
Algebra III: Rings and Modules
Solutions for Problem Sheet 1, Autumn Term 2022-23

John Nicholson

1. For sets X and Y , let Fun(X,Y ) denote the set of all functions f : X → Y .

(i) Let X be a set and R a ring. Given f, g ∈ Fun(X,R), we can define f + g, f · g ∈
Fun(X,R) via (f + g)(x) = f(x)+R g(x) and (f · g)(x) = f(x) ·R g(x) for x ∈ X. Given
a ∈ R, we can consider the constant function ca : x #→ a for all x ∈ X. Show that
Fun(X,R) is a ring with 0 = c0 and 1 = c1.

(ii) Let X = [0, 1] ⊆ R, the interval, and let R = R. Show that the subset of Fun([0, 1],R)
of continuous functions is a subring, and that the subset of differentiable functions is a
further subring.

(iii) Show that, if X has at least two elements, then Fun(X,R) is not an integral domain
(regardless of what R is). [Hint: For a complete solution you will have to consider
separately the trivial case R = {0}.]

Solution: (i) First, (0 + f)(x) = 0 + f(x) = f(x) and (1 · f)(x) = 1 · f(x) = f(x), so 0
and 1 are the additive and multiplicative identities, respectively. Next ((f + g) + h)(x) =
f(x)+g(x)+h(x) = (f+(g+h))(x) and similarly ((fg)h)(x) = f(x)g(x)h(x) = (f(gh))(x) so
the operations are associative. The addition is commutative for the same reason: (f+g)(x) =
f(x) + g(x) = g(x) + f(x) = (g + f)(x). Finally the function (−f)(x) := −f(x) is clearly
the additive inverse to f , and (f(g + h))(x) = f(x)(g(x) + h(x)) = f(x)g(x) + f(x)h(x) =
(fg + fh)(x) verifies distributivity.

(ii) It suffices to note that the constant functions are continuous (as well as differentiable),
and sums, differences, and products of continuous (or differentiable) functions are continuous
(or differentiable).

(iii) If R is zero, then Fun(X,R) = {0} as well, which is not an integral domain. Suppose
R is nonzero. Let x0, x1 ∈ X be distinct points, and let f, g be functions such that f(x0) =
0, f(x1) = 1, g(x0) = 1, and g(x1) = 0. Then fg = 0 even though f and g are nonzero.

2. For a ring R, an element a ∈ R is nilpotent if an = 0 for some n ≥ 1. Let nil(R) ⊆ R be the
subset of nilpotent elements.

(i) Let R be a commutative ring. Show that nil(R) is an ideal. [Hint: Prove that the
binomial formula for the expansion of (x+ y)n holds in arbitrary commutative rings.]

(ii) Give an example of a non-commutative ring where nil(R) does not form an ideal.

(iii) Let x ∈ R be nilpotent (and do not assume R is commutative). Show that 1+x ∈ R×.

(iv) Find all the nilpotent elements in the ring R = Z/prZ for every prime p and r ≥ 1.
[Optional: extend this to Z/nZ for every n ∈ Z.]
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Solution: (i) If x and y commute and xm = 0 = yn (for some m,n ≥ 1), then the binomial
theorem shows that (x + y)m+n−1 =

!m+n−1
i=0

"
m+n−1

i

#
xiym+n−1−i: for i ≤ m − 1, we have

ym+n−1−i = 0 and for i ≥ m we have xi = 0, so that each term is actually zero. Thus
(x + y)m+n−1 = 0. Since xm implies (−x)m = (−1)mxm = 0, we conclude that nil(R) is
an abelian subgroup of R. Next, for every x with xm = 0, we have (ax)m = amxm = 0.
Therefore nil(R) is an ideal.

(ii) Almost any non-commutative ring will do, for example, R = M2(R). In here we have$

%0 1

0 0

&

'+

$

%0 0

1 0

&

' =

$

%0 1

1 0

&

' and so the LHS is a sum of two nilpotent elements whereas

the RHS is not nilpotent.

(iii) The geometric series expansion is 1−x+x2−x3+ · · · . Indeed, if xn = 0, then (1+x)(1−
x+x2−x3+· · ·+(−1)n−1xn−1) = 1. Similarly (1−x+x2−x3+· · ·+(−1)n−1xn−1)(1+x) = 1.
Thus 1 + x is invertible.

(iv) The nilpotent elements in Z/prZ are the multiples of p, namely kp for 0 ≤ k ≤ pr−1− 1.
In Z/nZ, the nilpotent elements are r ∈ Z/nZ such that p | n implies p | r for all primes p.
That is, if n = pα1

1 · · · pαm
m for αi ≥ 1 integers, then r is nilpotent if and only if p1 · · · pm | r.

3. Show the following:

(i) If a > 0, then R[X]/(X2 − a) ∼= R× R.
(ii) Show that (Z/3)[X]/(X2 + 1) is a field with nine elements.

(iii) Show that, for any n ≥ 1, then Z[i]/(n) ∼= (Z/n)[X]/(X2 + 1).

(iv) Show that Z[i]/(2) ∼= (Z/2)[X]/(X2). In particular observe that this is not a field.

Solution: (i) Consider the evaluation homomorphism ϕ = ev(
√
a,−

√
a) : R[x] → R × R

sending x to (
√
a,−

√
a). (Explicitly, ϕ(

!
i bix

i) = (
!

i bi
√
ai,

!
i(−1)ibi

√
ai).) Then ϕ(x2−

a) = 0. Also, ϕ is surjective. Thus we get a surjective homomorphism ϕ̄ : R[x]/(x2 −
a)R[x] → R × R. Since ϕ̄ is actually a surjective linear map of two-dimensional R-vector
spaces, it must be injective and hence an isomorphism. [One could also explicitly show that
ker(ϕ) = (x2 − a)R[x], using the explicit formula for ϕ, and then the first isomorphism
theorem implies that we get an isomorphism R[x]/(x2 − a)R[x] ∼→ R× R.]
(ii) First of all, we claim that R := (Z/3)[x]/(x2+1), as a set, is {a+bx+(x2+1) | a, b ∈ Z/3},
so it has nine elements. To see this, note that by long division, any polynomial f of degree
≥ 2 satisfies f = (x2 + 1)g + h for h a polynomial of degree ≤ 1. On the other hand, no
two distinct polynomials of degree ≤ 1 can differ by a multiple of x2 + 1. Thus we have
established the claim and R indeed has nine elements.

We have to show R is a field. It is enough by our theorem from lecture to show it is an
integral domain. It is clearly commutative and nonzero, so we just have to show it has no
zero divisors. Assume the contrary. Then there exist f(x), g(x) ∈ (Z/3)[x], neither of which
are multiples of x2 + 1, but such that f(x)g(x) was a multiple of x2 + 1. In fact, since we
already observed all elements in (Z/3)[x]/(x2+1) can be written as degree ≤ 1 polynomials,
we can assume this for f(x) and g(x). So it suffices to observe that x2 + 1 has no linear
factors over the field Z/3. Having linear factors is equivalent to having roots. Note that

1 = 0
2
+1 = 1

2
+1 = 2 = 2

2
+1 in Z/3, so there are no roots of x2+1 in Z/3. Thus it has no

linear factors and there do not exist such f(x) and g(x). We conclude that (Z/3)[x]/(x2+1)
is an integral domain, and therefore a field.
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(iii) We have the evaluation homomorphism evi : Z[x] ↠ Z[i], the kernel of which is (x2+1).
We can further mod by n to obtain ϕ : Z[x] ↠ Z[i]/(n), the kernel of which is then (x2+1, n).
On the other hand we also have the surjective homomorphism Z[x] ↠ (Z/n)[x]/(x2 + 1),
modding by (n, x2+1). Since they are both surjections with the same kernel, we get that both
Z[i]/(n) and (Z/n)[x]/(x2+1) are isomorphic to Z[x]/(n, x2+1), hence they are isomorphic.

(iv) Note that in lecture notes there was mentioned a way to do this, Z[i]/(2) = Z[
√
2i]/(2i)

since
√
2i = 1 + i and (2) = (2i), and by the argument there, this is isomorphic to

(Z/2)[x]/(x2) via the map sending
√
2i to x. You should give more details to have a complete

solution though.

Let us give a more straightforward solution. Consider the map ϕ : Z[i] → (Z/2)[x]/(x2),
ϕ(a + bi) = a + b(1 + x) (or more precisely, (a + b(1 + x)) + (x2)). To check this is a
homomorphism, note first that it is clearly additive. Using distributivity, the multiplicativity
reduces to checking that ϕ(i2) = ϕ(−1). In other words, (1 + x)2 = −1 = 1 in Z/2[x]/(x2),
which is true (more precisely, (1 + x)2 + (x)2 = −1 + (x2) = 1 + (x2)). We claim that the
kernel of ϕ is (2). This is clear because a+ b(1 + x) = 0 if and only if a = b = 0 in Z/2, i.e.,
a, b ∈ 2Z and equivalently a+ bi ∈ (2). Now, (Z/2)[x]/(x2) is not a field as the element x is
nilpotent.

Remark: The map here can also be thought of as being obtained from the evaluation ho-
momorphism ev1+xZ[x] → (Z/2)[x]/(x2) sending x to x + 1. This homomorphism includes
1 + x2 in the kernel so it factors through Z[x]/(x2 + 1) ∼= Z[i].

4. Let S be a subset of the nonnegative integers, and let C[S] be the subset of C[X] consisting
of polynomials P (X) =

!d
i=0 aiX

i such that ai = 0 for i /∈ S. For which S is C[S] a subring
of C[X]?

Solution: C[S] is a subring of C[X] if and only if S contains zero is closed under addition.
Clearly if C[S] is a subring then it contains 1, so 0 ∈ S. Similarly, if a and b are in S and
C[S] is a subring, then xa and xb are in C[S] so xa+b is in C[S] as well. This implies that
a+ b lies in S.

Conversely, one notes that C[S] is always closed under addition, independently of any condi-
tions on S. Moreover if zero is in S then 1 ∈ C[S]. It thus suffices to show that if S is closed
under addition then C[S] is closed under multiplication; this follows from distributivity.

5. Let F be a field and f, g ∈ F [X]. Prove that there exists r, q ∈ F [X] such that

f = gq + r,

with deg r < deg g. [This shows that F [X] is a Euclidean domain with Euclidean function
deg : F [X] \ {0} → Z≥0.]

Solution: Let deg(f) = n. So

f =

n(

i=0

aiX
i,

and an ∕= 0. Similarly, if deg g = m, then

g =

m(

i=0

biX
i,

with bm ∕= 0. If n < m, we let q = 0 and r = f , and done.
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Otherwise, suppose n ≥ m, and proceed by induction on n.

We let
f1 = f − anb

−1
m Xn−mg.

This is possible since bm ∕= 0, and F is a field. Then by construction, the coefficients of Xn

cancel out. So deg(f1) < n.

If n = m, then deg(f1) < n = m. So we can write

f = (anb
−1
m Xn−m)g + f1,

and deg(f1) < deg(f). So done. Otherwise, if n > m, then as deg(f1) < n, by induction, we
can find r1, q1 such that

f1 = gq1 + r1,

and deg(r1) < deg g = m. Then

f = anb
−1
m Xn−mg + q1g + r1 = (anb

−1
m Xn−m + q1)g + r1.

So done.

6. Let R be the ring of continuous functions on the unit interval [0, 1], where addition and
multiplication of functions is defined pointwise.

(i) Show that for any c ∈ [0, 1], the subset {f ∈ R : f(c) = 0} is a maximal ideal Mc of R.

(ii) Show that if b ∕= c, then Mb ∕= Mc.

(iii) Show that if M is any maximal ideal of R, then M = Mc for some c.

(iv) Show that Mc is not generated by the element f(x) = x − c of R. Show further that
Mc is not even finitely generated.

Solution: (i) This subset is the kernel of the homomorphism: R → R, given by evaluation
at c. Since this homomorphism is surjective, we have R/Mc

∼= R, so Mc is maximal (since R
is a field.)

(ii) The function x− b lies in Mb but not Mc.

(iii) Let M be an ideal of R that is not contained in any Mc. Then for each c ∈ [0, 1] we
have an element fc of M such that fc /∈ Mc. In particular fc(c) ∕= 0; since fc is continuous
this means that fc is nonzero in a neighborhood Uc of c. Since [0, 1] is compact, there exist
a finite collection c1, . . . , cn such that Uc1 , . . . , Ucn cover [0, 1]. Then g = f2

c1 + f2
c2 + · · ·+ f2

cn
is an element of M that is strictly positive everywhere on [0, 1], so 1

g is continuous on [0, 1]
and thus lies in R. In particular g is a unit of R that is contained in M , so M is the unit
ideal. Thus any maximal ideal of R is contained in some Mc and therefore equal to that Mc.

(iv) The function g(x) = |x − c| 12 lies in Mc and is not a multiple of f(x). Indeed, if

g(x) = f(x)h(x), then we have h(x) = |x− c|− 1
2 for x > c and h(x) = −|x− c|− 1

2 for x < c,
and this does not extend to a continuous function at x = c.

Further, suppose that f1, . . . , fn generateMc, and let g(x) = max (|x− c|, |f1(x)|, . . . , |fn(x)|)
1
2 .

Then for any function h of the form h1(x)f1(x) + · · ·+ hn(x)fn(x) with hi ∈ R we have that
h(x)
g(x) approaches 0 as x approaches c from the left or right, so that g(x) cannot be in the ideal
generated by f1, . . . , fn.
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7. Let R be a ring, let f : G → H be a surjective group homomorphism and let f∗ : R[G] → R[H]
be the ring homomorphism induced by f . Let N = ker(f). Show that ker(f∗) = (N − 1), i.e.
the ideal generated by the set N − 1 = {x− 1 : x ∈ N} ⊆ R[G]. [Hint: Start by considering
the case where H is the trivial group and f∗ : R[G] → R.]

Solution: Since f∗(n−1) = f∗(n)−1 = f(n)−1 = 1−1 = 0, we must have N −1 ⊆ ker(f).
Since ker(f) is an ideal, we also have (N − 1) = R[G] ·N ⊆ ker(f).

We now claim that (N − 1) = ker(f). Suppose r ∈ ker(f). Write r =
!n

i=1 aigi for
some ai ∈ R and gi ∈ G distinct. Note that f(r) =

!n
i=1 aif(gi) = 0 ∈ R[H]. Let

{f(g1), · · · , f(gn)} = {h1, · · · , hm} for hi ∈ H distinct. Pick )hi ∈ G such that f()hi) = hi.
Then we have:

f(r) =

n(

i=1

aif(gi) =

m(

i=1

$

*%
(

gj∈!hiN

aj

&

+'hi.

In particular, since f(r) = 0 and the hi are distinct, this implies that
!

gj∈!hiN
aj = 0 for all

1 ≤ i ≤ m. For each gj ∈ )hiN , we can write gj = )hinj for some nj ∈ N . Hence we have:

r =

n(

i=1

aigi =

m(

i=1

$

*%
(

gj∈!hiN

aj

&

+' gj =

m(

i=1

$

*%
(

gj∈!hiN

aj

&

+')hi(nj − 1) ∈ (N − 1).

8. For each commutative ring R and ideal I ⊆ R below, determine (with proof) whether or not
I is prime and whether or not I is maximal. [You may assume any results from the course.]

(i) R = Z, I = (6).

(ii) R = Z, I = (8, 12).

(iii) R = Z[X], I = (X + 1).

(iv) R = R[X], I = (X2 − 5).

(v) R = C[X], I = (X2 + 3, X3 − 1).

(vi) R = (Z/13Z)[X], I = (X2 + 1).

(vii) R = Q[X,Y, Z], I = (X − Y 2).

Solution: (i) Not prime or maximal since 6 is composite, so Z/6Z has zero divisors (2·3 = 0).

(ii) The ideal so generated is (4), and as in (a), this is not prime (or maximal): 4 = 2 · 2.
(iii) This is prime, since Z[x]/(x+ 1) ∼= Z (after all (x+ 1) is the kernel of the evaluation at
−1 homomorphism Z[x] ↠ Z), and Z is an integral domain. But it is not maximal since Z
is not a field.

(iv) This is not prime (or maximal) since x2 − 5 = (x−
√
5)(x+

√
5) in R[x] so x2 − 5 is not

irreducible (hence there are zero divisors in R[x]/(x2 − 5).

(v) The ideal is the unit ideal, since x2+3 and x3− 1 have no common roots. The unit ideal
however is not prime or maximal (by definition).

(vi) This is not prime (or maximal) since x2 + 1 = (x − 5)(x + 5) (as −25 = 1 modulo 13),
so the quotient R/I has zero divisors.

(vii) This is prime (since X − Y 2 is obviously irreducible as it is degree one in X, and
Q[X,Y, Z] is a UFD hence every irreducible is prime and therefore generates a prime ideal).
It is not maximal though since it is properly contained in (X,Y, Z) which is maximal.
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For a more elementary solution, let ψ : Q[X,Y, Z] ↠ Q[Y, Z] be the map sending X #→ Y 2.
We claim that ker(ψ) = (X − Y 2). Since Q[Y, Z] is an integral domain but not a field,
this would imply that (X − Y 2) is prime but not maximal. To show this, first note that
f(X − Y 2) = 0 and so (X − Y 2) ⊆ ker(ψ). In the other direction, we would like to use
the Euclidean algorithm. However, Q[X,Y, Z] is not even a principal ideal domain (this is a
good exercise). However, it is possible to show that every f ∈ Q[X,Y, Z] can be written in
the form f = q(X − Y 2) + r for some q, r ∈ Q[Y, Z] by explicit long division. If f ∈ ker(ψ),
then r = 0 and so f = q(X − Y 2) ∈ ker(ψ) as required.

9. (i) Show that every finite integral domain is a field.

(ii) Let R be a commutative ring. Show that an ideal I ⊆ R is prime if and only if R/I is
an integral domain. Deduce that every maximal ideal is a prime ideal.

Solution: (i) Let a ∈ R be non-zero, and consider the ring homomorphism

a ·− : R → R, b #→ a · b

We want to show this is injective. For this, it suffices to show the kernel is trivial. If
r ∈ ker(a ·−), then a · r = 0. So r = 0 since R is an integral domain. So the kernel is trivial.

Since R is finite, a ·− must also be surjective. In particular, there is an element b ∈ R such
that a · b = 1R. So a has an inverse. Since a was arbitrary, R is a field.

(ii) Let I be prime. Let a+ I, b+ I ∈ R/I, and suppose (a+ I)(b+ I) = 0R/I . By definition,
(a + I)(b + I) = ab + I. So we must have ab ∈ I. As I is prime, either a ∈ I or b ∈ I. So
a+ I = 0R/I or b+ I = 0R/I . So R/I is an integral domain.

Conversely, suppose R/I is an integral domain. Let a, b ∈ R be such that ab ∈ I. Then
(a+ I)(b+ I) = ab+ I = 0R/I ∈ R/I. Since R/I is an integral domain, either a+ I = 0R/I

or b+ I = 0R/i, i.e. a ∈ I or b ∈ I. So I is a prime ideal.

Finally note that I ⊆ R is maximal implies R/I is a field implies R/I is an integral domain
implies I is prime.

10. Show that Z[
√
−2] and Z[

√
2] are Euclidean domains.

Solution: Z[
√
−2]: We claim that Z[

√
−2] is a Euclidean domain with function φ(z) = |z|2.

First note that φ(zw) ≥ φ(z) for all w ∕= 0. Now observe that Z[
√
−2] ⊆ C splits C into

a lattice of 1 ×
√
2 squares which have diagonal length

,
12 + (

√
2)2 =

√
3. Hence, for all

z ∈ C, there exists q ∈ Z[
√
−2] such that |z − q| ≤

√
3/2 < 1.

Given a, b ∈ Z[
√
−2] with b ∕= 0, taking z = a/b in the above implies that there exists

q ∈ Z[
√
−3] such that |a/b− q| < 1, i.e. that |a− bq|2 < |b|2. Let r = a− bq ∈ Z[

√
−2]. Then

a = bq + r and φ(r) < φ(b) as required.

Z[
√
2]: We claim that Z[

√
2] is a Euclidean domain with function φ : Z[

√
2] → Z≥0, a+b

√
2 #→

|a2 − 2b2|. Since φ(a+ b
√
2) = (a+ b

√
2)(a− b

√
2), it follows that φ is multiplicative and so

satisfies φ(zw) ≥ φ(z) for w ∕= 0.

The proof is now identical to the case Z[
√
−2] except that we use that Z[

√
2] ⊆ Q[

√
2] (which

is a field) and we draw elements a+ b
√
2 as coordinates (a, b).

+11. Show that Z[1+
√
−19
2 ] is a principal ideal domain but not a Euclidean domain.

Solution not provided. You may continue to work on this throughout the term and contact
me to discuss ideas and/or hand in a solution. Remember that this problem is optional and
may be significantly more challenging than the other problems.
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