Algebra III: Rings and Modules Problem Sheet 3, Autumn Term 2022-23

John Nicholson

- 1. Prove that the two definitions of ring localisation given in lectures are equivalent. That is, let *R* be a commutative ring and let $S \subseteq R$ be a multiplicative submonoid. Show that there is a unique ring *R'* such that there exists a map $\iota : R \to R'$ with the following two properties:
	- (i) $\iota(S) \subseteq (R')^{\times}$, i.e. everything in *S* gets mapped to a unit in *R'*.
	- (ii) For all commutative rings *A* and maps $\varphi: R \to A$ with $\varphi(S) \subseteq A^{\times}$, there exists a unique $\widetilde{\varphi}: R' \to A$ such that $\varphi = \widetilde{\varphi} \circ \iota$.

[First prove this in the case where *R* is an integral domain. The general case is more difficult.]

2. Let *R* be a unique factorisation domain, let *F* denote its field of fractions and let

$$
f = a_0 + a_1 X + \dots + a_n X^n \in R[X].
$$

Show that, if $\frac{p}{q} \in F$ is a root of *f* for $p, q \in R$ with $gcd(p, q) = 1$, then $p | a_0$ and $q | a_n$ in *R*. [This is a generalisation of the Rational Root theorem.]

3. Show that the following polynomials are irreducible in $\mathbb{Q}[X, Y]$:

$$
3X^3Y^3 + 7X^2Y^2 + Y^4 + 2XY + 4X, \qquad 2X^2Y^3 + Y^4 + 4Y^2 + 2XY + 6.
$$

- 4. We say a polynomial in $\mathbb{Z}[X, Y]$ is *primitive* if the greatest common divisor of its (integer) coefficients is one. Show that:
	- (i) If $f, g \in \mathbb{Z}[X, Y]$ are primitive, then fg is primitive.
	- (ii) If $f \in \mathbb{Z}[X, Y]$ is primitive, then $f \in \mathbb{Z}[X, Y]$ is irreducible if and only if $f \in \mathbb{Q}[X, Y]$ is irreducible. [This is the analogue of Gauss' lemma for multivariate polynomials.]
- 5. For each of the following elements $\alpha \in \mathbb{C}$ determine whether α is an algebraic integer and, if so, compute its minimal polynomial f_α .

$$
(1+\sqrt{3})/2
$$
, $2\cos(2\pi/7)$, $(1+i)\sqrt{3}$, $\sqrt{5}/\sqrt{7}$, $i+\sqrt{3}$.

6. Let *R* be a commutative ring. Show that *R* is Noetherian if and only if every ideal $I \subseteq R$ is finitely generated.

- 7. Let *R* be a commutative ring. Give a proof or counterexample to each of the following statements:
	- (i) If *R* is Noetherian, then *R* is an integral domain.
	- (ii) If $R[X]$ is Noetherian, then R is Noetherian. [The converse to Hilbert's basis theorem.]
	- (iii) Let $S \subseteq R$ be a multiplicative submonoid. If R is Noetherian, then $S^{-1}R$ is Noetherian.
- 8. Let *R* and *S* be rings. Show that every $R \times S$ module *M* is isomorphic to a product $M_1 \times M_2$, where M_1 is an R -module and M_2 is an S module, and the $R \times S$ -module structure on $M_1 \times M_2$ is given by $(r, s) \cdot (m_1, m_2) = (rm_1, sm_2)$.
- 9. Let *R* be a ring. An *R*-module is *M* said to be *cyclic* if *M* it is generated by one element, and *simple* if *M* has no *R*-submodules other than 0 and *M*.
	- (i) Show that any cyclic *R* module is isomorphic to *R/I* for some ideal *I* of *R*.
	- (ii) Show that any simple *R*-module is cyclic.
	- (iii) Show that *M* is a simple *R*-module if and only if *M* is isomorphic to R/I for some maximal ideal *I* of *R*.
- 10. Let *R* be a ring and *M* an *R*-module. Define the *endomorphism ring* of *M* to be set $\text{End}_{R}(M) := \{f : M \to M \mid f \text{ is an } R\text{-module homomorphism}\}\$ with pointwise addition and multiplication given by function composition. The *automorphism group* of *M*, denoted by $Aut_R(M)$, is defined to be the group of units of $End_R(M)$.
	- (i) Show that a Z-module is the same thing as an abelian group. Deduce that, for for an abelian group *M*, we have $\text{End}(M) \cong \text{End}_{\mathbb{Z}}(M)$ and $\text{Aut}(M) \cong \text{Aut}_{\mathbb{Z}}(M)$.
	- (ii) Show that the two definitions of *R*-module given in lectures are equivalent. That is, for an abelian group M, show that the structure $\cdot : R \times M \to M$ of a left R-module on M is the same information as a ring homomorphism $\varphi : R \to \text{End}(M)$.
	- (iii) Let *G* be a group and *M* an abelian group. Show that an *R*[*G*]-module structure on *M* is equivalently an *R*-module structure on *M* and a homomorphism $\varphi : G \to \text{Aut}_R(M)$.
	- (iv) Let G be a group. Show that a $\mathbb{Z}[G]$ -module is equivalently an abelian group M with a *G*-action, i.e. group homomorphism $G \to \text{Aut}(M)$. [We often call this a *G*-module.]

[Hint: To show that two definitions are equivalent, we need to establish a one-to-one correspondence. For example, you could show that (a) for every abelian group *A*, there exists a Z-module M_A , (b) For every Z-module M, there exists an abelian group $A(M)$, (c) $A(M_A) \cong A$ as abelian groups and $M_{A(M)} \cong M$ as Z-modules.]

+11. If *R* is a ring, the *formal power series ring R*[[*X*]] is the ring with elements

$$
f = a_0 + a_1 X + a_2 X^2 + \cdots,
$$

where each $a_i \in R$. This has addition and multiplication the same as for polynomials, but without upper limits. Show that, if *R* is Noetherian, then $R[[X]]$ is Noetherian.