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A 1. Write K = Q
(√

2,
√
−3, 3
√

5
)
. Observe that

X3 − 5 = (X − 3
√

5)(X − ω 3
√

5)(X − ω2 3
√

5)

where

ω =
−1 +

√
−3

2
is a primitive cube root of unity. It follows from this that K is the splitting field of the
polynomial

f(X) = (X2 − 2)(X3 − 5) ∈ Q[X]

indeed the polynomial splits completely in K and K is generated by the roots (if 3
√

5 and
ω 3
√

5 are both in F , then clearly ω is also in F ). Hence Q ⊂ L is a normal extension.

Now let us count degrees. First, let us state that
√

2 6∈ Q, hence
[
Q(
√

2) : Q
]

= 2. Next

consider the field L = Q(
√
−3,
√

2). It is clear that, say,
√
−3 6∈ Q(

√
2)—for example,

√
−3

is purely imaginary while Q(
√

2) ⊂ R. If you don’t like this, suppose for a contradiction that√
−3 ∈ Q(

√
2), that is there exist rational numbers x, y ∈ Q such that

−3 = (x+ y
√

2)2 = x2 + 2y2 + 2xy
√

2

since this is an identity in a 2-dimensional vector space over Q with basis 1,
√

2 we must have
either x = 0 or y = 0. If y = 0, then x2 = −3, x ∈ Q leads easily to a contradiction. If x = 0
then −3 = 2y2. Writing y = p/q with p, q coprime integers, we have

−3q2 = 2p2

and we easily get a contradiction working 2− or 3−adically.1 By a simple application of the
tower law then [L : Q] = 4.

Finally let us consider our field K = L( 3
√

5) and the diagram of field extensions:

K

L

@@

Q( 3
√

5)

cc

Q

<<^^

1I am deliberately avoiding reaching a contradiction by means of the order structure of the rationals: the
left hand side is negative, the right hand side is positive. This would be reproducing the argument in terms
of imaginary numbers that we wanted to avoid.
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I claim that X3 − 5 is irreducible in L[X] and hence [K : L] = 3 and then [K : Q] = [K :
L][L : Q] = 3 × 4 = 12. Indeed if X3 − 5 were not irreducible in L[X] then it would have
a root α ∈ L; and then from Q ⊂ Q(α) ⊂ L we would conclude from the tower law that
[Q(α) : Q] = 3 divides [L : Q] = 4, a contradiction. Hence [K : Q] = 12.

A 2. (a) If [F : E] = 2 let α ∈ F \ E, then consider the tower of field extensions E ⊂
E(α) ⊂ F . As a simple consequence of the tower law we get that F = E(α). The minimal
polynomial of α over E has degree 2:

f(X) = X2 + aX + b ∈ E[X]

and X −α divides f(X) in F [X] hence f(X) splits completely in F , hence F is the splitting
field of f(X) hence E ⊂ F is a normal extension.

(b) Suppose that H ≤ G has index two. This means that there are two elements (cosets)
in the quotient set X = H\G and also in the quotient set Y = G/H. Let g ∈ G be any
element: if g ∈ H then clearly g−1Hg = H, so let us assume that g 6∈ H. It must be the case
that Hg = G \H AND gH = G \H; therefore Hg = gH.2

A 3.

Q ⊆ Q
(
81/5

)
⊆ Q

(
81/5,

√
81/5 + 6

)
⊆ Q

(
81/5,

√
81/5 + 6, 51/3

)
⊆ Q

(
81/5,

√
81/5 + 6, 51/3,

11

√
51/3 +

√
81/5 + 6

)
⊆ Q

(
81/5,

√
81/5 + 6, 51/3,

11

√
51/3 +

√
81/5 + 6, 91/7

)
A 4. This is not difficult at all. Go back to your notes of the discussion of X3 − 2 at the
beginning of the course and make the appropriate minor changes.

2You are supposed to “see” that the two parts of the question correspond under the Galois correspondence.
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