Algebra III: Rings and Modules Problem Sheet 3, Autumn Term 2022-23

John Nicholson

- 1. Prove that the two definitions of ring localisation given in lectures are equivalent. That is, let R be a commutative ring and let $S \subseteq R$ be a multiplicative submonoid. Show that there is a unique ring R' such that there exists a map $\iota : R \to R'$ with the following two properties:
 - (i) $\iota(S) \subseteq (R')^{\times}$, i.e. everything in S gets mapped to a unit in R'.
 - (ii) For all commutative rings A and maps $\varphi : R \to A$ with $\varphi(S) \subseteq A^{\times}$, there exists a unique $\tilde{\varphi} : R' \to A$ such that $\varphi = \tilde{\varphi} \circ \iota$.

[First prove this in the case where R is an integral domain. The general case is more difficult.]

2. Let R be a unique factorisation domain, let F denote its field of fractions and let

$$f = a_0 + a_1 X + \dots + a_n X^n \in R[X].$$

Show that, if $\frac{p}{q} \in F$ is a root of f for $p, q \in R$ with gcd(p, q) = 1, then $p \mid a_0$ and $q \mid a_n$ in R. [This is a generalisation of the Rational Root theorem.]

3. Show that the following polynomials are irreducible in $\mathbb{Q}[X, Y]$:

$$3X^{3}Y^{3} + 7X^{2}Y^{2} + Y^{4} + 2XY + 4X, \qquad 2X^{2}Y^{3} + Y^{4} + 4Y^{2} + 2XY + 6.$$

- 4. We say a polynomial in $\mathbb{Z}[X, Y]$ is *primitive* if the greatest common divisor of its (integer) coefficients is one. Show that:
 - (i) If $f, g \in \mathbb{Z}[X, Y]$ are primitive, then fg is primitive.
 - (ii) If $f \in \mathbb{Z}[X, Y]$ is primitive, then $f \in \mathbb{Z}[X, Y]$ is irreducible if and only if $f \in \mathbb{Q}[X, Y]$ is irreducible. [This is the analogue of Gauss' lemma for multivariate polynomials.]
- 5. For each of the following elements $\alpha \in \mathbb{C}$ determine whether α is an algebraic integer and, if so, compute its minimal polynomial f_{α} .

$$(1+\sqrt{3})/2$$
, $2\cos(2\pi/7)$, $(1+i)\sqrt{3}$, $\sqrt{5}/\sqrt{7}$, $i+\sqrt{3}$

6. Let R be a commutative ring. Show that R is Noetherian if and only if every ideal $I \subseteq R$ is finitely generated.

- 7. Let R be a commutative ring. Give a proof or counterexample to each of the following statements:
 - (i) If R is Noetherian, then R is an integral domain.
 - (ii) If R[X] is Noetherian, then R is Noetherian. [The converse to Hilbert's basis theorem.]
 - (iii) Let $S \subseteq R$ be a multiplicative submonoid. If R is Noetherian, then $S^{-1}R$ is Noetherian.
- 8. Let R and S be rings. Show that every $R \times S$ module M is isomorphic to a product $M_1 \times M_2$, where M_1 is an R-module and M_2 is an S module, and the $R \times S$ -module structure on $M_1 \times M_2$ is given by $(r, s) \cdot (m_1, m_2) = (rm_1, sm_2)$.
- 9. Let R be a ring. An R-module is M said to be *cyclic* if M it is generated by one element, and *simple* if M has no R-submodules other than 0 and M.
 - (i) Show that any cyclic R module is isomorphic to R/I for some ideal I of R.
 - (ii) Show that any simple *R*-module is cyclic.
 - (iii) Show that M is a simple R-module if and only if M is isomorphic to R/I for some maximal ideal I of R.
- 10. Let R be a ring and M an R-module. Define the *endomorphism ring* of M to be set $\operatorname{End}_R(M) := \{f : M \to M \mid f \text{ is an } R\text{-module homomorphism}\}$ with pointwise addition and multiplication given by function composition. The *automorphism group* of M, denoted by $\operatorname{Aut}_R(M)$, is defined to be the group of units of $\operatorname{End}_R(M)$.
 - (i) Show that a \mathbb{Z} -module is the same thing as an abelian group. Deduce that, for for an abelian group M, we have $\operatorname{End}(M) \cong \operatorname{End}_{\mathbb{Z}}(M)$ and $\operatorname{Aut}(M) \cong \operatorname{Aut}_{\mathbb{Z}}(M)$.
 - (ii) Show that the two definitions of *R*-module given in lectures are equivalent. That is, for an abelian group *M*, show that the structure $\cdot : R \times M \to M$ of a left *R*-module on *M* is the same information as a ring homomorphism $\varphi : R \to \text{End}(M)$.
 - (iii) Let G be a group and M an abelian group. Show that an R[G]-module structure on M is equivalently an R-module structure on M and a homomorphism $\varphi: G \to \operatorname{Aut}_R(M)$.
 - (iv) Let G be a group. Show that a $\mathbb{Z}[G]$ -module is equivalently an abelian group M with a G-action, i.e. group homomorphism $G \to \operatorname{Aut}(M)$. [We often call this a G-module.]

[Hint: To show that two definitions are equivalent, we need to establish a one-to-one correspondence. For example, you could show that (a) for every abelian group A, there exists a \mathbb{Z} -module M_A , (b) For every \mathbb{Z} -module M, there exists an abelian group A(M), (c) $A(M_A) \cong A$ as abelian groups and $M_{A(M)} \cong M$ as \mathbb{Z} -modules.]

+11. If R is a ring, the formal power series ring R[[X]] is the ring with elements

$$f = a_0 + a_1 X + a_2 X^2 + \cdots,$$

where each $a_i \in R$. This has addition and multiplication the same as for polynomials, but without upper limits. Show that, if R is Noetherian, then R[[X]] is Noetherian.