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1 Problem sheet 1: Discrete-time Markov chains

1.1 Prerequisites: Lecture 2
Exercise 1- 1: Show by induction that for a discrete Markov chain (Xn)n∈N0 , we have

P(Xn+m = xn+m|Xn = xn, . . . , X0 = x0) = P(Xn+m = xn+m|Xn = xn),

for m ∈ N and for all xn+m, xn, . . . , x0 ∈ E.

Solution: For m = 1, this is the definition of the Markov property. Assume now the identity
holds for m. We apply the law of total probability with additional conditioning, which leads to

P(Xn+m+1 = xn+m+1|Xn = xn, . . . , X0 = x0)

=
∑

xn+m∈E
P(Xn+m+1 = xn+m+1|Xn+m = xn+m, Xn = xn, . . . , X0 = x0)

· P(Xn+m = xn+m|Xn = xn, . . . , X0 = x0).

Now we apply the Markov property to the first term

P(Xn+m+1 = xn+m+1|Xn+m = xn+m, Xn = xn, . . . , X0 = x0)

= P(Xn+m+1 = xn+m+1|Xn+m = xn+m, Xn = xn),

where the green term Xn = xn could have been deleted as well, but we are keeping it for now,
and the induction hypothesis to the second term

P(Xn+m = xn+m|Xn = xn, . . . , X0 = x0) = P(Xn+m = xn+m|Xn = xn).

Hence we get

P(Xn+m+1 = xn+m+1|Xn = xn, . . . , X0 = x0)

=
∑

xn+m∈E
P(Xn+m+1 = xn+m+1|Xn+m = xn+m, Xn = xn)P(Xn+m = xn+m|Xn = xn)

= P(Xn+m+1 = xn+m+1|Xn = xn) = pxnxn+m+1(m+ 1),

where we applied the law of total probability with additional conditioning (”backwards”) in the
penultimate identity. Now we see why we kept the green term Xn = xn: Then we have exactly
the functional form of the law of total probability with additional conditioning.

Exercise 1- 2: Show that a K ×K-dimensional stochastic matrix has at least one eigenvalue equal to 1.
Hence show that if P is a stochastic matrix, then so is Pn for all n ∈ N.

Solution: A stochastic matrix P must satisfy

K∑
j=1

pij = 1, for all i ∈ {1, . . . ,K}.

We can write the above condition in matrix notation:

P1 = 1 · 1, (1.1)
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where 1 is the vector of 1’s. So we see that 1 is an eigenvalue.

We use induction to show that Pn is a stochastic matrix. We already know that this is true for
n = 1. Then for n+ 1 we have

Pn+11 = P(Pn1) = P1 = 1,

where we used that according to the induction hypothesis Pn is a stochastic matrix (in particular
Pn1). In addition, since all elements of P are nonnegative, this is also true for the elements of
Pn+1 (since both P and by induction hypothesis Pn are non-negative, hence their product has
non-negative elements).

Exercise 1- 3: For each matrix, decide whether it is stochastic. If it is, draw the corresponding transition
diagram (assuming the state space is given by E = {1, 2, 3}).

(a)

 0 0 1
0.5 −0.5 −1
0.25 0.25 0.5

 (b)

 0.5 0.2 0.3
0 0.7 0.3

0.1 0.9 0

 (c)

 1 0 0
0 0.9 0.1
0 0 1



Solution:

(a) The matrix is not stochastic since it has negative entries.

(b) and (c) Both matrices are stochastic since they have non–negative entries, and the row sums
are 1.

The transition diagram for (b) is given by

1 2 3
0.2 0.3

0.9

0.3
0.1

0.5 0.7

1

The transition diagram for (c) is given by

1 2 3
0.1

1 0.9 1

1

Exercise 1- 4: Derive the transition matrix from the following transition diagram.
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1 2 3

4

0.3

0.7

0.3

0.3

0.4

0.5

0.5

0.7

0.3

1

Solution:

P =


0 0.3 0 0.7

0.3 0 0.3 0.4
0.5 0 0 0.5
0 0 0.7 0.3



Exercise 1- 5: Suppose that the movements of a particle are recorded at discrete times on a discrete lattice
{0, 1, . . . , a}, such that if it hits either 0 or a it never leaves. Given that the particle is at the points
{1, . . . , a − 1} it may jump up the lattice with probability p and down with probability 1 − p. What
are the transition probabilities for this Markov chain?

Solution: Suppose that xn−1 ∈ {1, . . . , a− 1} then

P(Xn = xn−1 + 1|Xn−1 = xn−1) = p

and

P(Xn = xn−1 − 1|Xn−1 = xn−1) = 1− p.

If xn−1 ∈ {0, a} then

P(Xn = xn−1|Xn−1 = xn−1) = 1.

All the other transition probabilities are equal to 0. We note that the Markov chain described here
is also referred to as a random walk with absorption at 0 and a.

Exercise 1- 6: Let Xn be the maximum reading obtained in the first n rolls of a fair die (for n ∈ N). Show
that {Xn}n∈N is a Markov chain, and give the transition probabilities.
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Solution: Let Dn be the score of the die at time n. Then Dn is a uniform random variable on
{1, . . . , 6}. Then

Xn = max{D1, . . . , Dn} = max{Xn−1, Dn}.

ClearlyXn depends on (X1, . . . , Xn−1) only throughXn−1 andDn is independent ofXn−2, . . . , X1,
so (Xn) is a Markov chain, i.e.

P(Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) = P(Xn = xn|Xn−1 = xn−1).

It also follows that

P(Xn = xn−1|Xn−1 = xn−1) =
xn−1

6
.

Also, if xn−1 ≤ 5 and y ∈ {xn−1 + 1, . . . , 6}, we have

P(Xn = y|Xn−1 = xn−1) =
1

6
.

Altogether, we get the following transition matrix

P =


1/6 1/6 1/6 1/6 1/6 1/6
0 2/6 1/6 1/6 1/6 1/6
0 0 3/6 1/6 1/6 1/6
0 0 0 4/6 1/6 1/6
0 0 0 0 5/6 1/6
0 0 0 0 0 6/6

 .

Exercise 1- 7: Consider the transition matrix of a Markov chain with state space E = {1, 2, 3} given by

P =

 0 1 0
0 2/3 1/3

1/3 0 2/3

 .

Derive a general formula p12(n) for n ∈ {0, 1, 2, . . . }. Hint: Compute the eigenvalues of P and
diagonalise P to compute Pn!

Solution: First we compute the eigenvalues of P: Solve the characteristic equation

0 = det(P− λI) = det

 −λ 1 0
0 2/3− λ 1/3

1/3 0 2/3− λ


= −λ

(
2

3
− λ
)2

+

(
1

3

)2

= −λ3 +
4

3
λ2 − 4

9
λ+

1

9

= − (λ− 1)

(
λ2 − 1

3
λ+

1

9

)
.

Hence, P has three distinct eigenvalues given by

λ1 = 1, λ2 =
1 + i

√
3

6
, λ3 =

1− i
√

3

6
,
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and is therefore diagonalisable.

I.e. we know that there exists an invertible matrix U such that

U−1PU = diag

(
1,

1 + i
√

3

6
,

1− i
√

3

6

)
,

i.e.

P = Udiag

(
1,

1 + i
√

3

6
,

1− i
√

3

6

)
U−1.

Then we have for n ∈ {0, 1, 2, . . . }

Pn = Udiag

(
1,

(
1 + i

√
3

6

)n
,

(
1− i

√
3

6

)n)
U−1.

That means that each element of Pn is of the form

a+ b

(
1 + i

√
3

6

)n
+ c

(
1− i

√
3

6

)n
,

for some (possibly complex) coefficients a, b, c.

The coefficients can be computed using the initial values n = 0, 1, 2. Note that P0 is the identity
matrix, P1 = P is given and P2 can be easily computed, here we have

P2 =


0 2/3 1/3

1/9 4/9 4/9

2/9 1/3 4/9


Now, we need to solve

p12(n) = a+ b

(
1 + i

√
3

6

)n
+ c

(
1− i

√
3

6

)n
,

for n = 0, 1, 2 with respect to the coefficients a, b, c.

I.e. solve the following system of equations:

p12(0) = 0 = a+ b

(
1 + i

√
3

6

)0

+ c

(
1− i

√
3

6

)0

= a+ b+ c,

p12(1) = 1 = a+ b

(
1 + i

√
3

6

)
+ c

(
1− i

√
3

6

)
,

p12(2) =
2

3
= a+ b

(
1 + i

√
3

6

)2

+ c

(
1− i

√
3

6

)2

.

Now we simplify the computations by getting rid off the imaginary part. Note that the n-step
transition probabilities are real non-negative numbers!

Recall that, for a complex number z ∈ C, with Cartesian form z = x + iy for x, y ∈ R, we
can write it in polar form as z = r(cos(φ) + i sin(φ)) = reiφ, where r = |z| =

√
x2 + y2,

φ = arg(z) = atan2(y, x).

Page 5 of 50



MATH60045/MATH70045 Applied Probability Problem sheets: Autumn 2022

Observe that

1± i
√

3

6
=

1

3

1± i
√

3

2
=

1

3
e±iπ/3 =

1

3

(
cos

π

3
± i sin

π

3

)
.

Hence (
1± i

√
3

6

)n
=

(
1

3

)n
e±iπn/3 =

(
1

3

)n (
cos

πn

3
± i sin

πn

3

)
,

and

p12(n) = α+

(
1

3

)n (
β cos

πn

3
+ γ sin

πn

3

)
,

where α = a, β = b+ c and γ = i(b− c) must be real numbers.

The new system of equation we need to solve is given by

α+ β = 0, α+
1

3

(
1

2
β +

√
3

2
γ

)
= 1, α+

1

32

(
−1

2
β +

√
3

2
γ

)
=

2

3
,

which has solution

α =
3

7
, β = −3

7
, γ =

9

7

√
3.

Altogether, we have

p12(n) =
3

7
+

(
1

3

)n(
−3

7
cos

πn

3
+

9

7

√
3 sin

πn

3

)
.

1.2 Prerequisites: Lecture 3

Exercise 1- 8: Show that a discrete random process (Xn)0≤n≤N (N < ∞) is a discrete-time, time-
homogeneous Markov chain on the state space E if and only if

P(X0 = x0, X1 = x1, . . . , XN = xN ) = P(X0 = x0)px0x1px1x2 . . . pxN−1xN
,

for all x0, x1, . . . , xN ∈ E.

Solution: Suppose that (Xn)0≤n≤N is a discrete-time, time-homogeneous Markov chain. Then

P(X0 = x0, X1 = x1, . . . , XN = xN )

= P(XN = xN |X0 = x0, X1 = x1, . . . , XN−1 = xN−1)P(X0 = x0, X1 = x1, . . . , XN−1 = xN−1)

= P(XN = xN |XN−1 = xN−1)P(X0 = x0, X1 = x1, . . . , XN−1 = xN−1),

where we used the Markov property. By iterating the argument, we get

P(X0 = x0, X1 = x1, . . . , XN = xN )

= P(XN = xN |XN−1 = xN−1)P(X0 = x0, X1 = x1, . . . , XN−1 = xN−1)

= P(XN = xN |XN−1 = xN−1) · · ·P(X1 = x1|X0 = x0)P(X0 = x0).
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Using the notation from the lecture notes this can be written as

P(X0 = x0, X1 = x1, . . . , XN = xN ) = P(X0 = x0)px0x1
px1x2

. . . pxN−1xN

= ν(0)
x0
px0x1

px1x2
. . . pxN−1xN

.

Now suppose that

P(X0 = x0, X1 = x1, . . . , XN = xN ) = P(X0 = x0)px0x1
px1x2

. . . pxN−1xN

= ν(0)
x0
px0x1px1x2 . . . pxN−1xN

(1.2)

holds. Sum both sides of the equation over xN ∈ E using the law of total probability and the fact
that the row sums of the transition matrix are equal to 1. Then∑
xN∈E

P(X0 = x0, X1 = x1, . . . , XN = xN ) =
∑
xN∈E

P(X0 = x0)px0x1
px1x2

. . . pxN−1xN
,

hence

P(X0 = x0, X1 = x1, . . . , XN−1 = xN−1) = P(X0 = x0)px0x1
px1x2

. . . pxN−2xN−1
.

So, equation (1.2) holds for N − 1.

Now we iterate to conclude that

P(X0 = x0, X1 = x1, . . . , Xn = xn) = P(X0 = x0)px0x1px1x2 . . . pxn−1xn

holds for all n = 0, . . . , N . Then

P(Xn = xn|Xn−1 = xn−1, . . . , X0 = x0)

= P(Xn = xn, Xn−1 = xn−1, . . . , X0 = x0)/P(Xn−1 = xn−1, . . . , X0 = x0)

=
P(X0 = x0)px0x1

px1x2
. . . pxn−1xn

P(X0 = x0)px0x1
px1x2

. . . pxn−2xn−1

= pxn−1xn ,

which is the (time-homogeneous) Markov property.

Exercise 1- 9: Using the notation from the lecture notes, show by induction that the marginal distribution
of a Markov chain satisfies

ν(n) = ν(0)Pn,

for n ∈ N.

Solution: For n = 1, we have (for j ∈ E)

ν
(1)
j = P(X1 = j) =

LTP
=
∑
i∈E

P(X1 = j|X0 = i)P(X0 = i)

=
∑
i∈E

pijν
(0)
i =

∑
i∈E

ν
(0)
i pij .
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Hence ν(1) = ν(0)P.

Now we consider the case n+ 1:

ν
(n+1)
j = P(Xn+1 = j)

LTP
=
∑
i∈E

P(Xn+1 = j|Xn = i)P(Xn = i)

=
∑
i∈E

pijν
(n)
i .

Now we apply the induction hypothesis and get

ν
(n+1)
j =

∑
i∈E

pijν
(n)
i =

∑
i∈E

pij
∑
k∈E

ν
(0)
k pki(n)

=
∑
k∈E

ν
(0)
k ∑

i∈E
pki(n)pij︸ ︷︷ ︸

=pkj(n+1)

,

where we used the Chapman-Kolmogorov equations. Hence ν(n+1) = ν(0)Pn+1.

1.3 Prerequisites: Lecture 4

Exercise 1- 10: Suppose that p, q ∈ (0, 1) and p + q = 1. The transition matrix of a Markov chain with
state space E = {0, 1, . . . , } is:

P =


q p 0 0 0 . . .
q 0 p 0 0 . . .
q 0 0 p 0 . . .
q 0 0 0 p . . .
...

...
...

...
...

. . .


(a) Find the first return probabilities for state 0, i.e. find f00(n) for all n ∈ N.
(b) Use your results from (a) to find f00. Is state 0 recurrent?

Solution: The first part of the transition diagram is given by:

0 1 2 etc.
p p

q

q

q

1

(a) We denote the Markov chain by X = (Xn)n∈N0
. Recall that, for n ∈ N, f00(n) denotes the

probability that the first return to 0 is after n steps. Here we find that

f00(1) = p00 = q,
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f00(2) = pq,

f00(3) = p2q,

etc. We read off that, for n ∈ N,

f00(n) = P(Xn = 0, Xn−1 6= 0, . . . , X1 6= 0|X0 = 0) = pn−1q.

(b) Consider

f00 =

∞∑
n=1

f00(n) = q

∞∑
n=1

pn−1 = q

∞∑
n=0

pn =
q

1− p = 1,

where we worked with the geometric series expansion for |p| = p < 1. That is, state 0 is
recurrent. (In fact it is positive recurrent.)

Exercise 1- 11: (From the exam paper in 2019-2020) Suppose the influenza virus exists in K different
strains, where K ≥ 2. Each year, the virus either stays the same with probability 1− a, for a ∈ (0, 1),
or mutates to any of the other strains with equal probability. Suppose you can model the virus mutation
by a discrete-time homogeneous Markov chain.

1. We denote the state space by E = {1, . . . ,K}. State the corresponding 1-step transition proba-
bilities of the Markov chain.

2. You decide to group the states: You consider the modified state space Ẽ = {I,O}where I stands
for the initial state and O for the collection of the other K − 1 states.

(a) State the corresponding 1-step transition probabilities of the Markov chain on Ẽ.
(b) Show that, for n ∈ N,

pII(n+ 1) = pII(n)

{
1− a− a

K − 1

}
+

a

K − 1
,

and state all results from the lectures which you apply in your proof.

Solution:

1. We have pii = 1−a for all i ∈ E and we have that pij = b for all i 6= j for some b ∈ (0, 1),
hence 1 =

∑K
j=1 pij = 1− a+ (K − 1)b⇔ b = a

K−1 , which implies that pij = a
K−1 for

all i, j ∈ E, i 6= j.

2. (a) Here the transition matrix corresponding to the Markov chain on Ẽ = {I,O} is given
by

P =

(
1− a a
a

K−1 1− a
K−1

)
.

(b) Let n ∈ N. From the Chapman-Kolmogorov equations, we have that Pn+1 = PnP,
hence

pII(n+ 1) = pII(n) · pII + pIO(n) · pOI .
= pII(n) · (1− a) + pIO(n) · a

K − 1
.
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Since Pn is a stochastic matrix, we have that pII(n) + pIO(n) = 1 ⇔ pIO(n) =
1− pII(n).
Hence

pII(n+ 1) = pII(n) · pII + pIO(n) · pOI
= pII(n) · pII + (1− pII(n)) · pOI
= pII(n)(pII − pOI) + pOI

= pII(n)

(
1− a− a

K − 1

)
+

a

K − 1
.

1.4 Prerequisites: Lecture 6

Exercise 1- 12: Let α, β ∈ (0, 1). We are given a Markov chain on a state space E = {0, 1}, with
transition matrix (

1− α α
β 1− β

)
.

(a) Derive the generating function associated with the sequence (f00(n))n∈N0 . Hint: Find f00(n)
for all n ∈ N0 for this Markov chain. Then define the corresponding generating function as
G(s) =

∑∞
n=0 f00(n)sn for |s| < 1.

(b) Find, using generating functions, the expected return time to state 0. I.e. compute µ0 = d
dsG(s)

∣∣
s=1

=∑
n=1 nf00(n).

(c) What is the ”holding time” (i.e. the time spent in a particular state) distribution for state 0 that you
have derived in this question?

Solution:
(a) The generating function associated with the sequence (f00(n))n∈N0

is given by

G(s) =

∞∑
n=0

f00(n)sn.

Recall that f00(0) := 0 and f00(1) = p00 = (1 − α). For any subsequent n ∈ N, we
must first visit 1 and stay there for n − 2 step and return to 0. For example, if n = 4,
f00(4) = α(1− β)2β, in other words

f00(n) = α(1− β)n−2β, for all n ≥ 2.

Thus we have

G(s) = (1− α)s+ αβ

∞∑
n=2

(1− β)n−2sn

= (1− α)s+ αβs2
∞∑
n=0

(1− β)nsn

= (1− α)s+
αβs2

1− (1− β)s
,

for |s| < 1.
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(b) In order to compute µ0, we compute the derivative of G and set s = 1

dG

ds
= (1− α) +

2αβs(1− (1− β)s) + αβs2(1− β)

(1− (1− β)s)2

it then follows that

dG

ds

∣∣∣∣
s=1

=

∞∑
n=1

nf00(n) = µ0 =
(α+ β)

β
.

We note that, in Lecture 7, we have recalled Abel’s theorem to stress that we can evaluate the
(derivative) of the generating function in 1.

(c) The important point you have derived here is that the holding time in a state is geometrically
distributed.

Suppose that X0 = i. Define Yi := inf{n ∈ N : Xn 6= i} ∈ N and let Zi := Yi − 1 ∈ N0 be
the holding time at state i. Then

P(Z0 = 0|X0 = 0) = P(Y0 = 1|X0 = 0) = α = f01(1),

P(Z0 = 1|X0 = 0) = (1− α)α = f01(2),

...
P(Z0 = n|X0 = 0) = (1− α)nα = f01(n).

I.e. the holding time in state 0 follows a geometric distribution with parameter α.

Similarly, the holding time in state 1 follows a geometric distribution with parameter β.

1.5 Prerequisites: Lecture 6

Exercise 1- 13: The following question is adapted from Grimmett & Stirzaker (2001b,a) Problem 6.15.6:
Let i, j ∈ E and suppose that i↔ j.

Show that there is positive probability of reaching j from iwithout revisiting i in the meantime. Deduce
that, if the chain is irreducible and recurrent, then fij = 1, ∀i, j ∈ E.

Solution: Suppose that i 6= j and set m = min{n ∈ N : pij(n) > 0}. Such an m exists since
i↔ j. If X0 = i and Xm = j then there can be no intermediate visit to i (with probability one),
since such a visit would contradict the minimality of m. [To see that, suppose that Xk = i for
k < m. Then pij(m− k) > 0 and m− k < m, which contradicts that m is minimal.]

Now suppose that the chain is irreducible and recurrent. Suppose thatX0 = i. Since i is recurrent,
we know that fii = 1 which is equivalent to

P(Xn 6= i, ∀n ∈ N|X0 = i) = 1− fii = 0.

One way of not re-visiting state i would be to visit state j in m steps and then never return to state
i which happens with probability 1− fji. So altogether, we get

0 = P(Xn 6= i, ∀n ∈ N|X0 = i) ≥ pij(m)(1− fji),
since pij(m) > 0, we require that 1 − fji = 0 which concludes the proof (since the result holds
for all i, j ∈ E).
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