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A 1. (a) If
√
n = p/q in lowest terms (with p, q ∈ Z and q ̸= 0) then we deduce that nq2 = p2.

In particular q2 divides p2 – but q2 and p2 are coprime, so q2 = 1, so p/q ∈ Z.
(b) We know Q(

√
2) = {a+b

√
2 : a, b ∈ Q}. We now prove

√
3 ̸∈ Q(

√
2) by contradiction.

If
√
3 = a + b

√
2 with a, b ∈ Q then squaring both sides and tidying up, we deduce

2ab
√
2 ∈ Q. But

√
2 ̸∈ Q by part (a), so 2ab = 0, so either a = 0 or b = 0. If b = 0 then√

3 ∈ Q, contradicting part (a). If a = 0 then
√
3 = b

√
2 and multiplying both sides by

√
2

we deduce
√
6 ∈ Q, also contradicting part (a). Either way we’re there, so

√
3 ̸∈ Q(

√
2).

The min poly of
√
3 over Q(

√
2) must then be X2 − 3. Why? It’s monic, and has

coefficients in the right field, so the only issue is whether it’s irreducible. And it is, because if
it factored then it would have to factor into two linear factors, and one of them would be (up
to a constant) X −

√
3, but we’ve just shown that this polynomial does not have coefficients

in Q(
√
2).

(c) [Q(
√
2,
√
3) : Q] = [Q(

√
2,
√
3)/Q(

√
2)][Q(

√
2) : Q] = 2 × 2 = 4. We know both

extensions on the right have degree 2; for one it’s clear and for the other it comes from
part (b) and a result proved in class ([K(λ) : K] is the degree of the minimal polynomial of
λ over K).

A 2. (a) If α =
√
2 +

√
3 then α2 = 5 + 2

√
6 and hence

√
6 = (α2 − 5)/2 ∈ Q(α). Hence

β :=
√
6α =

√
12 +

√
18 = 2

√
3 + 3

√
2 ∈ Q(α). So

√
2 = β − 2α ∈ Q(α) and now√

3 = α−
√
2 ∈ Q(α).

We deduce that Q(α) contains
√
2 and

√
3, so it contains Q(

√
2,
√
3). The converse

inclusion is obvious, so the two fields are equal.

(b) p(X) = X4−10X2+1 can be checked to be a polynomial in Q[X] such that p(α) = 0.
Hence it is a multiple of the minimal polynomial of α. But part (a) and [Q(α) : Q] =
deg(minimal poly. of a) imply that the degree of the min poly of α is 4, so p(X) must be a
constant multiple of this min poly, so it must be the min poly, so it must be irreducible.

A 3. Answer is yes! It’s 1
3

√
6
√
15.

A 4. (a) This is a variant of the Tower Law argument: Let e1, . . . , en be a basis for L/K
and f1, . . . , fm be a basis for V/L. Then ei ∈ L and fj ∈ V , and V is an L-vector space, so
gij = eifj makes sense. Of course the claim is that the gij form a basis for V considered as a
K-vector space, and the same proof as in the tower law works: the gij span because if v ∈ V
then write v as an L-linear combination of the fj and then write each coefficient as a K-linear
combination of the ei, and multiply out. For linear independence, if a linear combination
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∑
i,j µijgij = 0 then write this as

∑
j(
∑

i µijei)fj =
∑

j λjfj and by linear independence of
the fj over L we know the λj must be zero, and this means the µij are all zero by linear
independence of the ei over K.

(b) So?

A 5. (a) If a ∈ R, then a is the root of a polynomial

1 + b1X + b2X
2 + · · ·+ bnX

n ∈ K[X]

and from this we deduce that

1

a
= −b1 − b2a− · · · − bna

n−1 ∈ R

(b) It is obvious that the intersection of any number of subfields of a field is a field. So K(S)
is the intersection of all subfields of L that contain K and S (one of these fields is L
itself hence the intersection is nonempty). If S ⊂ K then K(S) = K and we are done.
Otherwise pick t ∈ S \K. It follows from the tower law that [L : K(t)] < [L : K], hence
we may assume inductively that there is a finite subset T ⋆ ⊂ S such that

K(S) = K(t)(S) = K(t)(T ⋆)

but then clearly K(t)(T ⋆) = K({t} ∪ T ⋆).1 If, say, T = {t1, . . . , tn}, then K[T ] =
K[t1, . . . , tn] = R is a ring, K ⊂ R ⊂ L, hence by Part (a) k[T ] is actually a field. If F
is any field, K ⊂ F ⊂ L, such that T ⊂ F , then clearly K[T ] ⊂ F , therefore K[T ] is the
smallest field that contains K and T , in other words, K[T ] = K(T ).

(c) Clearly F1F2 = K(F1, F2) in the notation of Part (b). By Part (b) then there are elements
a1, . . . , am ∈ F1 and b1, . . . , bn ∈ F2 such that

F1F2 = K[a1, . . . , am, b1, . . . , bm]

It is clear that every polynomial expression in the ai and bj can be written as a finite
sum as required.

1You may prove, it you want, that for all subsets S1, S2 ⊂ L, K(S1)(S2) = K(S1 ∪ S2).
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