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2 Problem sheet 2: Discrete-time Markov chains

2.1 Prerequisites: Lecture 7

Exercise 2- 14: Consider a sequence of 4 vaults labelled as E = {1, 2, 3, 4}. In vault 1 there is a policeman

and in vault 4 there is a treasure chest. Vaults 2 and 3 are empty, see the picture below.

Vault 1 (Policeman) Vault 2 (empty) Vault 3 (empty) Vault 4 (Treasure)

Suppose there is a thief walking through the vaults and you can model the location of the thief,

i.e. the corresponding vault number, at each point in time by a homogeneous Markov chain denoted by

(Xn)n∈{0,1,2,... }.

If the thief is in vault 1 (together with the policeman), he will run out of vault 1 to vault 2 with

probability one. If the thief is in vault 4 (with the treasure), he will stay there forever. If the thief

is in vault 2 or 3, he will either go left with probability 1/2 or he will go right with probability 1/2.

Moreover, assume that the thief is not very clever, so he might return to vault 1 (with the policeman)

several times. Also, suppose the policeman never manages to catch the thief and jail him (even if they

are in the same vault).

(a) State the transition probabilities for this Markov chain.

(b) Suppose the thief starts his journey in vault 1. What is the expected number of moves required

until the thief reaches the treasure chest? Justify your answer carefully.

Solution:

1. The transition matrix is given by

P =









0 1 0 0
1
2

0 1
2

0
0 1

2
0 1

2

0 0 0 1









.

2. Let T = min{n ≥ 0 : Xn = 4}. Set νi = E(T |X0 = i) for i ∈ E = {1, 2, 3, 4}. We need

to find ν1.

We proceed recursively: Clearly, ν4 = 0. Similarly to the Gambler’s ruin problem, we

condition on the outcome of the first move. Also, we apply the law of the total conditional

expectation, the Markov property and time-homogeneity:

ν3 = E(T |X0 = 3)

=
4
∑

x1=1

E(T |X0 = 3, X1 = x1)P(X1 = x1|X0 = 3)

= E(T |X0 = 3, X1 = 2)P(X1 = 2|X0 = 3) + E(T |X0 = 3, X1 = 4)P(X1 = 4|X0 = 3)

=
1

2
E(T |X1 = 2) +

1

2
E(T |X1 = 4) =

1

2
[E(T |X0 = 2) + 1] +

1

2
[E(T |X0 = 4) + 1]

= 1 +
1

2
(ν2 + ν4) = 1 +

1

2
ν2,

ν2 =

4
∑

x1=1

E(T |X0 = 2, X1 = x1)P(X1 = x1|X0 = 2)

= E(T |X0 = 2, X1 = 1)P(X1 = 1|X0 = 2) + E(T |X0 = 2, X1 = 3)P(X1 = 3|X0 = 2)

=
1

2
(1 + ν1) +

1

2
(1 + ν3) = 1 +

1

2
(ν1 + ν3),
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ν1 =

4
∑

x1=1

E(T |X0 = 1, X1 = x1)P(X1 = x1|X0 = 1)

= E(T |X0 = 1, X1 = 2)P(X1 = 2|X0 = 1) = 1 + ν2.

We have ν1 = 1 + ν2, ν3 = 1 + 1
2
ν2 and

ν2 = 1 +
1

2
(ν1 + ν3) = 1 +

1

2

(

1 + ν2 + 1 +
1

2
ν2

)

= 2 +
3

4
ν2 ⇔ ν2 = 8.

Hence, ν1 = 9 (and also ν3 = 5). I.e. the expected number of moves required until the thief

reaches the treasure chest is 9.

Let us check some of the details required in the above computations: E.g. in the calculations

above, we claimed that

E(T |X1 = 2) = E(T |X0 = 2) + 1

and similar results appeared subsequently. To see that the stated result hold, we can spell

out the details of the computation as follows:

E(T |X1 = 2) =

∞
∑

t=0

tP(T = t|X1 = 2) =

∞
∑

t=1

tP(T = t|X1 = 2) (next replace t by t + 1)

=
∞
∑

t+1=1

(t+ 1)P(T = t+ 1|X1 = 2) =
∞
∑

t=0

(t+ 1)P(T = t+ 1|X1 = 2)

=

∞
∑

t=0

tP(T = t+ 1|X1 = 2) +

∞
∑

t=0

P(T = t+ 1|X1 = 2).

We note that, for the first term, we get

∞
∑

t=0

tP(T = t+ 1|X1 = 2) =
∞
∑

t=1

tP(T = t+ 1|X1 = 2)

=

∞
∑

t=1

tP(T = t|X0 = 2) =

∞
∑

t=0

tP(T = t|X0 = 2) = E(T |X0 = 2),

where we used the time-homogeneity of the Markov chain in the second equality.

For the second term, we have

∞
∑

t=0

P(T = t+ 1|X1 = 2) =

∞
∑

t=1

P(T = t|X1 = 2) =

∞
∑

t=0

P(T = t|X1 = 2) = 1,

where we replaced t by t− 1 in the first equality and used the fact that

P(T = 0|X1 = 2) = P(X0 = 4|X1 = 2)
Bayes
=

P(X1 = 2|X0 = 4)P(X0 = 4)

P(X1 = 2)
= 0,

since p42 = 0.
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2.2 Prerequisites: Lecture 9

Exercise 2- 15: A transition matrix is called doubly stochastic if all its column sums equal 1, that is, if
∑

i pij = 1 for all i, j ∈ E.

(a) Assume the Markov chain has finite state space, i.e. |E| = K < ∞.

• Show that if the transition matrix is doubly stochastic, then all states are positive recurrent.

• Show that if the transition matrix is doubly stochastic and, in addition, if the chain is irre-

ducible and aperiodic, then pij(n) →
1
K

as n → ∞.

(b) Assume the Markov chain has infinite state space, i.e. |E| = ∞.

• Show that if the chain is irreducible and the transition matrix is doubly stochastic, then all

states are either null recurrent or transient.

Solution:

(a) Let P be the doubly stochastic transition matrix.

• Then

∑

i∈E

pij(n) =
∑

i∈E

∑

k∈E

pik(n− 1)pkj =
∑

k∈E

(

∑

i∈E

pik(n− 1)

)

pkj

where we used the CK equations. Now we can prove by induction that Pn is also

doubly stochastic for all n ∈ N.

Suppose j ∈ E is not positive recurrent. Then pij(n) → 0 as n → ∞ for all i ∈ E.

Then 1 =
∑

i pij(n) → 0 (we can interchange limit and sum since we have a finite

chain). This is a contradiction! Hence all states are positive recurrent.

• In addition assume the chain is irreducible and aperiodic, then pij(n) → πj , where

π is the unique stationary distribution. Since P is doubly stochastic we get for π :=
(1/K, . . . , 1/K), that πi ≥ 0,

∑

i∈E πi = 1 and

∑

i∈E

πipij =
1

K

∑

i∈E

pij =
1

K
= πj .

(b) We only need to show that the chain cannot be positive recurrent.

Suppose the chain is positive recurrent. Then according to Theorem 3.9.8 there exists a

positive root of the equation xP = x, which is unique up to a multiplicative constant. Since

P is doubly stochastic, we can take x = 1 (the vector of 1’s). Since the root x is unique,

there cannot exist a stationary distribution and therefore the chain is null or transient.

Exercise 2- 16: The following question is adapted from Grimmett & Stirzaker (2001b,a) Problem 6.15.7:

Let {Xn}n∈N0
be a recurrent irreducible Markov chain on the state space E with transition matrix P,

and let x be a positive solution of the equation x = xP.

(a) Show that

qij(n) =
xj

xi

pji(n), i, j ∈ E, n ∈ N,

defines the n-step transition probabilities of a recurrent irreducible Markov chain on E whose

first-passage probabilities are given by

gij(n) =
xj

xi

lji(n), i 6= j, n ∈ N, (2.1)

where lji(n) = P(Xn = i, Tj ≥ n|X0 = j) and Tj = min{m ∈ N : Xm = j}.
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(b) Show that x is unique up to a multiplicative constant.

Solution:

(a) We observe that qij(n) ≥ 0 for all i, j ∈ E, n ∈ N0. Also,

∑

j∈E

qij(n) =
∑

j∈E

xj

xi

pji(n) =
1

xi

∑

j∈E

xjpji(n) =
xi

xi

= 1,

for all i ∈ E, n ∈ N0. Hence Q(n) is indeed a stochastic matrix. Also,

qij(n+ 1) =
xj

xi

pji(n+ 1)
Chapman−Kolmogorov

=
xj

xi

∑

l∈E

pjl(n)pli

=
∑

l∈E

xj

xl

pjl(n)
xl

xi

pli =
∑

l∈E

qlj(n)qil,

for all i, j ∈ E, n ∈ N0. Hence Q(1) is the transition matrix of a Markov chain {Yn}n∈N0
,

say, and Q(n) = Qn. The chain {Yn}n∈N0
is also recurrent since

∞
∑

n=1

qii(n) =

∞
∑

n=1

xi

xi

pii(n) =

∞
∑

n=1

pii(n) = ∞,

for all i ∈ E. Also, {Yn}n∈N0
is irreducible since i → j for {Yn}n∈N0

whenever j → i for

{Xn}n∈N0
, and {Xn}n∈N0

is irreducible.

Next we compute the first passage probabilities of {Yn}n∈N0
which we denote by gij(n) for

i 6= j. We conduct a proof by induction. The claim is true for n = 1, since we have

gij(1) = qij(1) =
xj

xi

pji(1) =
xj

xi

lji(1).

Now suppose the claim is true for n ∈ N, then, by equation (3.9.5) in the lecture notes

lji(n+ 1) =
∑

r∈E:r 6=j

priljr(n).

Hence,

xj

xi

lji(n+ 1) =
∑

r∈E:r 6=j

xr

xi

pri
xj

xr

ljr(n) =
∑

r∈E:r 6=j

qirgrj(n) = gij(n+ 1),

where we applied the law of total probability, the Markov property and time-homogeneity in

the last step. More precisely, we used that

fij(n+ 1) =
∑

r:r 6=j

pirfrj(n), for i 6= j, n ∈ N.

To see that, note that for i 6= j, n ∈ N

fij(n+ 1) = P(Tj = n+ 1|X0 = i)
LTP
=

∑

r:r 6=j

P(Tj = n+ 1|X1 = r,X0 = i)P(X1 = r|X0 = i)

Markov
=

∑

r:r 6=j

P(Tj = n+ 1|X1 = r)P(X1 = r|X0 = i)

time−homogeneity
=

∑

r:r 6=j

P(Tj = n|X0 = r)P(X1 = r|X0 = i)

=
∑

r:r 6=j

frj(n)pir.
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(b) We sum (2.1) over n and obtain for the left hand side (LHS):

LHS =

∞
∑

n=1

gij(n) = gij = 1,

by Exercise 1- 13. And for the right hand side (RHS), we obtain

RHS =
∞
∑

n=1

xj

xi

lji(n) =
xj

xi

∞
∑

n=1

lji(n) =
xj

xi

ρi(j).

Hence

LHS = RHS ⇔ xi = xjρi(j), ∀i 6= j.

Without loss of generality assume that 0 ∈ E, then xi = x0ρi(0) for all i ∈ E. Hence x is

unique up to a multiplicative constant.

Exercise 2- 17: Let T be a nonnegative integer-valued random variable on a probability space (Ω,F ,P)
and let A ∈ F be an event with P(A) > 0. Show that

E(T |A) =

∞
∑

n=1

P(T ≥ n|A).

Solution: We use the definition of the conditional expectation and the fact that m =
∑m−1

n=0 1 to

deduce that

E(T |A) =

∞
∑

m=0

mP(T = m|A) =

∞
∑

m=0

m−1
∑

n=0

P(T = m|A) =

∞
∑

n=0

∞
∑

m=n+1

P(T = m|A)

=

∞
∑

n=0

P(T ≥ n+ 1|A) =

∞
∑

n=1

P(T ≥ n|A).

2.3 Prerequisites: Lecture 10

Exercise 2- 18: We consider Markov chains with state space E = {0, 1, 2, 3}. For each of the Markov

transition matrices below:

(a)









0.5 0.5 0 0
0 0.5 0.5 0
0 0 0.5 0.5
0 0 0 1









(b)









0.5 0.5 0 0
0.5 0.5 0 0
0 0 0.5 0.5
0 0 0.5 0.5









(c)









0.5 0.5 0 0
0.3 0.3 0.4 0
0 0.5 0.5 0
0 0 0.5 0.5









.

• Specify the communicating classes and determine whether they are transient or recurrent;

• Decide whether or not they have a unique stationary distributions;

• Find a stationary distribution for each of them and show that it is not unique where appropriate.
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Solution:

(a) • We have three transient classes {0}, {1}, {2} and 1 closed recurrent class {3}, (the state

3 is absorbing).

• Since we have only 1 closed communicating class: C := {3} on a finite state space,

(the state 3 is absorbing), there is a unique stationary distribution!

• Compute the unique stationary solution πC = πCPC . Here: PC = 1, and πC = 1.

Now we set π = (0, 0, 0, 1).

(b) • We have 2 closed recurrent classes C1 = {0, 1} and C2 = {2, 3}.

• Since we have 2 closed communicating classes C1 = {0, 1} and C2 = {2, 3} on a finite

state space, there is a stationary solution, but it is not unique!

• We get π = (a, a, b, b) for a, b ≥ 0 with 2(a+ b) = 1.

(c) • There is 1 closed, recurrent class: C = {0, 1, 2} and one transient class {3}.

• Since there is only 1 closed communicating class: C = {0, 1, 2} on a finite state space,

there is a unique stationary solution.

• Solve πC = πCPC! Then we obtain πC = (1/4, 5/12, 1/3) and π = (1/4, 5/12, 1/3, 0).

Exercise 2- 19: Consider a discrete-time homogeneous Markov chain (Xn)n∈N0
with state space E =

{1, 2, 3, 4, 5, 6, 7, 8} and transition matrix given by

P =

























0 0 0.5 0 0 0 0 0.5
0 0 0.5 0.5 0 0 0 0
0 0 1 0 0 0 0 0
0 0.25 0 0.75 0 0 0 0
0 0 0.5 0 0 0.5 0 0
0 0 0 0 0.5 0 0.5 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0

























.

(a) Draw the transition diagram.

(b) Specify the communicating classes and determine whether they are transient, null recurrent or

positive recurrent. Please note that you need to justify your answers.

(c) Find all stationary distributions.

(d) For each communication class, pick a state i and find the first passage probabilities fii(n) =
P(Xn = i,Xn−1 6= i, . . . , X1 6= i|X0 = i) for all n ∈ N and derive fii =

∑∞
n=1 fii(n).

Solution:

(a) The transition diagram is given by

1

8

23 4

5 6 7

0.5

0.5

0.5

0.5

1

0.25

0.75

0.5

0.5 0.5

0.5 1

1
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(b) We have a finite state space with four communicating classes: The classes T1 = {1, 8}, T2 =
{2, 4}, T3 = {5, 6, 7} are not closed and hence transient. The class C1 = {3} is finite and

closed and hence positive recurrent.

(c) According to a theorem from lectures, this Markov chain has a unique stationary distri-

bution π since it has one closed communicating classes in a finite state space. For the

transient states we know from the lectures that πi = 0 for i = 1, 2, 4, 5, 6, 7, 8. Hence

π = (0, 0, 1, 0, 0, 0, 0, 0) is the unique stationary distribution.

(d) For each communicating class, we pick one state, e.g.

T1: f11(1) = 0, f11(2) = 0.5, f11(n) = 0, ∀n ≥ 3 ⇒ f11 = 0.5.

f88(1) = 0, f88(2) = 0.5, f88(n) = 0, ∀n ≥ 3 ⇒ f88 = 0.5.

T2: f22(1) = 0, f22(2) = 0.5×0.25 = 1/8, f22(3) = 0.5×0.75×0.25 = 3/32, f22(n) =
1
2

(

3
4

)n−2 1
4
, ∀n ≥ 2 ⇒ f22 = 0.5.

f44(1) = 0.75, f44(2) = 0.5× 0.25 = 1/8, f44(n) = 0, ∀n ≥ 3 ⇒ f44 = 7/8.

T3: f55(1) = 0, f55(2) = 0.5 × 0.5 = 0.25, f55(3) = 0, f55(4) = 0.53 = 1/8, . . . ,,
i.e. f55(n) = 0 for odd n and f55(n) = 0.5

n

2
+1 for even n. Hence f55 = 0.5.

f66(1) = 0, f66(2) = 0.5× 0.5 + 0.5× 1 = 3/8, f66(n) = 0, ∀n ≥ 3 ⇒ f66 = 3/8.

f77(1) = 0, f77(2) = 0.5, f77(3) = 0, f77(4) = 0.53 = 1/8, . . ., i.e. f77(n) = 0 for

odd n and f77(n) = 0.5n−1 for even n. Hence f77 = 2/3.

C1: f33(1) = 1, f33(n) = 0, ∀n ≥ 2 ⇒ f33 = 1.

Exercise 2- 20: Suppose we have a Markov chain with finite state space E, i.e. K = |E| < ∞, and

transition matrix P. Suppose for some i ∈ E that

pij(n) → πj as n → ∞ for all j ∈ E.

Then π is a stationary distribution.

Solution: We have πj ≥ 0 and

∑

j∈E

πj =
∑

j∈E

lim
n→∞

pij(n) = lim
n→∞

∑

j∈E

pij(n) = 1,

since Pn is stochastic. Also

πj = lim
n→∞

pij(n) = lim
n→∞

∑

k∈E

pik(n− 1)pkj =
∑

k∈E

lim
n→∞

pik(n− 1)pkj

=
∑

k∈E

πkpkj ,

where we used the CK equations. Note that we have used the finiteness of E to justify the inter-

change of summation and limit operations.

Exercise 2- 21: Consider a discrete-time homogeneous Markov chain (Xn)n∈N0
with state space E =

{1, 2} and transition matrix given by

P =

(

1
2

1
2

1
4

3
4

)

.

(a) Derive limn→∞ P(Xn = i) for i ∈ {1, 2}.
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(b) Find

lim
N→∞

1

N + 1
E

(

N
∑

n=0

eXn

)

.

Hint: You may use the following result from Analysis without a proof: Let (xn)n∈N0
be a real-

valued convergent sequence with limn→∞ xn = x. Then limm→∞
1

m+1

∑m

n=0 xn = x.

Solution:

(a) We can read off from the transition matrix that this Markov chain is irreducible and aperiodic

with a finite state space. Hence we conclude from the lectures that there exists a unique sta-

tionary distribution π = (π1, π2) and that the limiting distribution is given by the stationary

distribution.

We derive the stationary distribution: π = πP, π1+π2 = 1,⇔ 1
2
π1+

1
4
π2 = π1, π1+π2 =

1,⇔ 1
4
π2 = 1

2
π1, π1 + π2 = 1 ⇔ π2 = 2π1, π2 = 1 − π1 ⇔ π1 = 1

3
, π2 = 2

3
. Hence,

limn→∞ P(Xn = 1) = 1
3

and limn→∞ P(Xn = 2) = 2
3

.

(b) Using the linearity of the expectation, we have

E

(

N
∑

n=0

eXn

)

=

N
∑

n=0

E
(

eXn

)

=

N
∑

n=0

2
∑

k=1

ekP(Xn = k) =

2
∑

k=1

ek
N
∑

n=0

P(Xn = k).

Hence we have

lim
N→∞

1

N + 1
E

(

N
∑

n=0

eXn

)

=

2
∑

k=1

ek lim
N→∞

1

N + 1

N
∑

n=0

P(Xn = k)

Hint
=

2
∑

k=1

ek lim
n→∞

P(Xn = k) = eπ1 + e2π2 =
1

3
e+

2

3
e2.
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