and then averaged across the forest.

This gives plots like the 2nd one:

sex

age

height

●

●

●

0 1000 2000 3000 4000 5000 6000

tmp

IncNodePurity

25 / 28



Proximity Maps
Start with n ⇥ n proximity matrix — all set to zero.

Indicates the similarity/proximity between individuals.

As the OOB samples are propagated down, if they end up in the
same terminal node, then increment their proximity count by one.

Turn proximities into dissimilarities (d = 1� p/maxp), then use
scaling to plot how the individuals relate to each other from the

point of view of the random forest algorithm).

## Do MDS on 1 - proximity:

childhw.mds <- cmdscale(1 - tmp$proximity, eig=TRUE)

op <- par(pty="s")

pairs(cbind(childhwDF[,1:3], childhw.mds$points), cex=0.6,

gap=0, col=(c("red", "blue"))[childhwDF[,1]],

main="Child HW Data: Predictors and MDS of RandomForest Proximity")

par(op)

26 / 28



Child HW example: proximity plot

sex
14
0

18
0

22
0

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●●

●

●●●●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●
●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●
●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

−0
.4

0.
0

0.
4

●

●

●●●

●

●

●

●

●

●●
●●

●

●

●

●●●

●

●

●

●

●

●●

●
●●

●●●

●
●
●

●
●

●●

●
●
●●●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●
●

●●

●
●●●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●●
●●
●

●

●

●
●

●
●●

●

●
●
●

●●

●
●

●

●
●

●

●●

●●

●●

●

●●

●

●

●

●
●
●

●●

●
●

●

●●●
●

●

●

●●
●
●

●
●
●
●

●
●●

●
●
●●●

●

●●
●

●

●●

●

●

●
●
●●

●

●
●

●
●●●●●
●

●

●
●

●

●●

●●●●
●

●
●
●●
●
●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●
●
●

●

●

●

●

●●

●

1.0 1.4 1.8

●

●●
●
●●●

●

●

●

●
●●
●
●
●

●
●●
●

●
●
●

●●●●●
●

●

●
●
●

●

●
●●●●
●
●
●
●●●
●

●

●
●

●●●

●●●●

●●●

●

●●

●●
●
●
●

●●
●
●

●
●
●

●

●●●
●●

●●●
●

●
●
●
●
●●

●

●
●
●
●

●
●
●●

●●●●
●●●
●●●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

140 180 220

● ●● ● ●● ●● ●●● ●●●●● ●●● ●●● ● ● ●● ● ● ●● ●●●● ● ●● ● ●●●●●●● ●● ●● ●● ●●●●● ● ● ●● ●●●● ●●● ●● ●●● ● ●● ●●●●● ●●● ●●● ● ●●●● ●●●● ● ●● ● ●●● ●● ●● ● ●● ● ●

●●● ●●● ●●●● ●● ●●● ● ●● ● ●●●● ●●● ●● ●●● ● ● ●●● ●● ●●●●●●●● ●●●● ●●●● ●● ●● ●●● ●●● ●●●● ● ●● ●● ●● ●●●● ●● ●●● ● ●●●●●● ●● ●●● ●● ●● ●● ●●● ●●●●● ●●● ●●● ●●● ●● ● ●●●●

age

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

● ●●●

●

●

●

●● ●

●

●

●

●

●

● ●

●
●●

●●●

●
●

●

●
●

●●

●
●
●●●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●●

●●

●

●

●

●

●
●

●●

●
●● ●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

● ●
● ●

●

●

●

●
●

●
● ●

●

●
●

●

●●

●
●

●

●
●

●

●●

●●

●●

●

● ●

●

●

●

●
●

●

●●

●
●

●

●●●
●

●

●

●●
●

●

●
●
●
●

●
●●

●
●

●●●

●

●●
●

●

● ●

●

●

●
●

●●

●

●
●

●
● ● ●● ●

●

●

●
●

●

●●

●● ●●
●

●
●
●●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●●
●

●● ●

●

●

●

●
●●

●
●
●

●
●●

●

●
●

●

● ●● ●
●

●

●

●
●

●

●

●
●● ● ●

●
●

●
●●●

●

●

●
●

●● ●

●●●●

● ● ●

●

●●

●●
●
●

●

●●
●
●

●
●

●

●

●●●
●●

●●●
●

●
●

●
●

●●

●

●
●

●
●

●
●

● ●

●●● ●
● ●

●
● ●● ● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●● ●●●● ●● ●● ●●● ● ●● ● ●●● ● ● ●●●● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ● ● ●●●● ● ● ● ●● ●●● ● ●● ● ●● ● ●●● ●● ●●●●● ●● ●● ●● ●● ●●● ●● ●● ●●●● ● ●● ●●● ● ●●●● ●

●●● ● ●● ●●● ● ● ●● ●● ●● ● ●●● ●● ●●● ●● ● ● ●● ●●●● ●● ● ●● ●● ●●● ●● ●● ●● ●● ●● ●●● ● ● ● ●● ● ●● ● ●●● ●● ●● ●●● ● ● ●●●●● ●● ●●● ● ● ●● ●● ●● ●● ●● ●●● ●●●●● ●● ●●● ● ●●● ●● ●●●●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

● ●

●

●●● ●

●

●

●

●

●●

● ●

●●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

height

●

●

●● ●

●

●

●

●

●

●●
●●

●

●

●

● ● ●

●

●

●

●

●

●●

●
●●

●● ●

●
●

●

●
●

●●

●
●

●●●
●

●

●
●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

● ●

●●

●

●

●

●

●
●

●●

●
●● ●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●
● ●

●

●
●

●

●●

●
●

●

●
●

●

● ●

● ●

● ●

●

●●

●

●

●

●
●

●

●●

●
●

●

● ● ●
●

●

●

●●
●

●

●
●

●
●

●
●●

●
●

● ●●

●

● ●
●

●

● ●

●

●

●
●

● ●

●

●
●

●
● ●●● ●

●

●

●
●

●

● ●

● ●●●
●

●
●

● ●
●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●

●

●●

●

130 150 170

●

● ●
●

●●●

●

●

●

●
● ●

●
●

●

●
● ●

●

●
●

●

● ●●●
●

●

●

●
●

●

●

●
●●● ●

●
●

●
●●●
●

●

●
●

● ● ●

●●● ●

● ● ●

●

●●

● ●
●

●
●

●●
●

●

●
●

●

●

●●●
●●

●● ●
●

●
●

●
●

●●

●

●
●

●
●

●
●

●●

● ●● ●
●●
●

●●●● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

−0.4 0.0 0.4

●● ●●●● ● ●● ●●●●● ●● ●●●● ● ●●● ●●● ● ●●●●● ●●●●● ●●●●●●●● ●● ●● ● ●● ● ●●●● ● ●●● ●●● ●●●● ● ●●● ●● ●●● ●●●● ● ●●●● ●●● ●● ●● ●●● ●●●●● ●● ●●● ●●●●

●●●● ●●● ●●● ●●●●● ●● ●● ● ●●● ●●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●●●●● ●●●● ●●● ● ●●●●● ●●●●●●●● ●● ●● ●●● ●●●●●●●●●●● ●● ●●●● ●● ●● ●●● ●●●● ●●● ●●●● ● ●●●● ●● ●● ●●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

● ●

●

● ● ●●

●

●

●

●

●●

●●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

1

●

● ●
●
●● ●

●

●

●

●
●●
●

●
●

●
●●
●

●
●

●

● ●●● ●
●

●

●
●
●

●

●
●●● ●
●

●
●

●●●
●

●

●
●

● ● ●

● ● ●●

●● ●

●

●●

●●
●

●
●

●●
●

●

●
●

●

●

●●●
●●

●● ●
●

●
●
●

●
●●

●

●
●

●
●

●
●

●●

●●● ●
● ●
●
● ●●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

1.
0

1.
4

1.
8

● ●●●●●●● ●● ● ●●●●● ●●●●●● ● ●●●●●●● ●●●● ●●●●●●●●●●●●● ●● ●●●●●●● ●●●● ●●●●●●● ●●●●●●●● ●●●●● ●●●● ●● ●●●●● ●●●● ●●●● ●●●●●●●●●●●●

●●● ● ● ● ●●●● ●● ● ●●● ● ● ●●● ●● ●●● ●●● ●●● ●●●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●● ●● ● ● ● ●●● ● ●●● ●●● ● ●●● ●●●● ●● ●●●● ●● ●●● ● ●●● ●● ●● ●● ●● ●●● ● ●●●● ●● ●●● ● ●●● ●● ● ●● ●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●●

●

●●●●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●●● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

13
0

15
0

17
0

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●
●

●

●

●

●

●
●
●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

● ●●●

●

●

●

●●●

●

●

●

●

●

●●

●
●●

●●●

●
●
●

●
●

●●

●
●
●●●
●

●

●
●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●●

●●

●

●

●

●

●
●

●●

●
●● ●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●
●●

●

●
●
●

●●

●
●

●

●
●

●

●●

●●

● ●

●

● ●

●

●

●

●
●

●

●●

●
●

●

● ●●
●

●

●

●●
●

●

●
●

●
●

●
●●

●
●

● ●●

●

● ●
●

●

● ●

●

●

●
●

●●

●

●
●

●
● ●●● ●

●

●

●
●

●

●●

●● ●●
●

●
●

● ●
●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●● ●

●

●

●

●
●
●

●

●

●

●

● ●

●

−0.4 0.0 0.2 0.4

−0
.4

0.
0

0.
2

0.
4

2

Child HW Data: Predictors and MDS of RandomForest Proximity

Proximity axis 1 has strong association with gender.

27 / 28



Summary

This lecture covered

Bootstrap the basics and an example

Bagging using the bootstrap samples to estimate

Bagging Trees

Why Bagging Works

Random Forests working with ‘uncorrelated’ trees

OOB, Variable importance, Proximity plots

28 / 28



Elements of Statistical Learning: Lecture 20.
Boosting. Data Ethics

Guy Nason1

Department of Mathematics
Imperial College

1©Imperial College 2019 (revision 1). This material is copyright of the College unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the College and is to be downloaded or copied for
your private study only.

1 / 20



Boosting: Setup

Technique to combine the outputs of many “weak” classifiers to
make a strong one.

Suppose we have a two class problem with output code as
Y 2 {�1, 1}.

Given a vector of predictor variables, X , a classifier G (X ) produces
a prediction taking one of the two values �1 or 1.

The error rate on the training sample is

ērr = n�1
nX

i=1

I{yi 6= G (xi )}, (1)

If you classifier is just random guessing, then the error rate is 50%.
A weak classifier’s error rate might be something like 45%.

2 / 20



Boosting: Idea

We will build a sequence of classifiers, Gm(x), m = 1, . . . ,M,
where G1(x) = G (x).

We obtain Gm+1(x) from Gm(x) by focusing weight on those
observations that did not get classified well by Gm(x). So, it tries
harder on the more di�cult ones.

We combine the results from all the classifiers using

G ⇤(x) = sgn

(
MX

m=1

↵mGm(x)

)
, (2)

where the {↵m}Mm=1 are computed by the boosting algorithm.

3 / 20



Boosting Weights

We apply weights w1, . . . ,wn to each of the training observations
(xi , yi ), i = 1, . . . , n.

Initially, all weights are set to n�1 — equal weights.

For each successive iteration, m = 2, . . . ,M the weights are
modified, and the classifier is reapplied to the weighted
observations.

At step m, those observations that were previously incorrectly
classified get their weight increased.

So, di�cult to classify observations, get progressively more weight.

4 / 20



AdaBoost.M1 (Alg. 10.1 in ELS)

1. Initialize observation weights wi = n�1, i = 1, . . . , n.

2. For m = 1, . . . ,M:
2.1 Fit classifier Gm(x) to training data using weights {wi}.
2.2 Compute

errm =

Pn
i=1 wi I{yi 6= Gm(xi )}Pn

i=1 wi
. (3)

2.3 Compute ↵m = log{(1� errm)/errm}.
2.4 Set wi  wi · exp[↵m · I{yi 6= G (xi )}], i = 1, . . . , n.

3. Output G ⇤(x) = sgn
nPM

m=1 ↵mGm(x)
o
.

5 / 20



Boosting Example

Suppose X1, . . . ,X10 are independent standard Gaussians N(0, 1).

Now define

Y =

(
1 if

P10
j=1 X

2
j > 9.34,

�1 otherwise.
(4)

They use a basic (silly) two branch tree, which has classification
error rate of 45.8%. Not much better than random guessing.

6 / 20



Boosting Example — 2

More details in §10 in ELS.

7 / 20



Ethics

From Wikipedia:
“Ethics is a branch of philosophy that involves systematizing,
defending and recommending concepts of right and wrong
conduct”.

Dictionary definition of ethical behaviour: “Acting in ways
consistent with what society and individuals typically think are
good values”.

Collectively, we all benefit from ethical behaviour.

8 / 20



Horror Stories — Cambridge Analytica [from Wiki]

“Revealed — 50 million Facebook profiles harvested for Cambridge
Analytica in major data breach”

“Facebook’s week of shame” /pause

“Cambridge Analytica . . . used personal information taken without
authorisation in early 2014 to build a system that could profile
individual US voters, in order to target them with personalised
political advertisements”.

Used a Facebook app “This is your digital life” used by 270k
Facebook users and then acquired information on a further 87
million users who were friends of the original 270k.

Other breaches: “Cruz Crew” mobile app that tracked physical
movements and contacts.

9 / 20



Cambridge Analytica — Major investigation

By Channel 4, New York Times, the Observer, etc.

Interviewed the CEO — undercover recording that CA used honey
traps, bribery stings amd prostitutes to discredit politicians, funded
companies to entrap political opponents into bad behaviours.

UK-EU membership referendum involvement.

“No campaign contributions, in cash or in kind by CA were
reported to UK electoral authorities.” “In March 2018, Brittany
Kaiser (CA’s former director of business development, revealed
that the company misled the public and MPs over its links with
Leave.EU. She said she felt she had lied by supporting CA’s
company line.” [Wikipedia]

10 / 20



Netflix + Prize competition [from Wikipedia]
Netflix ran a competition and released data on movie preferences.

Training + test sets + had to develop algorithm to beat Netflix’s.

Grand Prize of $1M.

Data sets were constructed/anonymised to preserve privacy.

However, in 2007 two researchers from the University of Texas
were able to identify individual users by matching the data sets
with film ratings on the Internet Movie Database.

In 2009, four Netflix users sued Netflix alleging that they had
violated the Video Privacy Protection Act because they released
the data sets.

Netflix cancelled the next competition and came to a financial
settlement with the plainti↵s! 11 / 20



Reproducibility Crisis [Wiki]

“The field of Recommender systems has been impacted by the

Replication crisis as well. A systematic analysis of publications applying

deep learning or neural methods to the top-k recommendation problem,

published in top conferences (SIGIR, KDD, WWW, RecSys), has shown

that on average less than 40% of articles are reproducible, with as little

as 14% in some conferences. Overall the study identifies 18 articles, only

7 of them could be reproduced and 6 of them could be outperformed by

much older and simpler properly tuned baselines. The article also

highlights a number of potential problems in today’s research scholarship

and calls for improved scientific practices in that area, (Ferrari Dacrema,

M. et al. 2019).”

Ferrari Dacrema, M., Cremonesi, P. and Dietmar, J. (2019) Are we really

making much progress? A worry analysis of recent neural

recommendation approaches. Proceedings of the 13th ACM Conference

on Recommender Systems, ACM: 101–109.

12 / 20



Horror Stories: Action Fraud (The Times, Sept 2019)
“The Home O�ce is manipulating crime figures by instructing
Action Fraud to dismiss as many as tens of thousands of legitimate
cases”

“police service is wrongly failing to record cases of identity theft”

“as many as 50000 reported frauds every year are not included in
o�cial crime statistics”

The UK has a unique body, the UK Statistics Authority (UKSA)
and the O�ce for Statistical Regulation, which issues a code of
practice for o�cial statistics (more later).

The UKSA essentially said, approximately, don’t believe police
crime figures too much, but believe the national Crime Survey for
England and Wales (independently run survey). Not very helpful.
Why release police statistics then?

13 / 20



Horror Stories: Action Fraud (The Times, Sept 2019)

In fact, UKSA has said:
“Incidents of fraud referred to the NFIB [police] by Action
Fraud, CIFAS and UK Finance will include reports from
businesses and other organisations. They also tend to be
focused on the more serious cases.”

Implication is that fraud cases of ordinary people are being ignored.

A Home O�ce report itself has a section entitled “Accuracy of
Quarterly Data and Negative Figures”.

How can there be negative numbers of fraud cases?

Number of cases is reported monthly. They score +1 for each case
coming in and -1 for every one they pass to Action Fraud. In some
months, more cases go out than come in, hence the negative
figures. This seems wrong.

14 / 20



Horror Stories: Action Fraud (The Times, Sept 2019)

Especially, since these numbers might be aggregated.

I have personally written to OSR about this - anybody can do this.

Another issue: Government depts are bound by the Code of
Practice.

External contractors (e.g. ActionFraud) are not, but Government
Depts should satisfy themselves as to the quality of the statistics
— not sure they are doing this here.

15 / 20



UKSA Code of Practice

https://www.statisticsauthority.gov.uk/publication/code-of-practice/

The Code of Practice for O�cial Statistics promotes the production and
dissemination of o�cial statistics that inform decision making, and
supports the continuous improvement of those statistics. It is a concise
and specific statement that requires sound judgement and interpretation.

The Code applies to all UK bodies that produce o�cial statistics. It
encourages and supports them to maintain their independence and to
ensure adequate resourcing for statistical production. It helps producers
and users of statistics by setting out the necessary principles and practices
to produce statistics that are trustworthy, high quality and of public value.

Compliance with the Code is a statutory requirement on bodies that

produce statistics that are designated as National Statistics through the

O�ce for Statistics Regulation’s Assessment process.

16 / 20



UKA Code of Practice contd.

While the formal scope of the Code is o�cial statistics, many of the
principles and practices are likely to be helpful to producers of other data
such as management information and those outside of o�cial statistics
such as third sector and private sector organisations.

The Code is consistent with the United Nations Fundamental Principles
of O�cial Statistics and the European Statistics Code of Practice.

Occasionally we recognise an exemption or exception to a specific

practice within the Code. A breach occurs when an organisation

producing o�cial statistics fails to meet the standards outlined in the

Code and where an exemption or exception does not apply.

17 / 20



Corporate Examples: Accenture

https://www.accenture.com/us-en/insight-data-ethics

See building digital trust slides

18 / 20



Open Data Institute and Ada Lovelace Institute

Open Data Institute’s data ethics canvas

https://theodi.org/article/data-ethics-canvas/

The Ada Lovelace Institute

https://www.adalovelaceinstitute.org

19 / 20



Simple Guide to Data Ethics

1. Do the right thing.

2. Think things through (tech is complex).

3. Do no harm, don’t let others harm.

4. Ask permission/authorisation.

5. Be transparent and open.

6. Do the right thing!

20 / 20


