GALOIS THEORY Worksheet 3

©2022 Alessio Corti

Q 1 (†). Let K be a field of characteristic 0 containing an element $\omega \in K$ with

$$\omega^2 + \omega + 1 = 0.$$

(For example you can take $K = \mathbb{Q}(\omega)$ where $\omega = \exp \frac{2\pi i}{3}$.) In this question we carve a trick-free path to the formula for the solutions of the equation

$$X^3 + 3pX + 2q = 0 (†)$$

(where $p, q \in K$) that only involves taking radicals (i.e., $\sqrt[n]{}$ of something).

We assume that $K \subset L$ is the splitting field of the polynomial of Equation (†) and we denote by $\alpha_1, \alpha_2, \alpha_3 \in L$ the three roots. (You can already prove that such a field extension exists but I don't care that you do this here.)

We know that the Galois group G permutes the three roots.

(a) Write the action of the cyclic permutation $\sigma = (123)$ on the elements¹

$$u = \alpha_1 + \omega \alpha_2 + \omega^2 \alpha_3, \quad v = \alpha_1 + \omega^2 \alpha_2 + \omega \alpha_3.$$

and conclude that $\sigma(u) = \omega^2 u$ and $\sigma(v) = \omega v^2$.

(b) Find a formula expressing the three roots α_1 , α_2 , α_3 in terms of u and v.

[*Hint*: $\alpha_1 + \alpha_2 + \alpha_3 = 0.$]

(c) Consider the transposition $\tau = (23)$: show that $\tau(u) = v$ and $\tau(v) = u$, and hence argue that $u^3 + v^3$ and u^3v^3 are fixed by all of \mathfrak{S}_3 — and hence by all of G, irrespective of what G is. In other words, it follows from the Galois Correspondence that $u^3 + v^3$ and $u^3v^3 \in K$: show that this is indeed the case by finding explicit formulas for these quantities. Thus write down an explicit quadratic polynomial in K[X] of which u^3 , v^3 are the two roots. Solve the quadratic equation, and combine with (b) to derive the cubic formula.

Q 2. In this question, if $\alpha \in \mathbb{R}_{>0}$ and $n \in \mathbb{Z}_{>0}$ then by $\alpha^{1/n}$ or $\sqrt[n]{\alpha}$ I mean the unique positive real number β with $\beta^n = \alpha$. (This removes ambiguities about a general complex number having *n* complex roots in this question).

¹Why is it not a "trick" to write down such elements? Consider the permutation matrix acting cyclically on the standard basis of \mathbb{R}^3 . This is a rotation! Figure out the Jordan normal form and write down the change of basis matrix to a basis of eigenvectors over \mathbb{C} .

²Whether or not there is an element of G that acts as σ on the three roots is not relevant at this point. Such an element may or may not exist.

- (i) Set $\gamma = (1 + \sqrt{3})^{1/3}$. Prove that γ is *algebraic* over \mathbb{Q} .³ What is its degree over \mathbb{Q} ? What is its degree over $\mathbb{Q}(\sqrt{3})$?
- (ii) Set $\delta = (10 + 6\sqrt{3})^{1/3}$. Prove that δ is algebraic over \mathbb{Q} . What is its degree over $\mathbb{Q}(\sqrt{2})$?

Q 3. Factor the following polynomials in $\mathbb{Q}[X]$ into irreducible ones, giving proofs that your factors really are irreducible.

- (i) $X^3 8;$
- (ii) $X^{1000} 6;$
- (iii) $X^4 + 4;$
- (iv) $2X^3 + 5X^2 + 5X + 3;$
- (v) $X^5 + 6X^2 9X + 12;$
- (vi) $X^{73} 1;$
- (vii) $X^{73} + 1;$
- (viii) $X^{12} 1$.
- **Q** 4. Prove that if $\alpha = 2^{1/10}$ then $\mathbb{Q}(\alpha)$ has a basis $\{1, \alpha, \alpha^2, \dots, \alpha^9\}$.

³Let $K \subset L$ be a field extension, not necessarily finite. By definition, an element $z \in L$ is algebraic over K if it is the root of a polynomial with coefficients in K. Its degree is by definition the degree of the minimal polynomial.