
Algebra III: Rings and Modules
Solutions for Problem Sheet 3, Autumn Term 2022-23

John Nicholson

1. Prove that the two definitions of ring localisation given in lectures are equivalent. That is,
let R be a commutative ring and let S ⊆ R be a multiplicative submonoid. Show that there
is a unique ring R′ such that there exists a map ι : R → R′ with the following two properties:

(i) ι(S) ⊆ (R′)×, i.e. everything in S gets mapped to a unit in R′.

(ii) For all commutative rings A and maps ϕ : R → A with ϕ(S) ⊆ A×, there exists a
unique ϕ : R′ → A such that ϕ = ϕ ◦ ι.

[First prove this in the case where R is an integral domain. The general case is more difficult.]

Solution: Existence follows by the definition given in lectures and results on problem sheet
2, i.e. we take R′ = S−1R and ι : R → S−1R. We will show uniqueness.

Suppose R1 and R2 both have this property with maps ι1 : R → R1 and ι2 : R → R2. It
suffices to show that R1

∼= R2 as rings. Consider the case R′ = R1. Since (A,ϕ) = (R2, ι2)
satisfy the conditions of (ii), there exists a unique map f : R1 → R2 such that ι2 = f ◦ ι1.
Similarly there exists a unique map g : R2 → R1 such that ι1 = g ◦ ι2. This implies that
ι1 = (g ◦ f) ◦ ι1. We claim that g ◦ f = idR1 . [If R were an integral domain, then this would
follow immediately since ι1 is injective.] To see this, consider the ring R1 and note that
(A,ϕ) = (R1, idR1) satisfy the conditions of (ii). This implies that idR1 is the unique map
such that ι1 = idR1 ◦ι1. Hence g ◦ f = idR1 . Similarly we have f ◦ g = idR2 . This implies
that f is a ring isomorphism and so R1

∼= R2 as required.

2. Let R be a unique factorisation domain, let F denote its field of fractions and let

f = a0 + a1X + · · ·+ anX
n ∈ R[X].

Show that, if p
q ∈ F is a root of f for p, q ∈ R with gcd(p, q) = 1, then p | a0 and q | an in R.

[This is a generalisation of the Rational Root theorem.]

Solution: Let f = c(f)f1 where f1 is primitive. Then p
q ∈ F is a root of f1. Since F [X] is

Euclidean domain, this means we can write f1 = (qX − p)g for some g ∈ F [X]. Since f1 is
primitive and reducible in F [X], it must be reducible in R[X] by Gauss’ lemma. It follows
that f1 = (qX−p)g for some g ∈ R[X] (this follows from the proof of Gauss’ lemma but can
also be seen directly). If g = b0+ b1X+ · · ·+ bn−1X

n−1, then f1 has constant term −pb0 and
leading term qbn−1. Since f = c(f)f1, we have that −pb0 | a0 and qbn−1 | an. Hence p | a0
and q | an as required.

Note that an elementary solution is also possible.
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3. Show that the following polynomials are irreducible in Q[X,Y ]:

3X3Y 3 + 7X2Y 2 + Y 4 + 2XY + 4X, 2X2Y 3 + Y 4 + 4Y 2 + 2XY + 6.

Solution:

3X3Y 3+7X2Y 2+Y 4+2XY +4X: This can be rewritten as Y 4+3X3Y 3+7X2Y 2+2XY +4X;
we regard it as a polynomial in Y with coefficients in Q[X]. Note that it is monic, that each of
the coefficients other than the leading one lies in the prime ideal 〈X〉, and that the “constant
term” 4X does not lie in 〈X〉2. Thus this polynomial is irreducible by Eisenstein’s criterion.

2X2Y 3 + Y 4 +4Y 2 +2XY +6: This is monic in Y , and this is irreducible in Q[X,Y ] if, and
only if, it is irreducible in Q(X)[Y ]. Since Z[X] has field of fractions Q(X), and is a UFD,
this polynomial is irreducible in Q(X)[Y ] if and only if it is irreducible in Z[X][Y ]. But as
a polynomial in Z[X][Y ] this polynomial is Eisenstein mod (2), so it is irreducible.

4. We say a polynomial in Z[X,Y ] is primitive if the greatest common divisor of its (integer)
coefficients is one. Show that:

(i) If f, g ∈ Z[X,Y ] are primitive, then fg is primitive.

(ii) If f ∈ Z[X,Y ] is primitive, then f ∈ Z[X,Y ] is irreducible if and only if f ∈ Q[X,Y ] is
irreducible. [This is the analogue of Gauss’ lemma for multivariate polynomials.]

Solution: (i) We first show (following the single variable setting) that if P (X,Y ) and
Q(X,Y ) are primitive in Z[X,Y ] (that is, their coefficients have GCD one) then so is
their product. Suppose that p is a prime in Z that divides every coefficient of the prod-
uct P (X,Y )Q(X,Y ). Then we have that P (X,Y )Q(X,Y ) = 0 in Z/pZ[X,Y ]. Since the
latter is a domain, we must have that either P (X,Y ) or Q(X,Y ) is zero mod p, contradicting
the fact that P (X,Y ) and Q(X,Y ) are primitive.

(ii) Suppose we have P (X,Y ) = Q(X,Y )R(X,Y ) in Z[X,Y ]. Then (considering this as a
factorisation in Q[X,Y ]) we see by irreducibility of P (X,Y ) that at least one factor is a unit
in Q[X,Y ], hence a nonzero constant. WLOG assume Q(X,Y ) is this factor; then Q(X,Y )
lies in Q and Z[X,Y ], so Q(X,Y ) must be an integer d. But then d divides each coefficient
of P (X,Y ), so must be equal to ±1.

Now suppose that P (X,Y ) is an irreducible (thus primitive) polynomial in Z[X,Y ], and
that we have a factorization P (X,Y ) = Q(X,Y )R(X,Y ) in Q[X,Y ]. Let q and r be rational
numbers such that qQ(X,Y ) and rR(X,Y ) are primitive polynomials with integer coeffi-
cients. Then qrP (X,Y ) = qQ(X,Y )rR(X,Y ), so by the previous paragraph qrP (X,Y ) is a
primitive rational multple of P (X,Y ). Thus qr = ±1. Thus P (X,Y ) = ±qQ(X,Y )rR(X,Y )
is a factorization of P (X,Y ) in Z[X,Y ], so one of qQ(X,Y ) or rR(X,Y ) is equal to ±1. But
then one of Q(X,Y ) or R(X,Y ) is constant, so P (X,Y ) is irreducible in Q[X,Y ].

5. For each of the following elements α ∈ C determine whether α is an algebraic integer and, if
so, compute its minimal polynomial fα.

(1 +
√
3)/2, 2 cos(2π/7), (1 + i)

√
3,

√
5/

√
7, i+

√
3.

Solution: (1 +
√
3)/2: Not an algebraic integer. If so, then α(1 − α) = 12−3

4 = −1
2 is an

algebraic integer. This is a contradiction since the algebraic integers in Q are Z.
2 cos(2π/7): We claim that fα = X3 +X2 − 2X − 1. Let ζ7 = e2πi/7 so that α = ζ7 + ζ−1

7 .
Then α2 = ζ27 + ζ−2

7 + 2 and α3 = ζ37 + ζ−3
7 + 3α. Hence have α3 + α2 − 2α − 1 = 0. So
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fα | X3 + X2 − 2X − 1. But X3 + X2 − 2X − 1 is irreducible since, by the rational root
theorem and the fact that ±1 are not roots, it has no linear factors.

(1+ i)
√
3: We claim that fα = X4+36. We have α2 = −2i · 3 ⇒ α4 = −36, so fα | X4+36.

Since X4+36 is monic, all rational roots are in Z by the rational root theorem (i.e. question
2). Clearly it has no integer roots and so X4 + 36 has no linear factors. Hence, if fα is not
an associate of X4 + 36, it has degree two. But X4 + 36 = (X2 + 6i)(X2 − 6i). This is a
factorisation in (Z[i])[X] which is a UFD since Z[i] is a UFD (this follows from the fact it
is an ED). X2 + 6i and X2 − 6i are irreducible in (Z[i])[X] since their roots are not in Z[i].
Since fα has degree two and no roots in Z[i], it must be irreducible in (Z[i])[X] and so, since
(Z[i])[X] is a UFD, it must be an associate of X2 + 6i or X2 − 6i which is a contradiction.

[A much better way to prove this would be to prove that the rational minimal polynomial
has degree 4 since the field Q(α) has degree 4. This follows from the fact that it has distinct
subfields Q(i) and Q(

√
3). However, this material was not included in the course.]

√
5/

√
7: Not an algebraic integer. If so, then α2 = 5

7 is an algebraic integer. This is a
contradiction since the algebraic integers in Q are Z.
i+

√
3: We claim that fα = X4 − 4X2 + 16. We have α2 = 2+ 2i

√
3 ⇒ (α2 − 2)2 = −12 ⇒

α4 − 4α2 + 16 = 0 ⇒ fα | X4 − 4X2 + 16. The fact this is irreducible follows by a similar
argument to the case α = (1 + i)

√
3.

6. Let R be a commutative ring. Show that R is Noetherian if and only if every ideal I ⊆ R is
finitely generated.

Solution: (⇐): Suppose every ideal ofR is finitely generated. Given the chain I1 ⊆ I2 ⊆ · · · ,
let:

I =


i≥1

Ii

This is an ideal (e.g. we proved this in lectures). We know I is finitely generated, say
I = (r1, · · · , rn), with ri ∈ Iki . Let

K = max
i=1,··· ,n

{ki}.

Then r1, · · · , rn ∈ IK . So IK = I. So IK = IK+1 = IK+2 = · · · .
(⇒): To prove the other direction, suppose there is an ideal I ⊳ R that is not finitely
generated. We pick r1 ∈ I. Since I is not finitely generated, we know (r1) ∕= I. So we can
find some r2 ∈ I \ (r1).
Again (r1, r2) ∕= I. So we can find r3 ∈ I \ (r1, r2). We continue on, and then can find an
infinite strictly ascending chain

(r1) ⊆ (r1, r2) ⊆ (r1, r2, r3) ⊆ · · · .

So R is not Noetherian.

7. Let R be a commutative ring. Give a proof or counterexample to each of the following
statements:

(i) If R is Noetherian, then R is an integral domain.

(ii) If R[X] is Noetherian, then R is Noetherian. [The converse to Hilbert’s basis theorem.]

(iii) Let S ⊆ R be a multiplicative submonoid. If R is Noetherian, then S−1R is Noetherian.
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Solution: (i) False. For example, take Z/6Z. This is not an integral domain but it is
Noetherian since it is a finite ring and all finite rings are Noetherian.

(ii) True. Let I1 ⊆ I2 ⊆ . . . be an infinite increasing sequence of ideals of R, and for each
integer k, let Jk be the subset of R[X] consisting of polynomials all of whose coefficients
lie in Ik. Then J1 ⊆ J2 ⊆ . . . is an infinite increasing sequence of ideals of R[X], so it is
eventually stable. But since Ik = Jk ∩R, this means the Ik are also eventually stable.

(iii) True. Recall from lectures that every ideal of S−1R is of the form S−1I = { i
s : i ∈ I, s ∈

S} for some ideal I ⊆ R. Suppose I1 ⊆ I2 ⊆ · · · is an ascending chain in S−1R. Then this
implies that there exists ideals Ji ⊆ R such that Ii = S−1Ji for all i ≥ 1. Since Ii ⊆ Ii+1 for
all i, we have Ji ⊆ Ji+1 for all i. Since R is Noetherian, there exists N such that Ji+N = JN
for all i ≥ 0. This then implies that Ii+N = IN for all i ≥ 0. Hence S−1R is Noetherian.

8. Let R and S be rings. Show that every (R×S)-moduleM is isomorphic to a productM1×M2,
where M1 is an R-module and M2 is an S-module, and the (R × S)-module structure on
M1 ×M2 is given by (r, s) · (m1,m2) = (rm1, sm2).

Solution: Let e1 = (1, 0) and e2 = (0, 1) in R × S, and set N1 = e1M , N2 = e2M .
Although a priori N1 and N2 are (R × S)-modules, we note that (r, s)e1m = (r, 0)m and
(r, s)e2m = (0, s)m, so that “multiplication by (r, s)” depends only on r on N1 and only on
s on N2. Give N1 the structure of an R-module by setting re1m = (r, 0)e1m and similarly
give N2 the structure of an S-module.

We then have maps N1×N2 → M and M to N1×N2 that take (n1, n2) to n1+n2 and m to
(e1m, e2m). It is easy to see that these are inverse to each other and define homomorphisms
of (R× S)-modules, so we have our desired isomorphism.

9. Let R be a ring. An R-module is M said to be cyclic if M it is generated by one element,
and simple if M has no R-submodules other than 0 and M .

(i) Show that any cyclic R module is isomorphic to R/I for some ideal I of R.

(ii) Show that any simple R-module is cyclic.

(iii) Show that M is a simple R-module if and only if M is isomorphic to R/I for some
maximal ideal I of R.

Solution: (i) Let m generate M , and consider the map R → M of R-modules taking 1 to m
(and thus taking r to rm for all r ∈ R). It is clear that this is a surjective homomorphism of
R-modules, and its kernel is an R-submodule (i.e. ideal) I of R. We thus get an isomorphism
R/I ∼= M .

(ii) Let M be simple and m ∈ M nonzero. The submodule of M generated by m is then
nonzero, so must be all of M .

(iii) By part (i), we must show that R/I is simple if, and only if, I is maximal. Let f : R →
R/I be the natural quotient map. Then given any submodule J of R/I, its preimage f−1(J)
is an ideal of R containing I. This gives a bijection between the ideals of R containing I
and the submodules of R/I. In particular we see that R/I is simple if, and only if, the only
ideals containing I are I itself and the unit ideal; that is, if and only if I is maximal.
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10. Let R be a ring and M an R-module. Define the endomorphism ring of M to be set
EndR(M) := {f : M → M | f is an R-module homomorphism} with pointwise addition and
multiplication given by function composition. The automorphism group of M , denoted by
AutR(M), is defined to be the group of units of EndR(M).

(i) Show that the two definitions of R-module given in lectures are equivalent. That is, for
an abelian group M , show that the structure · : R×M → M of a left R-module on M
is the same information as a ring homomorphism ϕ : R → End(M).

(ii) Show that a Z-module is the same thing as an abelian group. Deduce that, for for an
abelian group M , we have End(M) ∼= EndZ(M) and Aut(M) ∼= AutZ(M).

(iii) Let G be a group and M an abelian group. Show that an R[G]-module structure on M
is equivalently an R-module structure on M and a homomorphism ϕ : G → AutR(M).

(iv) Let G be a group. Show that a Z[G]-module is equivalently an abelian group M with
a G-action, i.e. group homomorphism G → Aut(M). [We often call this a G-module.]

[Hint: To show that two definitions are equivalent, we need to establish a one-to-one cor-
respondence. For example, you could show that (a) for every abelian group A, there ex-
ists a Z-module MA, (b) For every Z-module M , there exists an abelian group A(M), (c)
A(MA) ∼= A as abelian groups and MA(M)

∼= M as Z-modules.]

Solution: (i) If R × M → M is a left module structure, then we have first to check that
ϕ(a)(m) := a · m defines an element ϕ(a) ∈ End(M), i.e., that ϕ(a) is additive (as we
recall from group theory, this is enough to be a group endomorphism). It follows from the
distributivity axioms of a left R-module that ϕ(a) is additive, as desired. Next we check
that ϕ is a homomorphism. It follows from the other distributivity axiom that ϕ(a + b) =
ϕ(a) + ϕ(b), and from the associative axiom that ϕ(ab) = ϕ(a)ϕ(b). Finally the unit axiom
implies that ϕ(1) = IdM .

Similarly, if ϕ is a ring homomorphism, then the same argument in reverse shows that
a · b = ϕ(a)(m) defines an action. Finally, we note that if we apply the map (def 1) ⇒ (def
2) and then (def 2) ⇒ (def 1) we get the original action back, and similarly in the other
direction we get the homomorphism back.

(ii) Given an abelian group A, define MA to be the Z-module with abelian group A and with
action Z → End(A) the unique ring homomorphism n → idA+ · · · idA  

n

. Given an Z-module

M , let A(M) denote its underlying abelian group. By definition, we have A(MA) ∼= A as
abelian groups. Finally, M ∼= MA(M) are isomorphic as Z-modules with the Z-actions are
determined by maps Z → End(A) which are unique.

(iii) By part (i), an R[G]-module structure on M is a map ϕ : R[G] → End(M). Restricting
this map to R gives an R-modules structure on M . Since G ⊆ R[G]×, we have that ϕ(G) ⊆
End(M)× = Aut(M). Hence, by restricting to G, we get a map ϕ |G: G → Aut(M). We
want to show this lands in AutR(M). For g ∈ G, ϕ(g) : M → M is an abelian group
homomorphism and we want to show that ϕ(g)(r ·m) = r · ϕ(g)(m). By definition, we have
r ·m = ϕ(r)(m) and r · ϕ(g)(m) = ϕ(r)(ϕ(g)(m)). We have:

ϕ(g)(r ·m) = ϕ(g)(ϕ(r)(m)) = (ϕ(g) ·End(M) ϕ(r))(m) = ϕ(gr)(m)

= ϕ(rg)(m) = (ϕ(r) ·End(M) ϕ(g))(m) = ϕ(r)(ϕ(g)(m)) = r · ϕ(g)(m)

since ϕ is multiplicative and since r, g ∈ R[G] commute. Hence ϕ restricts to a map ϕ |G:
G → AutR(M).
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Given an R-module structure on M given by h : R → End(M) and a homomorphism
f : G → AutR(M) ⊆ End(M), define f : R[G] → End(M) by


rigi →


h(ri) ·End(M)f(gi).

It can be easily verified that this is a ring homomorphism.

Given f : G → AutR(M), it is clear that f |G= f . It also needs to be verified that, given

ϕ : R[G] → End(M), we have ϕ |G = ϕ.

(iv) This is essentially immediate from (ii) and (iii).

+11. If R is a ring, the formal power series ring R[[X]] is the ring with elements

f = a0 + a1X + a2X
2 + · · · ,

where each ai ∈ R. This has addition and multiplication the same as for polynomials, but
without upper limits. Show that, if R is Noetherian, then R[[X]] is Noetherian.

Solution not provided. You may continue to work on this throughout the term and contact
me to discuss ideas and/or hand in a solution. Remember that this problem is optional and
may be significantly more challenging than the other problems.

6


