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A 1. (a) We have
u 7→ α2 + ωα3 + ω2α1 = ω2u

and, similarly, v 7→ ωv.

(b) Using that ω + ω2 = −1 and α1 + α2 + α3 = 0, we get, for example:

u+ v

3
=

α1 + α1 − α2 − α3

3
= α1

and, similarly, α2 =
ω2u+ωv

3
, α3 =

ωu+ω2v
3

.

(c) It is pretty obvious that τ(u) = v and τ(v) = u. The rest of this question requires
considerable work and we may return to this point later in the lectures, when we study the
Galois group of splitting fields of cubic polynomials in general.

We must use the following facts from elementary algebra:

α1 + α2 + α3 = 0, (α2α3 + α1α3 + α1α2) = 3p, α1α2α3 = −2q

We will also need to use the (elementary) algebraic identity:

(z1 + z2 + z3)(z2z3 + z1z3 + z1z2) = (z21z2 + z21z3 + z1z
2
2 + z22z3 + z1z

2
3 + z2z

2
3) + 3z1z2z3

We compute by brute force uv and u3 + v3: from these quantities it is easy to construct the
sought-for quadratic equation. A direct calculation (using ω + ω2 = −1!) shows that:

uv = α2
1 + α2

2 + α2
3 − α1α2 − α1α3 − α2α3 = (α1 + α2 + α3)

2 − 3(α1α2 + α1α3 + α2α3) = −9p

and:

u3 + v3 = 2(α3
1 + α3

2 + α3
3)− 3(α2

1α2 + α2
1α3 + α1α

2
2 + α2

2α3 + α1α
2
3 + α2α

2
3) + 12α1α2α3 =

= 2(α1 + α2 + α3)
2 − 9(α2

1α2 + α2
1α3 + α1α

2
2 + α2

2α3 + α1α
2
3 + α2α

2
3) =

= 27α1α2α3 = −27× 2q

Now write down the quadratic equation and deduce the cubic formula!

A 2. (i) γ clearly satisfies (γ3 − 1)2 = 3, so it’s a root of the polynomial (X3 − 1)2 − 3 which
is X6 − 2X3 − 2. By the Eisenstein criterion this polynomial is irreducible, so it must be the
min poly of γ, and the degree of γ over Q is 6.
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Note that
√
3 = γ3−1 ∈ Q(γ) so if F = Q(γ) and K = Q(

√
3) we must have Q ⊆ K ⊆ F

and the tower law gives 2[F : K] = [K : Q][F : K] = [F : Q] = 6, and we deduce [F : K] = 3.
Because F contains

√
3 it must contain K and it’s not hard to deduce that F = K(γ). By

the tower law again, the degree of γ over K must then be 3.
Note that if one could show that X3− (1+

√
3) were irreducible in K[X] then this would

be another way to do the question, but I did not explain any techniques for tackling this.

(ii) Even more evil trick question. Turns out δ = 1 +
√
3 (cube it out to check) so the

degree is 2 over Q and also over Q(
√
2), the latter because δ ̸∈ Q(

√
2) (it would imply√

3 ∈ Q(
√
2)).

A 3. (i) Spot root X = 2; so X3 − 8 = (X − 2)(X2 +2X +4) and roots of the quadratic are
non-real and hence non-rational, so the quadratic must be irreducible (as any factors would
be linear).

(ii) Irreducible by Eisenstein (p = 2 or p = 3).

(iii) The polynomial X2 − 2X + 2 is a factor; dividing out we see X4 + 4 = (X2 − 2X +
2)(X2+2X+2). Easy check now that both quadratics have non-real and hence non-rational
roots, so must be irreducible.

(iv) Either this is irreducible over Q, or there is a root in Q (because any factorization
must involve a linear term). So let’s substitute in X = p/q in lowest terms (i.e. gcd(p, q) = 1)
and see what happens. Clearing denominators we get

2p3 + 5p2q + 5pq2 + 3q3 = 0.

Now p divides the first three terms of the left hand side, so must divide the fourth which is
3q3. But p and q are coprime! So p must divide 3. A similar argument shows that q must
divide 2. So p = ±1 or ±3 and q = ±1 or ±2. Clearly no positive rational is a root (as all
the coefficients are positive) so we are left with the possibilities X = −1,−1/2,−3,−3/2 and
we just try all of them. Miraculously X = −3/2 does work! Pulling off the corresponding
linear factor gives

2X3 + 5X2 + 5X + 3 = (2X + 3)(X2 +X + 1)

and the quadratic term has no real roots and hence no rational ones, so this is the factorization
into irreducibles.

(v) This one is irreducible by Eisenstein with p = 3.

(vi) There’s an obvious factor of X − 1 and the other factor X72 +X71 + · · · +X + 1 is
irreducible. To see this first substitute Y = X − 1, then apply Eisenstein with p = 73 prime.

(vii) This polynomial is obtainable from the polynomial in part (vi): start with the part
(vi) polynomial, change X to −X and then change the sign of the polynomial. These sorts
of things do not affect things like irreducibility and factorization, so the factorization will be
(X + 1)(X72 −X71 + . . .−X + 1) and the degree 72 polynomial will be irreducible.

(viii) Spot roots X = 1 and X = −1. Over the complexes we have more roots too, like ±i
and so on – how do these control factorization over the rationals? Well (X−i) and (X+i) are
factors over the complexes, so their product X2 +1 is a factor over the complexes and hence
also over the rationals. Similarly the two complex cube roots of 1 are complex conjugates
and are the two roots of X2 +X + 1, and the two 6th roots of 1 that we haven’t mentioned
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yet (e
2π i
6 and its complex conjugate) are roots of X2 −X + 1. So we’ve just spotted factors

whose degrees add up to 8. Let’s see what we have so far then: the factors we have spotted
are

(X + 1)(X − 1)(X2 + 1)(X2 +X + 1)(X2 −X + 1)

= (X2 − 1)(X2 + 1)(X2 +X + 1)(X2 −X + 1)

= (X4 − 1)(X4 +X2 + 1)

and so what is left is

(X12 − 1)/(X4 − 1)(X4 +X2 + 1)

= (X8 +X4 + 1)/(X4 +X2 + 1)

= X4 −X2 + 1

The hardest part of this question is figuring out whether that last polynomial X4 −X2 + 1
factors.

A 4. The min poly of α must be X10 − 2 because this is irreducible over Q (by Eisenstein)
and has α as a root. In particular there is no non-zero polynomial of degree at most 9 with
rational coefficients and α as a root, so {1, α, α2, . . . , α9} are linearly independent elements
in a vector space of dimension 10, and hence are a basis.
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