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Q 1. In this question ζ = e
2π i
6 .

(a) Factorise the polynomial X6 − 1 ∈ Q[X]. Hence or otherwise determine the degree
[Q(ζ) : Q].

(b) Show that the polynomial f(X) = X6 + 3 ∈ Q[X] is irreducible. Let Q ⊂ K be the
splitting field of f(X). What is the degree [K : Q]?. Determine the Galois group G of
the extension Q ⊂ K and describe, perhaps by drawing some picture(s), the action of G
on the set of roots of f(X).

[Hint : Consider first the field Q(α) where f(α) = 0 and study the intersection Q(α) ∩
Q(ζ).]

(c) Let Q ⊂ L be the splitting field of the polynomial g(X) = X6 − 3 ∈ Q[X]. Compute
the degree [L : Q], determine the Galois group G of the extension Q ⊂ L and describe,
perhaps by drawing some picture(s), the action of G on the set of roots of g(X).

Q 2. (†) For all integers 3 ≤ n ≤ 16, draw pictures illustrating the lattice of subgroups of
the Galois group of the cyclotomic extension Q ⊂ Q(µn). Draw the corresponding picture of
subfields Q ⊂ F ⊂ Q(µn). For each of these subfields, find “natural” generators.

If you feel brave, then do the case n = 17. (The Galois group (Z/17Z)× = C16 is not
in and of itself very complicated. The field Q(µ17) is a tower of quadratic extensions but it
takes some elbow grease to determine at each stage what you are taking the square root of;
in particular this leads to a formula for cos 2π

17
involving just iterated square roots of rational

numbers. Gauss did this calculation in his teens and it led him to a construction of the
regular 17-gon with ruler and compass. You don’t yourself need to get to the bitter end of
the calculation: do the first couple of steps and then look up the last steps on Google.)

Q 3. Fix a positive integer n and a field k — for simplicity assumed to be of characteristic
0 — that contains all nth roots of unity. In this question you will construct a splitting field
K ⊂ L of a degree n irreducible polynomial f(X) ∈ K[X] of Galois group the full symmetric
group G = Sn of the roots of f(X).

Consider the field L and polynomial f(X) ∈ L[X]:

L = k(X1, . . . Xn), f(X) =
n∏

i=1

(X −Xi) ∈ L[X]



Now let the symmetric group Sn act on L by permuting the variables in the obvious way.
By definition the fixed field

K = LSn = S⋆
n

is the field of symmetric rational functions. The polynomial f(X) is actually in K[X]:

f(X) = Xn +
n∑

i=1

(−1)iσiX
n−i ∈ K[X]

where σi = σi(X1, . . . , Xn) ∈ k[X1, . . . , Xn]
Sn ⊂ K is the ith elementary symmetric polyno-

mial. Denote by

K ′ = Frac
(
k[σ1, . . . , σn]

)
⊂ K

the subfield of K generated by the elementary symmetric polynomials.1

(a) Prove that K ′ ⊂ L is the splitting field of f(X);

(b) Prove that the Galois group of the extension K ′ ⊂ L is the full permutation group Sn

on the roots of f(X);

(c) Hence prove that K ′ = K and that the polynomial f(X) ∈ K[X] is irreducible;

(d) Show that the statement K ′ = K also follows from Question 6 of Worksheet 7.

1That is, the fraction field of the ring generated by the elementary symmetric polynomials. The ring
generated by the elementary symmetric polynomials is a subring of k[X1, . . . , Xn] hence it is an integral
domain hence forming the fraction field is a standard and uncontroversial operation.
You can be more concrete: by Question 6 of Worksheet 7, the ring generated by the elementary symmetric

polynomials is itself a polynomial ring, that is, there are no algebraic relations between the elementary
symmetric polynomials, and hence its fraction field is just a ring of rational functions. We are not invoking
this here, however: at least part of the point of this question is to bypass Question 6 of Worksheet 7.
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