GALOIS THEORY Solutions to Worksheet 5

©2022 Alessio Corti

A 1. Write
$$
K = \mathbb{Q}(\sqrt{2}, \sqrt{-3}, \sqrt[3]{5})
$$
. Observe that

$$
X^{3} - 5 = (X - \sqrt[3]{5})(X - \omega \sqrt[3]{5})(X - \omega^{2} \sqrt[3]{5})
$$

where

$$
\omega = \frac{-1 + \sqrt{-3}}{2}
$$

is a primitive cube root of unity. It follows from this that K is the splitting field of the polynomial

$$
f(X) = (X^2 - 2)(X^3 - 5) \in \mathbb{Q}[X]
$$

indeed the polynomial splits completely in K and K is generated by the roots (if $\sqrt[3]{5}$ and indeed the polynomial splits completely in K and K is generated by the roots (if $\sqrt{3}/5$ are both in F , then clearly ω is also in F). Hence $\mathbb{Q} \subset L$ is a normal extension.

Now let us count degrees. First, let us state that $\sqrt{2} \notin \mathbb{Q}$, hence $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$. Next Now let us count degrees. First, let us state that $\sqrt{2} \notin \mathbb{Q}$, hence $[\mathbb{Q}(\sqrt{2}) \cdot \mathbb{Q}] = 2$. Next
consider the field $L = \mathbb{Q}(\sqrt{-3}, \sqrt{2})$. It is clear that, say, $\sqrt{-3} \notin \mathbb{Q}(\sqrt{2})$ —for example, $\sqrt{-3}$ is purely imaginary while $\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$. If you don't like this, suppose for a contradiction that $\overline{-3} \in \mathbb{Q}(\sqrt{2})$, that is there exist rational numbers $x, y \in \mathbb{Q}$ such that

$$
-3 = (x + y\sqrt{2})^2 = x^2 + 2y^2 + 2xy\sqrt{2}
$$

since this is an identity in a 2-dimensional vector space over $\mathbb Q$ with basis $1, \sqrt{ }$ 2 we must have either $x = 0$ or $y = 0$. If $y = 0$, then $x^2 = -3$, $x \in \mathbb{Q}$ leads easily to a contradiction. If $x = 0$ then $-3 = 2y^2$. Writing $y = p/q$ with p, q coprime integers, we have

$$
-3q^2 = 2p^2
$$

and we easily get a contradiction working 2− or 3−adically.[1](#page-0-0) By a simple application of the tower law then $[L : \mathbb{Q}] = 4$.

Finally let us consider our field $K = L(\sqrt[3]{5})$ and the diagram of field extensions:

¹I am deliberately avoiding reaching a contradiction by means of the order structure of the rationals: the left hand side is negative, the right hand side is positive. This would be reproducing the argument in terms of imaginary numbers that we wanted to avoid.

I claim that $X^3 - 5$ is irreducible in $L[X]$ and hence $[K: L] = 3$ and then $[K: \mathbb{Q}] = [K:$ $L[[L : \mathbb{Q}] = 3 \times 4 = 12$. Indeed if $X^3 - 5$ were not irreducible in $L[X]$ then it would have a root $\alpha \in L$; and then from $\mathbb{Q} \subset \mathbb{Q}(\alpha) \subset L$ we would conclude from the tower law that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$ divides $[L : \mathbb{Q}] = 4$, a contradiction. Hence $[K : \mathbb{Q}] = 12$.

A 2. (a) If $[F : E] = 2$ let $\alpha \in F \setminus E$, then consider the tower of field extensions $E \subset$ $E(\alpha) \subset F$. As a simple consequence of the tower law we get that $F = E(\alpha)$. The minimal polynomial of α over E has degree 2:

$$
f(X) = X^2 + aX + b \in E[X]
$$

and $X - \alpha$ divides $f(X)$ in $F[X]$ hence $f(X)$ splits completely in F, hence F is the splitting field of $f(X)$ hence $E \subset F$ is a normal extension.

(b) Suppose that $H \leq G$ has index two. This means that there are two elements (cosets) in the quotient set $X = H\backslash G$ and also in the quotient set $Y = G/H$. Let $g \in G$ be any element: if $g \in H$ then clearly $g^{-1}Hg = H$, so let us assume that $g \notin H$. It must be the case that $Hg = G \setminus H$ AND $gH = G \setminus H$; therefore $Hg = gH²$ $Hg = gH²$ $Hg = gH²$.

A 3.

$$
Q \subseteq Q (8^{1/5})
$$

\n
$$
\subseteq Q (8^{1/5}, \sqrt{8^{1/5} + 6})
$$

\n
$$
\subseteq Q (8^{1/5}, \sqrt{8^{1/5} + 6}, 5^{1/3})
$$

\n
$$
\subseteq Q (8^{1/5}, \sqrt{8^{1/5} + 6}, 5^{1/3}, \sqrt[11]{5^{1/3} + \sqrt{8^{1/5} + 6}})
$$

\n
$$
\subseteq Q (8^{1/5}, \sqrt{8^{1/5} + 6}, 5^{1/3}, \sqrt[11]{5^{1/3} + \sqrt{8^{1/5} + 6}}, 9^{1/7})
$$

A 4. This is not difficult at all. Go back to your notes of the discussion of $X^3 - 2$ at the beginning of the course and make the appropriate minor changes.

²You are supposed to "see" that the two parts of the question correspond under the Galois correspondence.