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4 Problem sheet 4: Continuous-time Markov chains

4.1 Prerequisites: Lecture 18

Exercise 4- 33: Let N = (Nt)t≥0 denote a Poisson process with rate λ > 0. Define a stochastic process
Z = (Zt)t≥0 with Zt = (−1)Nt .

(a) Determine the state space EZ of all possible values Z can take.
(b) Sketch a sample path of the process Z and describe how long on average you need to wait until

the process switches between different values in EZ .
(c) Find the probability mass function of Zt for t ≥ 0.
(d) Find E(Zt) for t ≥ 0.
(e) Find P(Zs = Zt) for 0 ≤ s < t.
(f) Determine whether Z is a continuous-time Markov chain and prove/justify your answer carefully.

Solution:
(a) Z can only take the values 1 and −1, hence EZ = {−1, 1}.
(b) Since N0 = 0, we have that Z0 = 1. So Z starts at level 1 and then switches between the

values 1 and −1. One possible sample path of Z is given by

1

−1

2 4 6 8 t

Zt

1

Since the inter-arrival times of a Poisson process of rate λ follow the exponential distribution
with parameter λ, which has mean 1/λ, we have to wait on average 1/λ until we see a switch
in the values of N . As soon as N changes value, the value of Z will also change, hence we
have to wait on average 1/λ until we see a switch in the values of Z.

(c) Let t ≥ 0, then

P(Zt = 1) = P((−1)Nt = 1) = P(Nt is even) =

∞∑
k=0

P(Nt = 2k)

=

∞∑
k=0

(λt)2k

(2k)!
e−λt =

1

2
(eλt + e−λt)e−λt =

1

2
(1 + e−2λt),

P(Zt = −1) = P((−1)Nt = −1) = P(Nt is odd) =

∞∑
k=0

P(Nt = 2k + 1)

=

∞∑
k=0

(λt)2k+1

(2k + 1)!
e−λt =

1

2
(eλt − e−λt)e−λt =

1

2
(1− e−2λt),

and P(Zt = x) = 0 for x 6∈ EZ .

Note that we used that

ex =

∞∑
n=0

x2n

(2n)!
+

∞∑
n=0

x2n+1

(2n+ 1)!
,
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and

e−x =

∞∑
n=0

(−x)2n

(2n)!
+

∞∑
n=0

(−x)2n+1

(2n+ 1)!
=

∞∑
n=0

x2n

(2n)!
−
∞∑
n=0

x2n+1

(2n+ 1)!
.

Hence

∞∑
n=0

x2n

(2n)!
=

1

2
(ex + e−x)[= cosh(x)],

∞∑
n=0

x2n+1

(2n+ 1)!
=

1

2
(ex − e−x)[= sinh(x)].

(d) For t ≥ 0, we have

E(Zt) = 1× P(Zt = 1) + (−1)× P(Zt = −1) = P(Zt = 1)− P(Zt = −1) = e−2λt.

(e) Let 0 ≤ s < t. Then, using that the Poisson process has stationary increment, we get

P(Zs = Zt) = P(Zs − Zt = 0) = P((−1)Ns − (−1)Nt = 0)

= P((−1)Ns [1− (−1)Nt−Ns ] = 0) = P(1− (−1)Nt−Ns = 0)

= P(1 = (−1)Nt−Ns) = P(Nt −Ns is even)

stat. incr.
= P(Nt−s is even)

(c)
=

1

2

(
1 + e−2λ(t−s)

)
.

(f) Yes, Z is a continuous time Markov chain on the state space EZ .

Proof: Z is a continuous-time stochastic process taking values in EZ . It remains to prove the
Markov property. Consider any sequence 0 ≤ t1 < t2 < · · · < tn < ∞ for any n ∈ N and
any states i1, . . . , in ∈ EZ , then

A := P(Ztn = in|Ztn−1
= in−1) =

P(Ztn = in, Ztn−1
= in−1)

P(Ztn−1
= in−1)

=
P
(

Ztn

Ztn−1
= in

in−1
, Ztn−1

= in−1

)
P(Ztn−1 = in−1)

=
P
(

(−1)Ntn−Ntn−1 = in
in−1

, Ztn−1 = in−1

)
P(Ztn−1 = in−1)

=
P
(

(−1)Ntn−Ntn−1 = in
in−1

)
P
(
Ztn−1 = in−1

)
P(Ztn−1 = in−1)

= P

(
(−1)Ntn−Ntn−1 =

in
in−1

)
,

where we used that the increments of a Poisson process are independent, hence Ntn −Ntn−1

andNtn−1
are independent, which implies thatNtn−Ntn−1

and (−1)Ntn−1 are independent
(since the latter is just a function of Ntn−1

).

A similar argument can be applied to the general case. Here we note that the set of equations

Ztn = in, Ztn−1 = in−1, . . . , Zt1 = i1,

and

Ztn
Ztn−1

=
in
in−1

,
Ztn−1

Ztn−2

=
in−1

in−2
, . . . ,

Zt2
Zt1

=
i2
i1
, Zt1 = i1, (4.1)

are equivalent. Equation (4.1) is equivalent to

(−1)Ntn−Ntn−1 =
in
in−1

, (−1)Ntn−1
−Ntn−2 =

in−1

in−2
, . . . , (−1)Nt2−Nt1 =

i2
i1
, (−1)Nt1 = i1,
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which on the respective left hand sides are functions of the independent increments of the
Poisson process. Hence we get

B := P(Ztn = in|Ztn−1
= in−1, . . . , Zt1 = i1)

=
P(Ztn = in, Ztn−1

= in−1, . . . , Zt1 = i1)

P(Ztn−1
= in−1, . . . , Zt1 = i1)

=:
C

D
,

where the numerator is given by

C = P((−1)Ntn−Ntn−1 =
in
in−1

, (−1)Ntn−1
−Ntn−2 =

in−1

in−2
, . . . , (−1)Nt2

−Nt1 =
i2
i1
, (−1)Nt1 = i1)

= P((−1)Ntn−Ntn−1 =
in
in−1

)× P((−1)Ntn−1
−Ntn−2 =

in−1

in−2
)× · · ·

× P((−1)Nt2−Nt1 =
i2
i1

)× P((−1)Nt1 = i1),

and the denominator by

D = P((−1)Ntn−1
−Ntn−2 =

in−1

in−2
, . . . , (−1)Nt2

−Nt1 =
i2
i1
, (−1)Nt1 = i1)

= P((−1)Ntn−1
−Ntn−2 =

in−1

in−2
)× · · · × P((−1)Nt2

−Nt1 =
i2
i1

)× P((−1)Nt1 = i1).

Altogether, we have that B = C/D = A, which concludes the proof.

Exercise 4- 34: A machine can be in one of two states: working or being repaired. When it is in the
”working” state it functions for a time that is exponentially distributed (parameter λ > 0) before
switching to the ”being repaired” state. When it is in the ”being repaired” state it functions for a time
that is exponentially distributed (parameter ν > 0) before switching to the ”working” state. We assume
independence between the corresponding holding times.

(a) Given that the machine starts in the ”working” state, what is the mean time until:

• it breaks down for the first time?
• it breaks down for the third time?

(b) What is the variance of the time until

• it breaks down for the first time?
• it breaks down for the third time?

Solution: Let Xi ∼ Exp(λ) be the length of time the machine functions for the ith time before
it breaks down again (for i = 1, 2, . . . ). Let Yi ∼ Exp(ν) denote the length of time the machine
is in the being repaired state for the ith time (for i = 1, 2, . . . ). All Xi and Yi are independent.

(a) Then

E(X1) =
1

λ
, E(X1 +X2 +X3 + Y1 + Y2) =

3

λ
+

2

ν
.

(b)

Var(X1) =
1

λ2
, Var(X1 +X2 +X3 + Y1 + Y2) =

3

λ2
+

2

ν2
.
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Exercise 4- 35: The following question is adapted from Grimmett & Stirzaker (2001b,a), Problem 6.15.14.

Let X be a continuous-time Markov chain with countable state space E and standard semigroup Pt.

(a) Show that pij(t) is a continuous function of t. Hint: Use the Chapman-Kolmogorov equations.

(b) Next, let g(t) = − log(pii(t)). Show that 1) g is a continuous function, 2) g(0) = 0, and 3) g is
subadditive, i.e. g(s + t) ≤ g(s) + g(t) for all s, t ≥ 0. From a result from analysis (which you
do not need to prove) you may then conclude that

lim
t↓0

g(t)

t
= λ exists andλ = sup

t>0

g(t)

t
≤ ∞.

Deduce that gii = limt↓0 t
−1(pii(t)− 1) exists, but may be equal to∞.

Solution:
(a) We prove the continuity of pij(t): Using the Chapman-Kolmogorov equations, we get that,

for t ≥ 0, h > 0,

|pij(t+ h)− pij(t)| =
∣∣∣∣∣∑
k∈E

pik(h)pkj(t)−
∑
k∈E

pik(0)pkj(t)

∣∣∣∣∣
=

∣∣∣∣∣∑
k∈E

(pik(h)− δik)pkj(t)

∣∣∣∣∣
=

∣∣∣∣∣∣(pii(h)− 1)pij(t) +
∑

k∈E,k 6=i

pik(h)pkj(t)

∣∣∣∣∣∣
≤ (1− pii(h))pij(t) +

∑
k∈E,k 6=i

pik(h)

≤ (1− pii(h)) + (1− pii(h))→ 0,

as h ↓ 0, if the semigroup is standard. Also, by the same arguments, for 0 < h < t,

|pij(t)− pij(t− h)| =
∣∣∣∣∣∑
k∈E

pik(h)pkj(t− h)−
∑
k∈E

pik(0)pkj(t− h)

∣∣∣∣∣
=

∣∣∣∣∣∑
k∈E

(pik(h)− δik)pkj(t− h)

∣∣∣∣∣
=

∣∣∣∣∣∣(pii(h)− 1)pij(t− h) +
∑

k∈E,k 6=i

pik(h)pkj(t− h)

∣∣∣∣∣∣
≤ (1− pii(h))pij(t− h) +

∑
k∈E,k 6=i

pik(h)

≤ (1− pii(h)) + (1− pii(h))→ 0,

as h ↓ 0, if the semigroup is standard.

(b) Next, define g(t) = − log(pii(t)) for i ∈ E.

1) We know that the function log(x) is continuous for 0 < x ≤ 1; since we have already
shown that pii is a continuous function, we deduce that g is continuous.

2) g(0) = − log(pii(0)) = − log(1) = 0.
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3) Let s, t ≥ 0. Then

pii(t+ s)
CK
=
∑
k∈E

pik(s)pki(t) ≥ pii(s)pii(t).

Hence

g(s+ t) = − log(pii(t+ s)) ≤ − log(pii(s)pii(t)) = g(s) + g(t).

From a result from analysis, we conclude that

lim
t↓0

g(t)

t
= λ exists andλ = sup

t>0

g(t)

t
≤ ∞.

Then

lim
t↓0

(pii(t)− 1)

t
= lim

t↓0

(pii(t)− 1)

t

g(t)

g(t)
= lim

t↓0

g(t)

t

(pii(t)− 1)

g(t)
.

We note that the fist factor converges to λ as t ↓ 0. For the second factor, we have

(pii(t)− 1)

g(t)
=

(pii(t)− 1)

− log(pii(t))
=

−(1− pii(t))
− log(1− (1− pii(t)))

→ −1, as t ↓ 0,

since

lim
x↓0

x

log(1− x)

L′Hospital
= lim

x↓0

1

(1− x)−1(−1)
= −1.

Hence

lim
t↓0

(pii(t)− 1)

t
= −λ = gii

exists, but may be equal to −∞.

4.2 Prerequisites: Lecture 19

Exercise 4- 36: In this question we will study recurrence and transience for continuous-time Markov
chains. We first introduce a definition and state an important result.

Let X = (Xt)t≥0 be a minimal continuous-time Markov chain on a countable state space E with
generator G. We say that state i ∈ E is recurrent if

P({t ≥ 0 : Xt = i} is unbounded |X0 = i) = 1.

We say that state i ∈ E is transient if

P({t ≥ 0 : Xt = i} is unbounded |X0 = i) = 0.

We state the following results without proof:

• If state i is recurrent for the jump chain, then i is recurrent for X .

• If state i is transient for the jump chain, then i is transient for X .

• Every state is either recurrent or transient.

• Recurrence and transience are class properties.
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See Norris (1998) p. 115 for a proof of the above result.

Let X = (Xt)t≥0 be a minimal continuous-time Markov chain on a countable state space E with
generator G. Suppose E = {1, 2, 3, 4} and

G =


−1 1

2
1
2 0

1
4 − 1

2 0 1
4

1
6 0 − 1

3
1
6

0 0 0 0

 .

For each state in the state space, decide whether it is recurrent or transient and justify your answer.

Solution: We derive the transition matrix of the corresponding jump chain:

P =


0 1

2
1
2 0

1
2 0 0 1

2
1
2 0 0 1

2
0 0 0 1

 .

We observe that the jump chain has two communicating classes: T = {1, 2, 3}, C = {4}. T is
not closed, hence all states in T are transient. C is finite and closed, hence state 4 is (positive)
recurrent.
We know that if a state is recurrent (transient) for the jump chain, then it is recurrent (transient)
for the continuous-time Markov chain. So we conclude that states 1, 2, 3 are transient and state 4
is recurrent for the continuous-time Markov chain. (Moreover, since g44 = 0, we have that state
4 is positive recurrent. )

4.3 Prerequisites: Lecture 20

Exercise 4- 37: Let X = (Xt)t≥0 be a continuous-time Markov chain on the state space E = {1, 2} with
generator

G =

(
−1 1
2 −2

)
.

(a) Find the stationary distribution of X .

(b) Find the stationary distribution of the jump chain associated with X .

(c) Find the transition matrix Pt = (pij(t))i,j∈E for all t ≥ 0.
Hint: You may use without a proof that G = ODO−1, where

O =

(
1 − 1

2
1 1

)
, D =

(
0 0
0 −3

)
, O−1 =

(
2
3

1
3

− 2
3

2
3

)
.

Solution:
(a) We denote the stationary distribution ofX by π = (π1, π2). We solve πG = 0, for π1, π2 ≥

0, π1 + π2 = 1. Here we have −π1 + 2π2 = 0 ⇔ π1 = 2π2. Then 1 = π1 + π2 ⇔ 1 =
3π2 ⇔ π1 = 2

3 , π2 = 1
3 .

(One can show that, since G is irreducible and recurrent, we get that πG = 0⇔ πPt = π
for all t ≥ 0, where (Pt)t≥0 denotes the matrix of transition probabilities associated with
X .)

Page 39 of 50



MATH60045/MATH70045 Applied Probability Problem sheets: Autumn 2022

(b) The transition matrix of the associated jump chain is given by

P =

(
0 1
1 0

)
.

We denote the stationary distribution of the jump chain by π = (π1, π2). We solve πP = π,
for π1, π2 ≥ 0, π1 + π2 = 1. Here we have π1 = π2. Then 1 = π1 + π2 ⇔ π1 = 1

2 , π2 = 1
2 .

(c) From lectures, we know that, for t ≥ 0, we have

Pt = etG =

∞∑
n=0

tn

n!
ODnO−1 = O

∞∑
n=0

tn

n!
DnO−1.

Hence

Pt = O

(
et·0 0
0 e−3t

)
O−1 =

(
2
3 + 1

3e
−3t 1

3 − 1
3e
−3t

2
3 − 2

3e
−3t 1

3 + 2
3e
−3t

)
.

4.4 Prerequisites: Lecture 21

Exercise 4- 38: Let {Nt}t≥0 be a birth process with intensities λ0, λ1, . . . , such that λi 6= λj for any
i 6= j, and N0 = 0. Derive the forward equations for this process. Hence verify that

pn(t) =
1

λn

n∑
i=0

λie
−λit

 n∏
j=0,j 6=i

λj
λj − λi


where pn(t) = P(Nt = n) and the convention

∏
∅ = 1 is used.

Solution: First we derive the forward equations. Let n ∈ N0 and define p−1(t) ≡ 0. Let
t ≥ 0, δ > 0. Then

pn(t+ δ) = P(Nt+δ = n)
LTP
=

n∑
k=0

P(Nt+δ = n|Nt = k)P(Nt = k)

single arrival
= (1− λnδ)pn(t) + λn−1δpn−1(t) + o(δ).

Using the usual arguments it follows that

p′n(t) = −λnpn(t) + λn−1pn−1(t).

For n = 0 it is clear that

p′0(t) = −λ0p0(t)

i.e. p0(t) = exp(−λ0t), where we have used the boundary condition p0(0) = 1.

To complete the exercise, we need to verify that pn(t) as given, is a solution of the forward
equations. Since n = 0 is clear, we consider n ∈ N. Now

p′n(t) = − 1

λn

n∑
i=0

λ2
i e
−λit

 n∏
j=0,j 6=i

λj
λj − λi

 . (4.2)
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In addition

−λnpn(t) = −
n∑
i=0

λie
−λit

 n∏
j=0,j 6=i

λj
λj − λi

 (4.3)

λn−1pn−1(t) =

n−1∑
i=0

λie
−λit

 n−1∏
j=0,j 6=i

λj
λj − λi

 . (4.4)

Adding together (4.3) and (4.4) we have

−λne−λnt

 n∏
j=0,j 6=n

λj
λj − λn

+

n−1∑
i=0

λie
−λit

 n−1∏
j=0,j 6=i

λj
λj − λi

{
1− λn

λn − λi

} .
The summation is equal to

−
n−1∑
i=0

λ2
i

λn − λi
e−λit

 n−1∏
j=0,j 6=i

λj
λj − λi

 = − 1

λn

n−1∑
i=0

λ2
i e
−λit

 n∏
j=0,j 6=i

λj
λj − λi


hence (4.3) + (4.4) is equal to

− λne−λnt

 n∏
j=0,j 6=n

λj
λj − λn

− 1

λn

n−1∑
i=0

λ2
i e
−λit

 n∏
j=0,j 6=i

λj
λj − λi


= − 1

λn

n∑
i=0

λ2
i e
−λit

 n∏
j=0,j 6=i

λj
λj − λi

 ,
which is exactly (4.2); this completes the exercise.

Exercise 4- 39: Consider a linear birth process N = (Nt)t≥0 with birth rates given by λn = nλ, for
n ∈ N, λ > 0. Assume that N0 = 1. Determine whether or not this birth process explodes and justify
your answer.

Solution: Using the fact that the harmonic series diverges, we have that

∞∑
n=1

1

λn
=

1

λ

∞∑
n=1

1

n
=∞.

From Theorem 4.3.1 from the lecture notes we can conclude that the probability that explosion
occurs is equal to zero.

4.5 Prerequisites: Lecture 22

Exercise 4- 40: Consider a population of N individuals consisting at time 0 of one ‘infective’ and N − 1
‘susceptibles’. The process changes only by susceptibles becoming infective. We assume that this
process can be modelled as a birth process. If, at some time t, there are i infectives, then, for each
susceptible, there is a probability of iλδ + o(δ) of becoming infective in (t, t+ δ] for λ, δ > 0.
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(a) If we consider the event of becoming an infective as a birth, what is the birth rate λi of the process,
when there are i infectives?

(b) Let T denote the time to complete the epidemic, i.e. the first time when all N individuals are
infective.

1. Derive E(T ) (without using any type of generating functions).
2. Show that the Laplace transform of T is given by

E[e−sT ] =

N−1∏
i=1

(
λi

λi + s

)
, for s ≥ 0.

3. Derive E(T ) by using the Laplace transform given in (2.).
You may leave your solution in (1.) and (3.) as a sum.

Solution:
(a) If there are i infectives, then there are N − i susceptibles and hence the birth rate is given by

λi = (N − i)iλ if i = 1, . . . , N − 1 and 0 otherwise. We can justify the rates as follows: For
t ≥ 0, δ > 0, i,m ∈ N0 (and m ≤ N − i):

P(Nt+δ = i+m|Nt = i) =

(
N − i
m

)
(iλδ)m(1− iλδ)N−i−m + o(δ)

=

 (1− iλδ)N−i + o(δ), if m = 0
(N − i)iλδ(1− iλδ)N−i−1 + o(δ), if m = 1
o(δ), if m > 1.

=


∑N−i
k=0

(
N−i
k

)
(−iλδ)k + o(δ), if m = 0

(N − i)iλδ∑N−i−1
i=0

(
N−i−1

i

)
(−λδ)i + o(δ), if m = 1

o(δ), if m > 1.

=

 1− (N − i)iλδ + o(δ), if m = 0
(N − i)iλδ + o(δ), if m = 1
o(δ), if m > 1.

(b) 1. Let Xi be the time spent in state i (where i denotes the number of infectives). (Note
that if you would like to choose the same notation as in the lecture notes, then you can
use the holding time notation associated with particular states, here we haveXi = H|i.)
Then we have that the time to complete the epidemic is

T = X1 + · · ·+XN−1,

where the Xi are independent of each other with Xi ∼ Exp(λi). By the linearity of the
expectation,

E[T ] =

N−1∑
i=1

E(Xi) =

N−1∑
i=1

1

λi
=

N−1∑
i=1

1

(N − i)iλ .

2. Let s ≥ 0. Using the notation from (1.), the Laplace transform of Xi is given by

E(e−sXi) =

∫ ∞
0

e−sxλie
−λixdx = λi

∫ ∞
0

e−(s+λi)xdx =
λi

λi + s
.

Hence

E[e−sT ] = E[e−s
∑N−1

i=1 Xi ]
independence ofXis

=

N−1∏
i=1

E[e−sXi ] =

N−1∏
i=1

(
λi

λi + s

)
.
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3. To compute the expectation, we calculate the logarithm of the Laplace transform and
use the fact that

E[T ] = − d

ds

[
log
{

E[e−sT ]
}]∣∣

s=0
.

To see this, note that, by the chain rule for differentiation (assuming we can interchange
the expectation and the derivative),

d

ds

[
log
{

E[e−sT ]
}]

=
1

E[e−sT ]
× d

ds
E[e−sT ] =

E[(−T )e−sT ]

E[e−sT ]
.

Hence

− d

ds

[
log
{

E[e−sT ]
}]∣∣

s=0
= −E(−Te0)

E(e0)
= E(T ).

Here

log
{

E[e−sT ]
}

=

N−1∑
i=1

log

(
λi

λi + s

)
,

and

d

ds
log
{

E[e−sT ]
}

=

N−1∑
i=1

(λi + s)

λi
· (λi + s) · 0− λi · 1

(λi + s)2
= −

N−1∑
i=1

1

(λi + s)
.

Hence,

E[T ] =

N−1∑
i=1

1

λi
=

N−1∑
i=1

1

(N − i)iλ .

The reason for taking the log of the Laplace transform was that it made the computation
easier in the sense that we did not need to differentiate a product consisting of N − 1
components. Alternatively, we could have argued that

− d

ds

[
E[e−sT ]

]∣∣
s=0

= −
[
E[e−sT ](−T )

]∣∣
s=0

=
[
E[e−sT ](T )

]∣∣
s=0

= E(T ).

Here, we have

d

ds

N−1∏
i=1

(
λi

λi + s

)
=

N−1∑
i=1

(
d

ds

λi
λi + s

) N−1∏
j=1,j 6=i

λj
λj + s

=

N−1∑
i=1

(
(−1)

λi
(λi + s)2

) N−1∏
j=1,j 6=i

λj
λj + s

.

Plugging in s = 0 and multiplying by (-1) leads to

E(T ) = −
N−1∑
i=1

(
(−1)

λi
(λi)2

) N−1∏
j=1,j 6=i

λj
λj

=

N−1∑
i=1

1

λi
=

N−1∑
i=1

1

(N − i)iλ .

Exercise 4- 41: A colony ofN > 1 creatures inhabit a planet which has continual daylight, and the pattern
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of waking and sleeping follows a continuous-time homogeneous Markov chain, more precisely, a birth-
death process. The probability that a particular sleeping individual awakes during a time interval of
length [t, t+ δ] is βδ + o(δ), and the probability that a particular awake individual falls asleep during
a time interval [t, t+ δ] of length is νδ + o(δ). Assume that individuals behave independently of each
other. We are interested in the number of individuals awake at time t.

(a) Find the generator matrix.

(b) Find the stationary distribution.

Consider the 2-state Markov chain (with states s sleep and w wake) for one individual with transition
matrix

Pt =

(
1− psw(t) psw(t)
1− pww(t) pww(t)

)
.

(c) Write down the generator for this 2-state process.

(d) Calculate pww(t) and psw(t) using the forward equations.

(e) If Xm,t denotes the number awake at time t given there are m < N awake at time 0, what is
E[Xm,t]?

Solution:
(a) For each individual we have:

P(it wakes up in (t, t+ δ]|it was asleep at t) = βδ + o(δ),

P(it falls asleep in (t, t+ δ]|it was awake at t) = νδ + o(δ).

There are N individuals, thus if there are i awake, there are N − i asleep; the ‘birth’ and
‘death’ rates are

λi = (N − i)β, µi = iν,

for i = 0, . . . , N . These rates can we justified as follows: For t ≥ 0, δ > 0, i ∈
{0, . . . , N},m ∈ Z (such that i+m ∈ {0, . . . , N}):

P(Xt+δ = i+m|Xt = i)

=


(
N−i

1

)
(βδ)1(1− βδ)N−i−1(1− νδ)i + o(δ), if m = 1

(1− βδ)i
(
i
1

)
(νδ)1(1− νδ)i−1 + o(δ), if m = −1

o(δ), if |m| > 1.

=

 (N − i)βδ + o(δ), if m = 1
iνδ + o(δ), if m = −1
o(δ), if |m| > 1.

Thus the generator matrix is given by

G =



−Nβ Nβ 0 0 · · ·
ν −ν − β(N − 1) β(N − 1) 0 · · ·
0 2ν −2ν − β(N − 2) β(N − 2)

. . . . . . . . .
(N − 1)ν −(N − 1)ν − β β

Nν −Nν


.
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(b) For the stationary distribution, solve πG = 0, from notes, for a general birth and death
process we have

πn =
λ0 . . . λn−1

µ1 . . . µn
π0, n ∈ N

=
(Nβ)(β(N − 1))× β(N − n+ 1)

ν(2ν) . . . (nν)
π0

=
βn

νn

(
N

n

)
π0.

Also, since
∑N
n=0 πn = 1, giving

π0 =
1

1 +
∑N
n=1

βn

νn

(
N
n

) .
(c) For one individual

G =

(
−β β
ν −ν

)
.

(d) From the forward equations P′t = PtG, it follows

d

dt
(1− psw(t)) = −β(1− psw(t)) + νpsw(t)

⇔ − d

dt
psw(t) = psw(t)(β + ν)− β

⇔ d

dt
psw(t) + psw(t)(β + ν) = β

Using the integrating factor M(x) = exp((β + ν)x) and since psw(0) = 0, the constant
C = 0 and thus

psw(t) =

∫ t

0

β exp((β + ν)u)du · exp(−(β + ν)t) =
β

β + ν
(1− e−(β+ν)t).

In a similar manner as before

d

dt
(1− pww(t)) = −β(1− pww(t)) + νpww(t),

with the boundary condition pww(0) = 1, so

pww(t) =
β + νe−(β+ν)t

β + ν
.

(e) Xm,t denotes the number of individuals awake at time t > 0, given that at time 0 there were
m < N individuals awake. Recall that all individuals behave independently of each other.
We get that

Xm,t = Ym,t + Zm,t,

where

Ym,t ∼ Binomial(m, pww(t)), Zm,t ∼ Binomial(N −m, psw(t)).
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Hence, we have two random variables with Binomial distribution, where the probability of
success is the probability that at time t, the individual will be awake. We have that

E(Ym,t) = mpww(t), E(Zm,t) = (N −m)psw(t).

Altogether we get

E[Xm,t] = mpww(t) + (N −m)psw(t)

= me−(β+ν)t +
Nβ

β + ν
(1− e−(β+ν)t).

Exercise 4- 42: A population member alive at t dies during (t, t+ δ) with probability µδ+ o(δ), indepen-
dently of other population members. The population changes size only from the death of population
members (there are no births, emigration or immigration). We assume that the population size can be
modelled as a death process. The initial population size is n0. Let T be the time at which the popula-
tion dies out; i.e. T = min{t ≥ 0 : Nt = 0}. By considering the times between successive changes in
population size find E(T ) and Var(T ).

Solution: Let Tn be the first time the population drops to size n or below, i.e.

Tn = min{t ≥ 0 : Nt ≤ n}

(for a non-negative integer n ≤ n0). Then NT0
= 0 and T = T0. We write T as

T = (T0 − T1) + (T1 − T2) + · · · (Tn0−1 − Tn0
),

where Tn0
= 0. Then T = X1 + · · ·+Xn0

, where Xi = Ti−1−Ti is the time the population has
size i before dropping to size i−1. We have thatX1, . . . , Xn0

are independent withXi ∼ Exp(µi)
for i ∈ {1, . . . , n0}. Using standard results in probability and the moments of an exponential
distribution it follows that

E(T ) =
1

µ

[
1 +

1

2
+ · · ·+ 1

n0

]
,

Var(T ) =
1

µ2

[
1 +

1

4
+ · · ·+ 1

n2
0

]
.
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