
Algebra III: Rings and Modules
Problem Sheet 3, Autumn Term 2022-23

John Nicholson

1. Prove that the two definitions of ring localisation given in lectures are equivalent. That is,
let R be a commutative ring and let S ⊆ R be a multiplicative submonoid. Show that there
is a unique ring R′ such that there exists a map ι : R → R′ with the following two properties:

(i) ι(S) ⊆ (R′)×, i.e. everything in S gets mapped to a unit in R′.

(ii) For all commutative rings A and maps ϕ : R → A with ϕ(S) ⊆ A×, there exists a
unique !ϕ : R′ → A such that ϕ = !ϕ ◦ ι.

[First prove this in the case where R is an integral domain. The general case is more difficult.]

2. Let R be a unique factorisation domain, let F denote its field of fractions and let

f = a0 + a1X + · · ·+ anX
n ∈ R[X].

Show that, if p
q ∈ F is a root of f for p, q ∈ R with gcd(p, q) = 1, then p | a0 and q | an in R.

[This is a generalisation of the Rational Root theorem.]

3. Show that the following polynomials are irreducible in Q[X,Y ]:

3X3Y 3 + 7X2Y 2 + Y 4 + 2XY + 4X, 2X2Y 3 + Y 4 + 4Y 2 + 2XY + 6.

4. We say a polynomial in Z[X,Y ] is primitive if the greatest common divisor of its (integer)
coefficients is one. Show that:

(i) If f, g ∈ Z[X,Y ] are primitive, then fg is primitive.

(ii) If f ∈ Z[X,Y ] is primitive, then f ∈ Z[X,Y ] is irreducible if and only if f ∈ Q[X,Y ] is
irreducible. [This is the analogue of Gauss’ lemma for multivariate polynomials.]

5. For each of the following elements α ∈ C determine whether α is an algebraic integer and, if
so, compute its minimal polynomial fα.

(1 +
√
3)/2, 2 cos(2π/7), (1 + i)

√
3,

√
5/

√
7, i+

√
3.

6. Let R be a commutative ring. Show that R is Noetherian if and only if every ideal I ⊆ R is
finitely generated.
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7. Let R be a commutative ring. Give a proof or counterexample to each of the following
statements:

(i) If R is Noetherian, then R is an integral domain.

(ii) If R[X] is Noetherian, then R is Noetherian. [The converse to Hilbert’s basis theorem.]

(iii) Let S ⊆ R be a multiplicative submonoid. If R is Noetherian, then S−1R is Noetherian.

8. Let R and S be rings. Show that every R×S module M is isomorphic to a product M1×M2,
whereM1 is an R-module andM2 is an S module, and the R×S-module structure onM1×M2

is given by (r, s) · (m1,m2) = (rm1, sm2).

9. Let R be a ring. An R-module is M said to be cyclic if M it is generated by one element,
and simple if M has no R-submodules other than 0 and M .

(i) Show that any cyclic R module is isomorphic to R/I for some ideal I of R.

(ii) Show that any simple R-module is cyclic.

(iii) Show that M is a simple R-module if and only if M is isomorphic to R/I for some
maximal ideal I of R.

10. Let R be a ring and M an R-module. Define the endomorphism ring of M to be set
EndR(M) := {f : M → M | f is an R-module homomorphism} with pointwise addition and
multiplication given by function composition. The automorphism group of M , denoted by
AutR(M), is defined to be the group of units of EndR(M).

(i) Show that a Z-module is the same thing as an abelian group. Deduce that, for for an
abelian group M , we have End(M) ∼= EndZ(M) and Aut(M) ∼= AutZ(M).

(ii) Show that the two definitions of R-module given in lectures are equivalent. That is, for
an abelian group M , show that the structure · : R×M → M of a left R-module on M
is the same information as a ring homomorphism ϕ : R → End(M).

(iii) Let G be a group and M an abelian group. Show that an R[G]-module structure on M
is equivalently an R-module structure on M and a homomorphism ϕ : G → AutR(M).

(iv) Let G be a group. Show that a Z[G]-module is equivalently an abelian group M with
a G-action, i.e. group homomorphism G → Aut(M). [We often call this a G-module.]

[Hint: To show that two definitions are equivalent, we need to establish a one-to-one cor-
respondence. For example, you could show that (a) for every abelian group A, there ex-
ists a Z-module MA, (b) For every Z-module M , there exists an abelian group A(M), (c)
A(MA) ∼= A as abelian groups and MA(M)

∼= M as Z-modules.]

+11. If R is a ring, the formal power series ring R[[X]] is the ring with elements

f = a0 + a1X + a2X
2 + · · · ,

where each ai ∈ R. This has addition and multiplication the same as for polynomials, but
without upper limits. Show that, if R is Noetherian, then R[[X]] is Noetherian.
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