Algebra III: Rings and Modules Problem Sheet 4, Autumn Term 2022-23

John Nicholson

- 1. Let *R* be a ring and let $I \subseteq R$ be an ideal.
	- (i) Prove that *I* is a free *R*-module if and only if *I* in principal and is generated by an element which is not a zero divisor.
	- (ii) Deduce that a commutative ring *R* is a principal ideal domain if and only if every ideal $I \subseteq R$ is free as an *R*-module.
- 2. Let *R* be a ring and let *M* be a free *R*-module. Give a proof or counterexample to each of the following statements:
	- (i) Every spanning set for *M* over *R* contains a basis for *V* .
	- (ii) Every linearly independent subset of *M* over *R* can be extended to a basis for *M*.
- 3. Let *R* be a commutative ring. Prove that *R* is a field if and only if every finitely generated *R*-module is free. [Optional: Prove this is also equivalent to every *R*-module being free. You will need to use the axiom of choice.]
- 4. Let *R* be a ring, let $S \subseteq R$ be a multiplicative submonoid and let $N \leq M$ be *R*-modules. Show that there is an isomorphism of $S^{-1}R$ -modules $S^{-1}(M/N) \cong S^{-1}M/S^{-1}N$.
- 5. Let *R* be a ring, *M* a right *R*-module and *N* a left *R*-module. The tensor product $M \otimes_R N$ is defined to be the abelian group

$$
M \otimes_R N = \mathbb{Z}[M \times N] / ((va, w) - (v, aw), (v, w) + (v', w) - (v + v', w)),
$$

$$
(v, w) + (v, w') - (v, w + w') | a \in R, v, v' \in M, w, w' \in N).
$$

For left *R*-modules *M* and *N*, let $\text{Hom}_R(M, N)$ denote the set of left *R*-module homomorphisms $f: M \to N$, which is an abelian group under pointwise addition.

From now on, let *R* be a commutative ring.

- (i) Let *M, N* be left *R*-modules (which we can also view as right modules since *R* is commutative). Show that $M \otimes_R N$ is an *R*-module with action $a(v \otimes_R w) = av \otimes_R w$ for $a \in R$, $v \in M$ and $w \in N$.
- (ii) Let *M*, *N* be left *R*-modules. Show that $\text{Hom}_R(M, N)$ is an *R*-module, with action: for $a \in R$ and $\varphi : M \to N$, define $a \cdot \varphi : M \to N$ by $(a \cdot \varphi)(b) = a\varphi(b)$ for $b \in M$.
- (iii) Show that, if *M, N,* and *T* are all *R*-modules, then $\text{Hom}_R(M \otimes_R N, T)$ is identified with the set of *R*-bilinear maps $\varphi : M \times N \to T$, which means functions satisfying $\varphi(au, v) = a\varphi(u, v) = \varphi(u, av)$ and $\varphi(u + u', v) = \varphi(u, v) + \varphi(u', v)$ as well as $\varphi(u, v + v')$ v' + $\varphi(u, v)$ + $\varphi(u, v')$. Use this to give an alternative definition of tensor product.
- 6. Let *R* be a ring and let *M* be a left *R*-module. We say that *R* is a *ring with involution* (or a ∗*-ring*) if *R* is equipped with a map ∗ : *R* → *R* such that (*x* + *y*)[∗] = *x*[∗] + *y*∗, (*xy*)[∗] = *y*∗*x*∗, $1^* = 1$ and $(x^*)^* = x$ for all $x, y \in R$, i.e. $*$ is an anti-homomorphism and an involution.
	- (i) Show that $M^* = \text{Hom}_R(M, R)$ is a right *R*-module with action: for $a \in R$ and $\varphi \in$ $\text{Hom}_R(M, R)$, define $\varphi \cdot a : M \to R$ by $(\varphi \cdot a)(b) = \varphi(b) \cdot_R a$ for $b \in M$. This is known as the *dual module*.
	- (ii) Let R be a commutative ring. Show that R is a ring with involution. For a group G , show that *R*[*G*] is a ring with involution.
	- (iii) Let *R* be a ring with involution. Show that any right *R*-module *M* can be viewed as a left *R*-module with action: for $a \in R$ and $m \in M$, define $x \cdot m = m \cdot M x^*$. Use this to define a left *R*-module structure on $\text{Hom}_R(M, R)$. For left *R*-modules *M* and *N*, define a (sensible) left *R*-module structure on $M \otimes_R N$. [Optional: How do these *R*-module structures compare to those defined in (5) in the commutative case?]
- 7. Let *R* be a ring and let *M* be an *R*-module and let *N* ≤ *M* be a submodule. Show that *M* is Noetherian if and only if *N* and *M/N* are Noetherian.
- 8. Let *a, b* be nonzero positive integers. Find the Smith normal form of the following matrices in their respective rings:

$$
\begin{pmatrix} a & b \ -b & a \end{pmatrix} \in M_2(\mathbb{Q}), \quad \begin{pmatrix} X^2 - 5X + 6 & X - 3 \ (X - 2)^3 & X^2 - 5X + 6 \end{pmatrix} \in M_2(\mathbb{Q}[X]).
$$

- 9. Let *G* be the abelian group given by generators a, b, c and the relations $6a + 10b = 0$, $6a + 15c = 0$, $10b + 15c = 0$ (i.e. G is the free abelian group generated by a, b, c quotiented by the subgroup $(6a + 10b, 6a + 15c, 10b + 15c)$. Determine the structure of *G* as a direct sum of cyclic groups.
- 10. A ring *R* has the *invariant* basis *number* property (IBN) if, for all positive integers m, n , $R^n \cong R^m$ as *R*-modules implies $m = n$.
	- (i) For an ideal $I \subseteq R$ and an *R*-module *M*, we define an *R*-submodule $IM = \{am \in M :$ $a \in I, m \in M$ $\leq M$. Prove that *M/IM* is an *R/I*-module in a natural way.
	- (ii) Prove that non-zero commutative rings have IBN. You may assume that every non-zero commutative ring has a maximal ideal. [This is equivalent to the axiom of choice.]
	- (iii) Let *S* be a ring and *M* a free *S*-module with basis $\{x_i \mid i \geq 1\}$. Let $R = \text{End}_S(M)$. Prove that *R* does not have IBN. [Hint: Note that $M \cong M_{\text{even}} \oplus M_{\text{odd}}$ where M_{even} and M_{odd} are the submodules generated by x_i for *i* even and odd respectively. Use this to show that $R \cong R^2$ as R -modules.]
- +11. Let *G* be a finite group, let $N = \sum_{g \in G} g \in \mathbb{Z}[G]$ and let $r \in \mathbb{Z}$ be an integer with $(r, |G|) = 1$
	- (i) Show that the ideal $(N, r) \subseteq \mathbb{Z}[G]$ is projective as a $\mathbb{Z}[G]$ -module.
	- (ii) Let $G = C_n$ be a finite cyclic group. Show that (N, r) is free as a $\mathbb{Z}[G]$ -module.
	- (iii) Let $G = Q_8$ be the quaternion group of order 8. Show that $(N,3)$ is not free as a $\mathbb{Z}[G]$ -module. Is it stably free as a $\mathbb{Z}[G]$ -module?