GALOIS THEORY Worksheet 1

©2022 Alessio Corti

Q 1. This question is designed to get you up to speed with arithmetic in $\mathbb{Q}[X]$.

- (a) Find the quotient and remainder when $X^5 + X + 1$ is divided by $X^2 + 1$.
- (b) Find the remainder when $X^{2019} + 32X^{53} + 8$ is divided by X 1.
- (c) Find polynomials s(X) and t(X) such that

$$(2X^{3} + 2X^{2} + 3X + 2)s(X) + (X^{2} + 1)t(X) = 1$$

How did I know that these polynomials were coprime?

- (d) Find a her for $X^4 + 4$ and $X^3 2X + 4$. Express it as $(X^4 + 4)a(X) + (X^3 2X + 4)b(X)$.
- (e) Find polynomials $\lambda(X)$ and $\mu(X)$ such that $(1+X)\lambda(X) + (X^3 2)\mu(X) = 1$.

Q 2. Write $\xi = \sqrt[3]{2}$. This question is about understanding the field operations in $\mathbb{Q}(\xi)$ explicitly.

- (a) Find rational numbers a, b and c such that $a + b\xi + c\xi^2 = 1/(1+\xi)$. [*Hint*: use Part (e) of the previous question.]
- (b) Fix rational numbers A, B. Find formulas for rational numbers a, b and c, depending on A, B, such that $a + b\xi + c\xi^2 = 1/(A + B\xi + \xi^2)$.

Q 3. Prove that if $f, g \in K[X]$ and at least one is non-zero, and if s, t are both hcf's of f and g, then $s = \lambda t$ for some $\lambda \in K^{\times}$.

Q 4. (a) We know that whether or not a polynomial is irreducible depends on which field it's considered as being over: for example $X^2 + 1$ is irreducible in $\mathbb{Q}[X]$ but not in $\mathbb{C}[X]$. But show that the notion of divisibility does not depend on such issues. More precisely show that if $K \subseteq L$ are fields, if $f, g \in K[X]$, and if $f \mid g$ in L[X] then $f \mid g$ in K[X].

(b) Is it true that if $f, g \in \mathbb{Z}[X]$ and $f \mid g$ in $\mathbb{Q}[X]$ then $f \mid g$ in $\mathbb{Z}[X]$? [*Hint*: No.] Is it true under the extra assumption that f is monic? [*Hint*: Yes.]